Linear1InfusionSingleDose_ClV from the library
of modelsRespPKRespPKarm1 of size 150 with administration
administrationRespPK and samplings
samplingTimesRespPKarm1 to the design design1In this example, we simulate an 1-compartment model with linear elimination for IV infusion over 1 hour (inspired by (Sukeishi et al. 2022)). One hundred and fifty (150) subjects receive a 400mg loading dose on the first day, followed by 4 daily doses of 200mg. Blood samples are taken at the end of the \(1^{st}\) infusion (H1), H20, H44, H66 and H120. By evaluating this design, we will then select 4 sampling times on intervals (0,48) and (72,120) for an optimal design using PSO (Particle Swarm Optimization) algorithm. The same optimization problem will also be run with PGBO (Population Based Genetic Optimization) and Simplex algorithm.
Reports of the design evaluation and optimization are available at https://github.com/iame-researchCenter/PFIM
Linear1InfusionSingleDose_ClV from
the library of modelsRespPKRespPKarm1 of size 150 with
administration administrationRespPK and samplings
samplingTimesRespPKevaluationPop = Evaluation( name = "",
modelEquations = modelEquations,
modelParameters = modelParameters,
modelError = modelError,
outcomes = list( "RespPK" ),
designs = list( design1 ),
fim = "population",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIMPop = run( evaluationPop )
evaluationInd = Evaluation( name = "",
modelEquations = modelEquations,
modelParameters = modelParameters,
modelError = modelError,
outcomes = list( "RespPK" ),
designs = list( design1 ),
fim = "individual",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIMInd = run( evaluationInd )
evaluationBay = Evaluation( name = "",
modelEquations = modelEquations,
modelParameters = modelParameters,
modelError = modelError,
outcomes = list( "RespPK" ),
designs = list( design1 ),
fim = "Bayesian",
odeSolverParameters = list( atol = 1e-8, rtol = 1e-8 ) )
evaluationFIMBay = run( evaluationBay )show( evaluationFIMPop )
show( evaluationFIMInd )
show( evaluationFIMBay )
fisherMatrix = getFisherMatrix( evaluationFIMPop )
getCorrelationMatrix( evaluationFIMPop )
getSE( evaluationFIMPop )
getRSE( evaluationFIMPop )
getShrinkage( evaluationFIMPop )
getDeterminant( evaluationFIMPop )
getDcriterion( evaluationFIMPop )
plotOptions = list( unitTime = c("hour"), unitOutcomes = c("mcg/mL") )
plotEvaluation = plotEvaluation( evaluationFIMPop, plotOptions )
plotSensitivityIndice = plotSensitivityIndice( evaluationFIMPop, plotOptions )
SE = plotSE( evaluationFIMPop )
RSE = plotRSE( evaluationFIMPop )
# examples
plotOutcomesEvaluationRespPK = plotEvaluation[["design1"]][["arm1"]][["RespPK"]]
plotSensitivityIndice_RespPK_Cl = plotSensitivityIndice[["design1"]][["arm1"]][["RespPK"]][["V"]]
SE = SE[["design1"]]
RSE = RSE[["design1"]]
outputPath = "C:/..."
plotOptions = list( unitTime=c("hour"), unitResponses= c("mcg/mL") )
outputFile = "Example02_EvaluationPopFIM.html"
Report( evaluationFIMPop, outputPath, outputFile, plotOptions )
outputFile = "Example02_EvaluationIndFIM.html"
Report( evaluationFIMInd, outputPath, outputFile, plotOptions )
outputFile = "Example02_EvaluationBayFIM.html"
Report( evaluationFIMBay, outputPath, outputFile, plotOptions )We create sampling times that will be used in the initial design for comparison during the optimization process. As PSO does not optimize the dose regimens, we keep the same administration.
We define sampling times constraints that aim to select 4 sampling times: 2 within the interval [1,48], and 2 within [72, 120], with at least a delay of 5 between two points.
optimization = Optimization( name = "",
modelEquations = modelEquations,
modelParameters = modelParameters,
modelError = modelError,
optimizer = "PSOAlgorithm",
optimizerParameters = list(
maxIteration = 100,
populationSize = 10,
personalLearningCoefficient = 2.05,
globalLearningCoefficient = 2.05,
seed = 42,
showProcess = T ),
designs = list( design2 ),
fim = "population",
outcomes = list( "RespPK") )optimizationPGBO = Optimization( name = "",
modelEquations = modelEquations,
modelParameters = modelParameters,
modelError = modelError,
optimizer = "PGBOAlgorithm",
optimizerParameters = list(
N = 30,
muteEffect = 0.65,
maxIteration = 1000,
purgeIteration = 200,
seed = 42,
showProcess = TRUE ),
designs = list( design2 ),
fim = "population",
outcomes = list( "RespPK") )optimizationSimplex= Optimization( name = "",
modelEquations = modelEquations,
modelParameters = modelParameters,
modelError = modelError,
optimizer = "SimplexAlgorithm",
optimizerParameters = list( pctInitialSimplexBuilding = 20,
maxIteration = 1000,
tolerance = 1e-6,
showProcess = TRUE ),
designs = list( design2 ),
fim = "population",
outcomes = list( "RespPK") )
optimizationSimplex = run( optimizationSimplex )