
BUILDING MICROSOFT WINDOWS VERSIONS OF R AND R PACKAGES UNDER INTEL LINUX

Building Microsoft Windows Versions of R
and R packages under Intel Linux
A Package Developer’s Tool

by Jun Yan and A.J. Rossini

Disclaimer

Cross-building R and R packages are documented in the R
[1] source by the R Development Core Team, in files such as
INSTALL, readme.package, and Makefile, under the directory
src/gnuwin32/. This point was not clearly stated in an earlier
version of this document [2] and has caused confusions. We
apologize for the confusion and claim sole responsibility [3]. In
addition, we clarify that the final credit should go to the R De-
velopment Core Team. We intended to automate and illustrate
those steps by presenting an explicit example, hoping that it
might save people’s time. Follow them at your own risk. Puz-
zles caused by this document should NOT be directed to the R
Development Core Team. Instead, looking into the relevant files
in the R source is recommended.

Introduction

It is simple to build R and R packages for Microsoft Win-
dows from an ix86 Linux machine. This is very useful to
package developers who are familiar with Unix tools and
feel that widespread dissemination of their work is impor-
tant. The resulting R binaries and binary library packages
require only a minimal amount of work to install under
Microsoft Windows. While testing is always important
for quality assurance and control, we have found that the
procedure usually results in reliable packages.

Instructions on cross-building come with the R source
[1] in files such as INSTALL, readme.package, and Make-
file under the directory src/gnuwin32/. However, it took
us a substantial amount of time to get things worked out,
and we thought it might be useful to share our experi-
ence by by presenting an explicit example. In this docu-
ment, we intended to automate and illustrate steps for ob-
taining, installing, and using the cross-compilation tools.
hoping that it might save people’s time.

These steps have been put into a Makefile, which ac-
companies this document, for automating the process.
The Makefile is available from the contributed docu-
mentation area on Comprehensive R Archive Network
(CRAN). The current version has been tested with R-2.1.0.

For the impatient and trusting, if a current version of

Linux R is in the search path, then

make CrossCompileBuild

will run all Makefile targets described up to the section,
Building R Packages and Bundles. This assumes: (1) you
have the Makefile in a directory RCrossBuild (empty ex-
cept for the makefile), and (2) that ./RCrossBuild is your
current working directory. After this, one should man-
ually set up the packages of interest for building, though
the makefile will still help with many important steps. We
describe this in detail in the section on Building R Packages
and Bundles.

Setting up the Build area

We first create a separate directory for R cross-building,
say RCrossBuild and will put the Makefile into this direc-
tory. From now on this directory is stored in the environ-
ment variable $RCB. Make sure the file name is Makefile,
unless you are familiar with using the make program with
other control file names.

Create Work Area

The following steps should take place in the RCrossBuild
directory. Within this directory, the Makefile assumes the
following subdirectories either exist or can be created, for
use as described:

• downloads is the location to store all the sources
needed for cross-building.

• cross-tools is the location to unpack the cross-
building tools.

• WinR is the location to unpack the R source and
cross-build R.

• LinuxR is the location to unpack the R source and
build a fresh Linux R, which is only needed if your
system doesn’t have the current version of R.

• pkgsrc is the location of package sources (tarred
and gzipped from R CMD build) that need to cross-
build.

• WinRlibs is the location to put the resulting Win-
dows binaries of the packages.

1

BUILDING MICROSOFT WINDOWS VERSIONS OF R AND R PACKAGES UNDER INTEL LINUX

These directories can be changed by modifying the
Makefile. One may find what exactly each step does by
looking into the Makefile.

Download Tools and Sources

make down

This command downloads the i586-mingw32 cross-
compilers, TclTk support files, and the R sources.
It places all sources into a separate directory called
RCrossBuild/downloads. The wget program is used
to get all needed sources. Other downloading tools
such as curl or links/elinks can be used as well. We
place these sources into the RCrossBuild/downloads di-
rectory. The URLs of these sources are available in file
src/gnuwin32/INSTALL which is located within the R
source tree (or, see the Makefile associated with this doc-
ument).

If the cross-compilers has already been downloaded
into the right place, and a new version of R is to be
cross-compiled, the variable $R in the Makefile needs
to be changed to the new version, and make downR will
download the new R source. The cross-compiler, the
TclTk support files, and the international character sup-
port file, may be downloaded by make downXtools, make
downRTcl, and make downIconv, respectively. These just
split the task of make down into parts.

Cross-Tools Setup

make xtools

This rule creates a separate subdirectory cross-tools in
the build area for the cross-tools. It unpacks the cross-
compiler tools into the cross-tools subdirectory.

Prepare Source Code

make prepsrc

This rule creates a separate subdirectory WinR to carry out
the cross-building process of R and unpacks the R sources
into it. As of 2.0.0, the source for Tcl is needed. As of
2.1.0, the international character support file iconv.zip is
needed. This step will also unpack the TclTk support files
at the top level of the R sources and unpack iconv.zip
under src/gnuwin32/unicode.

Build Linux R If Needed

make LinuxR

This step is required, as of R-1.7.1, if you don’t have
a current version of Linux R on your system and you
don’t have the permission to install one for system wide
use. This rule will build and install a Linux R in
$RCB/LinuxR/R.

Building R

Configuring

If a current Linux R is available from the system and on
your search path, then run the following command:

make mkrules

This rule modifies the file src/gnuwin32/Mkrules
from the R source tree to set BUILD=CROSS and
HEADER=$RCB/cross-tools/mingw32/include.

If a current Linux R is not available from the system,
and a Linux R has just been built by make LinuxR from the
end of the last section:

make LinuxFresh=YES mkrules

This rule will set R_EXE=$RCB/LinuxR/R/bin/R, in addi-
tion to the variables above.

Compiling

Now we can cross-compile R:

make R

The environment variable $PATH is modified in this make
target to ensure that the cross-tools are at the beginning of
the search path. This step as well as initiation of the com-
pile process is accomplished by the R makefile target. This
may take a while to finish.

The cross-compiling may stop due to unavailability
or outdated versions of some programs. The most com-
mon error is caused by unavailability of tidy, a program
to clean HTML code (http://tidy.sourceforge.net/). An-
other error we experienced was caused by an old version
of makeindex, an index processor used by TEX. Both these
two programs may not come with a standard Linux dis-
tribution, for example, Redhat.

If everything goes smoothly, a compressed
file Win-R-2.1.0.tgz will be created in the
RCrossBuild/WinR directory. This gzip’d tar-file contains
the executables and supporting files for R which will run
on a Microsoft Windows machine. To install, transfer
and unpack it on the desired machine. Since there is
no InstallShield-style installer executable, one will have
to manually create any desired desktop shortcuts to the
executables in the bin directory, such as Rgui.exe. Re-
member, though, this is not necessarily the same as the R
for Windows version on CRAN!

2

http://tidy.sourceforge.net/

BIBLIOGRAPHY BIBLIOGRAPHY

Building R Packages and Bundles

Now we have reached the point of interest. As one might
recall, the primary goal of this document is to be able to
build binary packages for R libraries which can be simply
installed for R running on Microsoft Windows. All the
work up to this point simply obtains the required work-
ing build of R for Microsoft Windows!

Now, create the pkgsrc subdirectory to put the pack-
age sources into and the WinRlibs subdirectory to put the
windows binaries into.

We will use the geepack package as an ex-
ample for cross-building. First, put the source
geepack_1.0-2.tar.gz into the subdirectory pkgsrc, and
then do

make pkg-geepack_1.0-2

If there is no error, the Windows binary geepack.zip will
be created in the WinRlibs subdirectory, which is then
ready to be shipped to a Windows machine for installa-
tion.

We can easily build bundled packages as well. For ex-
ample, to build the packages in bundle VR, we place the
source VR_7.2-15.tar.gz into the pkgsrc subdirectory,
and then do

make bundle-VR_7.2-15

The Windows binaries of packages MASS, class, nnet,
and spatial in the VR bundle will appear in the WinRlibs
subdirectory.

This Makefile assumes a tarred and gzipped source for
an R package, which ends with “.tar.gz”. This is usually
created through the R CMD build command. It takes the
version number together with the package name.

The Makefile

The associated Makefile is used to automate many of the
steps. Since many Linux distributions come with the
make utility as part of their installation, it hopefully will
help rather than confuse people cross-compiling R. The
Makefile is written in a format similar to shell commands
in order to show what exactly each step does.

The commands can also be cut-and-pasted out of the
Makefile with minor modification (such as, change $$ to $
for environmental variable names), and run manually.

Possible Pitfalls

We have very little experience with cross-building pack-
ages (for instance, Matrix) that depend on external li-
braries such as atlas, blas, lapack, or Java libraries. Na-
tive Windows building, or at least a substantial amount
of testing, may be required in these cases. Biconductor
[4] packages often have an installation script install.R. It
needs Rterm for windows to run, which we cannot afford.
It is worth experimenting, though!

Acknowledgments

We are grateful to Ben Bolker, Stéphane Cano, Stéphane
Dray, Stephen Eglen, Paul Murrell, and Brian Ripley for
helpful discussions.

Bibliography

[1] R Development Core Team. R Project. 2003.
http://www.r-project.org.

[2] Yan J, Rossini AJ. Building Microsoft Windows Ver-
sion of R and R Packages under Intel Linux. R News
2003; 3(1):15-17.

[3] Yan J, Rossini AJ. Correction to “Building Microsoft
Windows Version of R and R Packages under Intel
Linux”. R News 2003; 3(2):39.

[4] Bioconductor core group. Bioconductor Project. 2003.
http://www.bioconductor.org/

Jun Yan
University of Iowa, U.S.A.
jyan@stat.uiowa.edu

A.J. Rossini
University of Washington, U.S.A.
rossini@u.washington.edu

3

http://www.r-project.org
http://www.bioconductor.org/
mailto:jyan@stat.uiowa.edu
mailto:rossini@u.washington.edu

	Building Microsoft Windows Versions of R and R packages under Intel Linux

