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1 Getting Started

Fuzzy set theory lets us quite intuitively represent imprecise or vague information. Fuzzy num-
bers (FNs), introduced by Dubois and Prade in [10], form a particular subclass of fuzzy sets
of the real line. Formally, a fuzzy set A with membership function µA : R → [0, 1] is a fuzzy
number, if it possess at least the three following properties:

(i) it is a normalized fuzzy set, i.e. µA(x0) = 1 for some x0 ∈ R,

(ii) it is fuzzy convex, i.e. for any x1, x2 ∈ R and λ ∈ [0, 1] it holds µA(λx1 + (1 − λ)x2) ≥
µA(x1) ∧ µA(x2),

(iii) the support of A is bounded, where supp(A) = cl({x ∈ R : µA(x) > 0}).

Fuzzy numbers play a significant role in many practical applications (cf. [20]) since we often
describe our knowledge about objects through numbers, e.g. “I’m about 180 cm tall” or “The
rocket was launched between 2 and 3 p.m.”.

FuzzyNumbers is an Open Source (licensed under GNU LGPL 3) package for R – a free
software environment for statistical computing and graphics, which runs on all major operating
systems, i.e. Windows, Linux, and MacOS X1.

FuzzyNumbers has been created in order to deal with fuzzy numbers conveniently and effec-
tively. To install latest “official” release of the package available on CRAN we type:

install.packages('FuzzyNumbers')

Alternatively, we may fetch its current development snapshot from GitHub:

install.packages('devtools')

library('devtools')

install_github('FuzzyNumbers', 'gagolews')

1Please visit R Project’s homepage at www.R-project.org for more details. Perhaps you may also wish to

install RStudio, a convenient development environment for R. It is available at www.rsudio.com/ide.
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Each session with FuzzyNumbers should be preceded by a call to:

library('FuzzyNumbers') # Load the package

To view the main page of the manual we type:

library(help='FuzzyNumbers')

For more information please visit the package’s homepage [15]. In case of any problems, com-
ments, or suggestions feel free to contact the author. Good luck!

2 How to Create Instances of Fuzzy Numbers

2.1 Arbitrary Fuzzy Numbers

A fuzzy number A may be defined by specifying its core, support, and either its left/right side
functions or lower/upper α-cut bounds. Please note that many algorithms that deal with FNs
assume we provide at least the latter, i.e. α-cuts.

2.1.1 Definition by Side Functions

A fuzzy number A specified by side functions2 has membership function of the form:

µA(x) =



































0 if x < a1,

left
(

x−a1
a2−a1

)

if a1 ≤ x < a2,

1 if a2 ≤ x ≤ a3,

right
(

x−a3
a4−a3

)

if a3 < x ≤ a4,

0 if a4 < x,

(1)

where a1, a2, a3, a4 ∈ R, a1 ≤ a2 ≤ a3 ≤ a4, left : [0, 1] → [0, 1] is a nondecreasing function
(called the left side generator of A), and right : [0, 1] → [0, 1] is a nonincreasing function (right

side generator of A). In our package, it is assumed that these functions fulfill the conditions
left(0) ≥ 0, left(1) ≤ 1, right(0) ≤ 1, and right(1) ≥ 0. Note that this is a so-called L-R
representation of FNs, see [13].

An example: a fuzzy number A1 with linear sides (a trapezoidal fuzzy number, see also
Sec. 2.3).

A1 <- FuzzyNumber(1, 2, 4, 7,

left=function(x) x,

right=function(x) 1-x

)

This object is an instance of the following R class:

class(A1)

## [1] "FuzzyNumber"

## attr(,"package")

## [1] "FuzzyNumbers"

We may print some basic information on A1 by calling print(A1) or simply by typing:

2Side functions are sometimes called branches or shape functions in the literature.
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A1

## Fuzzy number with:

## support=[1,7],

## core=[2,4].

To depict A1 we call:

plot(A1)
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Remark. Please note that by using side generating functions defined on [0, 1] we really make
(in the author’s humble opinion) the process of generating examples for our publications much
easier. A similar concept was used e.g. in [21] (LR-fuzzy numbers).

Assume, however, that we are given two fancy side functions f : [a1, a2] = [−4, −2] → [0, 1],
and g : [a3, a4] = [−1, 10] → [1, 0], for example:

f <- splinefun(c(-4,-3.5,-3,-2.2,-2), c(0,0.4,0.7,0.9,1), method='monoH.FC')

g <- splinefun(c(-1,0,10), c(1,0.5,0), method='monoH.FC')

We should convert them to side generating functions, which shall be defined on the interval
[0, 1]. This may easily be done with the convertSide() function. It returns a new function
that calls the original one with linearly transformed input.

convertSide(f, -4, -2)(c(0,1))

## [1] 0 1

convertSide(g, -1, 10)(c(0,1))

## [1] 1 0

convertSide(g, 10, -1)(c(0,1)) # interesting!

## [1] 0 1

These functions may be used to define a fuzzy number, now with arbitrary support and core.

B <- FuzzyNumber(10,20,20,30,

left=convertSide(f, -4, -2),

right=convertSide(g, -1, 10)

)

plot(B, xlab=expression(x), ylab=expression(alpha))
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2.1.2 Definition by α-cut Bounds

Alternatively, a fuzzy number A may be defined by specifying its α-cuts. We have (for α ∈ (0, 1)
and a1 ≤ a2 ≤ a3 ≤ a4):

Aα := [AL(α), AU (α)] (2)

=
[

a1 + (a2 − a1) · lower(α), a3 + (a4 − a3) · upper(α)
]

, (3)

where lower : [0, 1] → [0, 1] is a nondecreasing function (called lower α-cut bound generator

of A), and upper : [0, 1] → [0, 1] is a nonincreasing function (upper bound generator). In our
package, we assume that lower(0) = 0, lower(1) = 1, upper(0) = 1, and upper(1) = 0.

It is easily seen that for α ∈ (0, 1) we have the following relationship between generating
functions:

lower(α) = inf{x : left(x) ≥ α}, (4)

upper(α) = sup{x : right(x) ≥ α}. (5)

Moreover, if side generating functions are continuous and strictly monotonic, then α-cut bound
generators are their inverses.

An example:

A1 <- FuzzyNumber(1, 2, 4, 7,

left=function(x) x,

right=function(x) 1-x

)

A2 <- FuzzyNumber(1, 3, 4, 7,

lower=function(alpha) pbeta(alpha, 5, 9), # CDF of a beta distr.

upper=function(alpha) pexp(1/alpha-1) # transformed CDF of an exp. distr.

)

plot(A1, col='blue')

plot(A2, col='red', lty=2, add=TRUE)

legend('topright', c(expression(mu[A1]), expression(mu[A2])),

col=c('blue', 'red'), lty=c(1,2))
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Remark. The convertAlpha() function works similarly to convertSide(). It scales the
output values of a given function, thus it may be used to create an α-cut generator conveniently.

2.1.3 Definition with Generating Functions Omitted: Shadowed Sets

In the above examples either side generating functions or α-cut generators were passed to the
FuzzyNumber() function. Let us note what will happen if we omit both of them.

A3 <- FuzzyNumber(1, 2, 4, 5)

A3

## Fuzzy number with:

## support=[1,5],

## core=[2,4].

The object seems to be defined correctly: R does not make any complaints. However. . .

plot(A3)
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It turns out that we have obtained a shadowed set! Indeed, this behavior is quite reasonable: we
have provided no information on the “partial knowledge” part of our fuzzy number. In fact, the
object has been initialized with generating functions always returning NA (Not-Available or any

value). Does it mean that when we define a FN solely by side generators, we cannot compute
its α-cuts? Indeed!

6



alphacut(A2, 0.5) # A2 has alpha-cut generators defined

## L U

## 0.5 2.733154 5.896362

alphacut(A1, 0.5) # A1 hasn't got them

## L U

## 0.5 NA NA

Another example: evaluation of the membership function.

evaluate(A1, 6.5) # A1 has side generators defined

## 6.5

## 0.1666667

evaluate(A2, 6.5) # A2 hasn't got them

## 6.5

## NA

2.2 Using Numeric Approximations of α-cut or Side Generators

The reason for setting NAs3 as return values of omitted generators is simple. Finding a function
inverse numerically requires lengthy computations and is always done locally (for a given point,
not for “whole” the function at once). R is not a symbolic mathematical solver. If we had defined
such procedures (it is really easy to do by using the uniroot() function), then an inexperienced
user would have used it in his/her algorithms and wondered why everything runs so slow. To
get more insight, let us look at the internals of A2:

A2['lower']

## function(alpha) pbeta(alpha, 5, 9)

## <bytecode: 0x5613b87afd60>

A2['upper']

## function(alpha) pexp(1/alpha-1)

## <bytecode: 0x5613b8897030>

A2['left']

## function (x)

## rep(NA_real_, length(x))

## <environment: 0x5613b6633060>

A2['right']

## function (x)

## rep(NA_real_, length(x))

## <environment: 0x5613b6633060>

Note that all generators are properly vectorized (for input vectors of length n they always give
output of the same length). Thus, general rules are as follows. If you want α-cuts (e.g. for
finding trapezoidal approximations of FNs), specify them. If you would like to calculate the
membership function (by the way, the plot() function automatically detects what kind of
knowledge we have), assure the side generators are provided.

However, we also provide a convenient short-cut method to interpolate generating functions of
one type to get some crude numeric approximations of their inverses: the approxInvert() func-

3To be precise, it’s NA_real_.
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tion4, which may of course be applied on results returned by convertAlpha() and convertSide().
This is a simple wrapper to R’s approxfun() (piecewise linear interpolation, the ’linear’

method) and splinefun() (monotonic splines: methods ’hyman’ and ’monoH.FC’; the latter is
default and recommended).

l <- function(x) pbeta(x, 1, 2)

r <- function(x) 1-pbeta(x, 1, 0.1)

A4 <- FuzzyNumber(-2, 0, 0, 2,

left = l,

right = r,

lower = approxInvert(l),

upper = approxInvert(r)

)

x <- seq(0,1,length.out=1e5)

max(abs(qbeta(x, 1, 2) - A4['lower'](x))) # sup-error estimator

## [1] 0.0001389811

max(abs(qbeta(1-x, 1, 0.1) - A4['upper'](x))) # sup-error estimator

## [1] 0.0008607773

2.3 Trapezoidal Fuzzy Numbers

A trapezoidal fuzzy number (TFN) is a FN which has linear side generators and linear α-cut
bound generators. To create a trapezoidal fuzzy number T1 with, for example, core(T1) = [1.5, 4]
and supp(T1) = [1, 7] we call:

T1 <- TrapezoidalFuzzyNumber(1, 1.5, 4, 7)

Thus, we have:

µT1
(x) =































0 for x ∈ (−∞, 1),
(x − 1)/0.5 for x ∈ [1, 1.5),
1 for x ∈ [1.5, 4],
(7 − x)/3 for x ∈ (4, 7],
0 for x ∈ (7, +∞).

T1α = [1 + 0.5 α, 7 − 3 α].

Note that the above equations have been automatically generated by knitr and LATEX by calling
cat(as.character(T1, toLaTeX=TRUE, varnameLaTeX=’T_1’)), see Sec. 3.
The T1 object is an instance of the following R class:

class(T1)

## [1] "TrapezoidalFuzzyNumber"

## attr(,"package")

## [1] "FuzzyNumbers"

To depict T1 we call:

4The n argument, which sets the number of interpolation points, controls the trade-off between accuracy and

computation speed. Well, world’s not ideal, remember that “some” is better than “nothing” sometimes.
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plot(T1)
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T1 is (roughly) equivalent to the trapezoidal fuzzy number A1 defined in the previous subsec-
tion. The TrapezoidalFuzzyNumber class inherits all the goodies from the FuzzyNumber class,
but is more specific (guarantees faster computations, contains more detailed information, etc.).
Of course, in this case the generating functions are known a priori (A1 had no α-cut generators)
so there is no need to provide them manually (what is more, this has been disallowed for safety
reasons). Thus, is we wanted to define a trapezoidal FN next time, we would do it not like with
A1 but rather as with T1.

T1['lower']

## function (alpha)

## alpha

## <bytecode: 0x5613b6f2a540>

## <environment: namespace:FuzzyNumbers>

T1['upper']

## function (alpha)

## 1 - alpha

## <bytecode: 0x5613b6f2a658>

## <environment: namespace:FuzzyNumbers>

T1['left']

## function (x)

## x

## <bytecode: 0x5613b6f2b1d0>

## <environment: namespace:FuzzyNumbers>

T1['right']

## function (x)

## 1 - x

## <bytecode: 0x5613b6f2b2e8>

## <environment: namespace:FuzzyNumbers>

Trapezoidal fuzzy numbers are among the simplest FNs. Despite their simplicity, however,
they include triangular FNs, “crisp” real intervals, and “crisp” reals. Please note that currently
no separate classes for these particular TFNs types are implemented in the package.
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TrapezoidalFuzzyNumber(1,2,2,3) # triangular FN

## Trapezoidal fuzzy number with:

## support=[1,3],

## core=[2,2].

TriangularFuzzyNumber(1,2,3) # the same

## Trapezoidal fuzzy number with:

## support=[1,3],

## core=[2,2].

TrapezoidalFuzzyNumber(2,2,3,3) # `crisp' interval

## Trapezoidal fuzzy number with:

## support=[2,3],

## core=[2,3].

as.TrapezoidalFuzzyNumber(c(2,3)) # the same

## Trapezoidal fuzzy number with:

## support=[2,3],

## core=[2,3].

TrapezoidalFuzzyNumber(5,5,5,5) # `crisp' real

## Trapezoidal fuzzy number with:

## support=[5,5],

## core=[5,5].

as.TrapezoidalFuzzyNumber(5) # the same

## Trapezoidal fuzzy number with:

## support=[5,5],

## core=[5,5].

2.4 Piecewise Linear Fuzzy Numbers

Trapezoidal fuzzy numbers are generalized by piecewise linear FNs (PLFNs), i.e. fuzzy numbers
which side generating functions and α-cut generators are piecewise linear functions. Each PLFN
is given by:

• four coefficients a1 ≤ a2 ≤ a3 ≤ a4 defining its support and core,
• the number of “knots”, knot.n≥ 0,
• a vector of α-cut coordinates, knot.alpha, consisting of knot.n elements ∈ [0, 1],
• a nondecreasingly sorted vector knot.left consisting of knot.n elements ∈ [a1, a2], defin-

ing interpolation points for the left side function, and
• a nondecreasingly sorted vector knot.right consisting of knot.n elements ∈ [a2, a3],

defining interpolation points for the right side function.

If knot.n≥ 1, then the membership function of a piecewise linear fuzzy number P is defined
as:
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µP (x) =























































0 if x < a1,

αi + (αi+1 − αi)
(

x−li
li+1−li

)

if li ≤ x < li+1

for some i ∈ {1, . . . , n + 1},

1 if a2 ≤ x ≤ a3,

αn−i+2 + (αn−i+3 − αn−i+2)
(

1 − x−ri

ri+1−ri

)

if ri < x ≤ ri+1

for some i ∈ {1, . . . , n + 1},

0 if a4 < x,

(6)

and its α-cuts for α ∈ [αi, αi+1] (for some i ∈ {1, . . . , n + 1}) are given by:

PL(α) = li + (li+1 − li)
(

α − αi

αi+1 − αi

)

, (7)

PU , (α) = rn−i+2 + (rn−i+3 − rn−i+2)
(

1 − α − αi

αi+1 − αi

)

, (8)

where n = knot.n, (l1, . . . , ln+2) = (a1, knot.left, a2), (r1, . . . , rn+2) = (a3, knot.right, a4),
and (α1, . . . , αn+2) = (0, knot.alpha, 1).

PLFNs in our package are represented by the PiecewiseLinearFuzzyNumber class.

P1 <- PiecewiseLinearFuzzyNumber(1, 2, 3, 4,

knot.n=1, knot.alpha=0.25, knot.left=1.5, knot.right=3.25)

class(P1)

## [1] "PiecewiseLinearFuzzyNumber"

## attr(,"package")

## [1] "FuzzyNumbers"

P1

## Piecewise linear fuzzy number with 1 knot(s),

## support=[1,4],

## core=[2,3].

P2 <- PiecewiseLinearFuzzyNumber(1, 2, 3, 4,

knot.n=2, knot.alpha=c(0.25,0.6),

knot.left=c(1.5,1.8), knot.right=c(3.25, 3.5))

P2

## Piecewise linear fuzzy number with 2 knot(s),

## support=[1,4],

## core=[2,3].

plot(P1, type='b', from=0, to=5, xlim=c(0.5,4.5))

plot(P2, type='b', col=2, lty=2, pch=2, add=TRUE, from=0, to=5)
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The following operators return matrices with all knots of a PLFN. Each matrix has three
columns: α-cuts, left side coordinates, and right side coordinates.

P1['knots']

## alpha L U

## knot_1 0.25 1.5 3.25

P1['allknots'] # including a1,a2,a3,a4

## alpha L U

## supp 0.00 1.0 4.00

## knot_1 0.25 1.5 3.25

## core 1.00 2.0 3.00

We have, for example:

µP1
(x) =



















































0 for x ∈ (−∞, 1),
0 + 0.25 (x + 1)/0.5 for x ∈ [1, 1.5),
0.25 + 0.75 (x + 1.5)/0.5 for x ∈ [1.5, 2),
1 for x ∈ [2, 3],
0.25 + 0.75 (3.25 − x)/0.25 for x ∈ [3, 3.25),
0 + 0.25 (4 − x)/0.75 for x ∈ [3.25, 4),
0 for x ∈ (4, +∞).

P1α = [P1L(α), P1U (α)],

where

P1L(α) =

{

1 + 0.5 (α − 0)/0.25 for α ∈ [0, 0.25],
1.5 + 0.5 (α − 0.25)/0.75 for α ∈ [0.25, 1],

P1U (α) =

{

3.25 + 0.75 (0.25 − α)/0.25 for α ∈ [0, 0.25],
3 + 0.25 (1 − α)/0.75 for α ∈ [0.25, 1].

If you want to obtain a PLFN with equally distributed knots, then you may use the more
convenient version of the PiecewiseLinearFuzzyNumber() function.

PiecewiseLinearFuzzyNumber(knot.left=c(0,0.5,0.7,1),

knot.right=c(2,2.2,2.4,3))['allknots']
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## alpha L U

## supp 0.0000000 0.0 3.0

## knot_1 0.3333333 0.5 2.4

## knot_2 0.6666667 0.7 2.2

## core 1.0000000 1.0 2.0

Note that if a1, . . . , a4 are omitted, then they are taken from knot.left and knot.right (their
lengths should then be equal to knot.n+2).

If knot.n is equal to 0 or all left and right knots lie on common lines, then a PLFN reduces
to a TFN. Please note that, however, the TrapezoidalFuzzyNumber class does not inherit from
PiecewiseLinearFuzzyNumber for efficiency reasons. If, however, we wanted to convert an
object of the first mentioned class to the other, we would do that by calling:

alpha <- c(0.3, 0.5, 0.7)

P3 <- as.PiecewiseLinearFuzzyNumber(

TrapezoidalFuzzyNumber(1,2.5,4,7),

knot.n=3, knot.alpha=alpha

)

P3

## Piecewise linear fuzzy number with 3 knot(s),

## support=[1,7],

## core=[2.5,4].

plot(P3, type='b', from=-1, to=9, xlim=c(0,8))

abline(h=alpha, col='gray', lty=2)

abline(v=P3['knot.left'], col='gray', lty=3)

abline(v=P3['knot.right'], col='gray', lty=3)

text(7.5, alpha, sprintf('a=%g', alpha), pos=3)
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More generally, each PLFN or TFN may be converted to a direct FuzzyNumber class instance if
needed (hope we will never not).

(as.FuzzyNumber(P3))

## Fuzzy number with:

## support=[1,7],

## core=[2.5,4].

On the other hand, to “convert” (with possible information loss) more general FNs to TFNs
or PLFNs, we may use the approximation procedures described in Sec. 6.
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2.5 Fuzzy Numbers with Sides Given by Power Functions

Bodjanova-type [3] fuzzy numbers which sides are given by power functions are defined using
four coefficients a1 ≤ a2 ≤ a3 ≤ a4, and parameters p.left, p.right > 0 which determine
exponents for the side functions:

left(x) = xp.left, (9)

right(x) = (1 − x)p.right. (10)

We also have:

lower(α) = p.left
√

α, (11)

upper(α) = 1 − p.right
√

α. (12)

These fuzzy numbers are another natural generalization of trapezoidal FNs.
An example:

X <- PowerFuzzyNumber(-3, -1, 1, 3, p.left=2, p.right=0.1)

class(X)

## [1] "PowerFuzzyNumber"

## attr(,"package")

## [1] "FuzzyNumbers"

X

## Fuzzy number given by power functions, and:

## support=[-3,3],

## core=[-1,1].

plot(X)
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We have:

µX(x) =































0 for x ∈ (−∞, −3),
((x + 3)/2)2 for x ∈ [−3, −1),
1 for x ∈ [−1, 1],
((3 − x)/2)0.1 for x ∈ (1, 3],
0 for x ∈ (3, +∞),

Xα = [−3 + 2 α0.5, 1 + 2 (1 − α10)].
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3 Depicting Fuzzy Numbers

To draw FNs we call the plot() method, which uses similar parameters as the R-built-in curve()

function / plot.default() method. If you are new to R, you may wish to read the manual
on the most popular graphical routines by calling ?plot, ?plot.default, ?curve, ?abline,
?par, ?lines, ?points, ?legend, ?text (some of these functions have already been called in
this tutorial).

Let us consider the following FN:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

plot(A)
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Plotting issues: discretization. Side functions or α-cut bounds of objects of the FuzzyNumber

class (not including its derivatives) when plotted are naïvely approximated by piecewise linear
functions with equidistant knots at one of the axes. Therefore, if we probe them at too few
points, we may obtain very rough graphical representations. To control the number of points at
which the interpolation takes place, we use the n argument (which defaults to 101, i.e. “quite
accurate”).

All three calls to the plot() method below depict the membership function of the same
fuzzy number, but with different accuracy.

plot(A, n=3, type='b')

plot(A, n=6, add=TRUE, lty=2, col=2, type='b', pch=2)

plot(A, n=101, add=TRUE, lty=4, col=4) # default n
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Making use of different generating functions’ types. Please note (if you have not al-
ready) that to draw the membership function we do not need to provide necessarily the FN with
side generators: the α-cuts will also suffice. The function is smart enough to detect the internal
representation of the FN and use the kind representation it has. It both types of generators are
given, then side functions are used. If we want, for some reasons, to use α-cuts, then we may
do as follows:

plot(A, n=3, at.alpha=numeric(0), type='b') # use alpha-cuts

plot(A, n=3, type='b', col=2, lty=2, pch=2, add=TRUE) # use sides
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We may also illustrate an α-cut representation of a fuzzy number:

plot(A, draw.alphacuts=TRUE)
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Exporting figures. If we would like to generate figures for our publications, then we will
surely be interested in storing them e.g. as PDF files. This may be done by calling:

pdf('figure1.pdf', width=8, height=5) # create file

plot(A)

dev.off() # close graphical device and save the file

Postscript (PS) files are generated by substituting the call to pdf() for the call to the
postcript() function.

Conversion to LATEX. Another way to depict a FN is to. . . give a mathematical expression
which defines it.

cat(as.character(A, toLaTeX=TRUE, varnameLaTeX='A'))

This gives the following LATEX code. . .

\[

\mu_{A}(x) = \left\{

\begin{array}{lll}

0 & \text{for} & x\in(-\infty,-5), \\

l_{A}(x) & \text{for} & x\in[-5,3), \\

1 & \text{for} & x\in[3,6], \\

r_{A}(x) & \text{for} & x\in(6,20], \\

0 & \text{for} & x\in(20,+\infty), \\

\end{array}

\right.

\]

where $l_{A}=\mathtt{left}_A((x+5)/8)$,

$r_{A}=\mathtt{right}_A((x-6)/14)$.

\[

{A}_\alpha = [{A}_L(\alpha), {A}_U(\alpha)],

\]

where ${A}_L(\alpha)=-5+8\,\mathtt{lower}_{A}(\alpha)$,

${A}_U(\alpha)=6+14\,\mathtt{upper}_{A}(\alpha)$.

. . . and, after compiling:
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µA(x) =































0 for x ∈ (−∞, −5),
lA(x) for x ∈ [−5, 3),
1 for x ∈ [3, 6],
rA(x) for x ∈ (6, 20],
0 for x ∈ (20, +∞),

where lA = leftA((x + 5)/8), rA = rightA((x − 6)/14).

Aα = [AL(α), AU (α)],

where AL(α) = −5 + 8 lowerA(α), AU (α) = 6 + 14 upperA(α).

The code may of course be modified manually to suit your needs.

Tuning your figures. Finally, we leave you with a quite more complex graphical example
from one of our papers:

X <- PiecewiseLinearFuzzyNumber(0, 1, 2, 5, knot.n=1,

knot.alpha=0.6, knot.left=0.3, knot.right=4)

plot.default(NA, xlab=expression(x), ylab=expression(mu[S](x)),

xlim=c(-0.3,5.3), ylim=c(0,1)) # empty window

xpos <- c(X['a1'], X['knot.left'], X['a2'],

X['a3'], X['knot.right'], X['a4'])

xlab <- expression(s[1], s[2], s[3], s[4], s[5], s[6])

abline(v=xpos, col='gray', lty=3)

text(xpos, 1.05, xlab, pos=3, xpd=TRUE)

abline(h=c(0, X['knot.alpha'], 1), col='gray', lty=2)

text(5.1, X['knot.alpha'], expression(alpha[0]), pos=4, xpd=TRUE)

plot(X, add=TRUE, type='l', from=-1, to=6)

plot(X, add=TRUE, type='p', from=-1, to=6)
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4 Basic Computations on and Characteristics of Fuzzy Numbers

In this section we consider the following FN:
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A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

4.1 Support and Core, and Other α-cuts

The support of A, i.e. supp(A) = [a1, a4], may be obtained by calling:

supp(A)

## [1] -5 20

We get the core of A, i.e. core(A) = [a2, a3], with:

core(A)

## [1] 3 6

To compute arbitrary α-cuts we use:

alphacut(A, 0) # same as supp(A) (if alpha-cut generators are defined)

## L U

## 0 -5 20

alphacut(A, 1) # same as core(A)

## L U

## 1 3 6

(a <- alphacut(A, c(0, 0.5, 1)))

## L U

## 0.0 -5.000000 20.000

## 0.5 -4.583591 6.875

## 1.0 3.000000 6.000

a[1, ]

## L U

## -5 20

a[2, 2]

## [1] 6.875

a[, "L"]

## 0.0 0.5 1.0

## -5.000000 -4.583591 3.000000

Note that alphacut() always outputs a matrix with two columns. The matrix has named
dimensions (names stand for only auxiliary information). The alphacut() method may only
be used when α-cut generators are provided by the user during the declaration of A, even for
α = 0 or α = 1.

4.2 Membership Function Evaluation

If side generators are defined, we may calculate the values of the membership function at different
points by calling:
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evaluate(A, 1)

## 1

## 0.9960291

evaluate(A, c(-3,0,3))

## -3 0 3

## 0.8371139 0.9855322 1.0000000

evaluate(A, seq(-1, 2, by=0.5))

## -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

## 0.9624800 0.9760168 0.9855322 0.9919531 0.9960291 0.9983815 0.9995357

4.3 “Typical” Value

Let us first introduce the notion of the expected interval of A [14].

EI(A) := [EIL(A), EIU (A)] (13)

=
[
∫ 1

0
AL(α) dα,

∫ 1

0
AU (α) dα

]

. (14)

To compute the expected interval of A we call:

expectedInterval(A)

## [1] -4.058824 8.800000

In case of objects of the FuzzyNumber class, the expected interval is approximated by numerical
integration. This method calls the integrate() function and its accuracy (quite fine by default)
may be controlled by the subdivisions, rel.tol, and abs.tol parameters (call ?integrate

for more details). On the other hand, for e.g. TFNs and PLFs this method returns exact results.

The midpoint of the expected interval is called the expected value of a fuzzy number. It is
given by:

EV(A) :=
EIL(A) + EIU (A)

2
. (15)

Let us calculate EV(A).

expectedValue(A)

## [1] 2.370588

Note that this method uses a call to expectedInterval(A), thus in case of FuzzyNumber class
instances it also uses numerical approximation.

Sometimes a generalization of the expected value, called weighted expected value, is useful.
For given w ∈ [0, 1] it is defined as:

EVw(A) := (1 − w)EIL(A) + wEIU (A). (16)

It is easily seen that EV0.5(A) = EV(A).
Some examples:

weightedExpectedValue(A, 0.5) # equivalent to expectedValue(A)

## [1] 2.370588

weightedExpectedValue(A, 0.25)

## [1] -0.8441176
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The value of A [8] is defined by:

val(A) :=
∫ 1

0
α (AL(α) + AU (α)) dα. (17)

It may be calculated by calling:

value(A)

## [1] 1.736177

Please note that the expected value or value may be used for example to “defuzzify” A.

4.4 Measures of “Nonspecificity”

The width of A [4] is defined as:

width(A) := EIU (A) − EIL(A). (18)

An example:

width(A)

## [1] 12.85882

The ambiguity of A [8] is defined as:

amb(A) :=
∫ 1

0
α (AU (α) − AL(α)) dα. (19)

ambiguity(A)

## [1] 5.197157

Additionally, to express “nonspecificity” of a fuzzy number we may use e.g. the width of its
support:

diff(supp(A))

## [1] 25

5 Operations on Fuzzy Numbers

5.1 Arithmetic Operations

The basic binary arithmetic operations for FNs are often defined by means of the so-called
extension principle (see [20]) and interval arithmetic. For each α ∈ [0, 1]:

(A ⊛ B)α = Aα ⊛ Bα,

where ⊛ = +, −, ∗ or /, and A, B are arbitrary FNs.
For example, we define the sum A + B for every α ∈ [0, 1] as:

(A + B)α = Aα + Bα = [AL (α) + BL (α) , AU (α) + BU (α)] ,

see [10, 9]. Moreover, for λ ∈ R, the scalar multiplication is given by:

(λ · A)α = λAα =

{

[λAL (α) , λAU (α)] , if λ ≥ 0,

[λAU (α) , λAL (α)] , if λ < 0,
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for each α ∈ [0, 1].
In the FuzzyNumbers package we have defined the +, -, * and / operators, which implements

the basic arithmetic operations as defined in [20].

A <- TrapezoidalFuzzyNumber(0, 1, 1, 2)

B <- TrapezoidalFuzzyNumber(1, 2, 2, 3)

plot(A, xlim=c(0,6))

plot(B, add=TRUE, col=2, lty=2)

plot(A+B, add=TRUE, col=4, lty=4)
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Currently all the operations are available for piecewise linear FNs only, and addition and
scalar multiplication is also implemented for trapezoidal FNs. Note that the computer arithmetic
has anyway a discrete nature, and a PLFN with large number of knots often approximates
(cf. Sec. 6) an arbitrary FN sufficiently well. The computations are always exact (well, up to
the computer floating-point arithmetic errors) at knots.

In theory the class of PLFNs is not closed under the operations * and /. However, if you
operate on a large number of knots, the results should be satisfactory.

A <- piecewiseLinearApproximation(PowerFuzzyNumber(1,2,3,4,p.left=2,p.right=0.5),

method="Naive", knot.n=20)

B <- piecewiseLinearApproximation(PowerFuzzyNumber(2,3,4,5,p.left=0.1,p.right=3),

method="Naive", knot.n=40)

A+A # the same as 2*A

## Piecewise linear fuzzy number with 20 knot(s),

## support=[2,8],

## core=[4,6].

A+B # note the number of knots has increased

## Piecewise linear fuzzy number with 60 knot(s),

## support=[3,9],

## core=[5,7].

5.2 Applying Functions

To apply a monotonic transformation on a piecewise linear fuzzy number (using the extension
principle) we call fapply().

A <- as.PiecewiseLinearFuzzyNumber(TrapezoidalFuzzyNumber(0,1,2,3), knot.n=100)

plot(fapply(A, function(x) sqrt(log(x+1))))
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The operation being applied should be a properly vectorized R function object.

5.2.1 Special Functions

There are several functions that are not monotonic but useful for calculation. Amongst those
integer powers of fuzzy numbers are probably the best example. While the odd powers could
be implemented as monotonic functions it can not be done for even powers if the fuzzy number
containts 0. Because of this issue the power is implemented as special function.

A <- as.PiecewiseLinearFuzzyNumber(TrapezoidalFuzzyNumber(-2,-1,-1,2), knot.n=10)

plot(A, xlim=c(-8,8))

plot(A^2, add=TRUE, col=2, lty=2)

plot(A^3, add=TRUE, col=4, lty=4)
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6 Approximation of Fuzzy Numbers

Complicated membership functions are often very inconvenient for processing imprecise informa-
tion modeled by fuzzy numbers. Moreover, handling too complex membership functions entails
difficulties in interpretation of the results too. This is the reason why a suitable approximation
of fuzzy numbers is so important. We would like to deal with functions that are simpler or more
regular and hence more convenient for computing.
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6.1 Metrics in the Space of Fuzzy Numbers

It seems that the most suitable metric for approximation problems is an extension of the Eu-
clidean (L2) distance (cf. [16]), d, defined by the equation:

d2
E(A, B) =

∫ 1

0
(AL(α) − BL(α))2 dα +

∫ 1

0
(AU (α) − BU (α))2 dα. (20)

The following metric types are currently available in the distance() method: "Euclidean"

(default), "EuclideanSquared".

T1 <- TrapezoidalFuzzyNumber(-5, 3, 6, 20)

T2 <- TrapezoidalFuzzyNumber(-4, 4, 7, 21)

distance(T1, T2, type='Euclidean') # L2 distance /default/

## [1] 1.414214

distance(T1, T2, type='EuclideanSquared') # Squared L2 distance

## [1] 2

6.2 Approximation by Trapezoidal Fuzzy Numbers

Our main task in this section is to, given a fuzzy number A, seek for a trapezoidal fuzzy
number T (A) that fulfills some desired properties. We will use the following FN for the sake of
illustration:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

The approximation procedure has been implemented in trapezoidalApproximation(). The
method argument selects the algorithm used to project A into the space of TFNs.

6.2.1 Naïve Approximation

The "Naive" method just generates a trapezoidal FN with the same core and support as A.

(T1 <- trapezoidalApproximation(A, method='Naive'))

## Trapezoidal fuzzy number with:

## support=[-5,20],

## core=[3,6].

distance(A, T1)

## [1] 5.761482

24



−5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

A
Naive approx.

It is easily seen that the naïve approximator may not represent A well. Thus, we will often
need some more reasonable approach.

6.2.2 L2-nearest Approximation

The "NearestEuclidean" method gives the nearest L2-approximation of A [2, Corollary 8], i.e. a
trapezoidal fuzzy number T (A) such that

T (A) = min
T ∈TFN

dE(A, T ).

It may be shown that the solution to this problem always exists and is unique.

(T2 <- trapezoidalApproximation(A, method='NearestEuclidean'))

## Trapezoidal fuzzy number with:

## support=[-5.85235,14.4],

## core=[-2.26529,3.2].

distance(A, T2)

## [1] 1.98043
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Note that the implementation relies on numeric integration.
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6.2.3 Expected Interval Preserving Approximation

The "ExpectedIntervalPreserving" method gives the nearest L2-approximation of A preserv-
ing the expected interval [1, 17, 22], i.e. we get T (A) such that EI(A) = EI(T (A)).

First of all, it may be shown that if amb(A) ≥ width(A)/3, then we obtain the same result
as in the "NearestEuclidean" method.

ambiguity(A)

## [1] 5.197157

width(A)/3

## [1] 4.286275

(T3 <- trapezoidalApproximation(A, method='ExpectedIntervalPreserving'))

## Trapezoidal fuzzy number with:

## support=[-5.85235,14.4],

## core=[-2.26529,3.2].

distance(A, T3)

## [1] 1.98043

expectedInterval(A)

## [1] -4.058824 8.800000

expectedInterval(T3)

## [1] -4.058824 8.800000

On the other hand, for highly skewed membership functions this method (as well as the
previous one) sometimes reveals quite unfavorable behavior. E.g. if B is a FN such that val(B) <

EV1/3(B) or val(B) > EV2/3(B), then it may happen that the cores of the output and of the
original fuzzy number B are disjoint, cf. [18].

(B <- FuzzyNumber(1, 2, 3, 45,

lower=function(x) sqrt(x),

upper=function(x) 1-sqrt(x)))

## Fuzzy number with:

## support=[1,45],

## core=[2,3].

(TB1 <- trapezoidalApproximation(B, 'NearestEuclidean'))

## Trapezoidal fuzzy number with:

## support=[1.37333,33.2133],

## core=[1.37333,1.37333].

(TB2 <- trapezoidalApproximation(B, 'ExpectedIntervalPreserving'))

## Trapezoidal fuzzy number with:

## support=[1.66667,32.3333],

## core=[1.66667,1.66667].

distance(B, TB1)

## [1] 2.098994

distance(B, TB2)

## [1] 2.166239
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6.2.4 Approximation with Restrictions on Support and Core

The "SupportCoreRestricted" method was proposed in [18]. It gives the L2-nearest trape-
zoidal approximation T (A) with constraints: core(A) ⊆ core(T (A)) and supp(T (A)) ⊆ supp(A),
i.e. for which each point that surely belongs to A also belongs to T (A), and each point that
surely does not belong to A also does not belong to T (A).

(T4 <- trapezoidalApproximation(A, method='SupportCoreRestricted'))

## Trapezoidal fuzzy number with:

## support=[-5,11.6],

## core=[-3.11765,6].

distance(A, T4)

## [1] 2.603383
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6.3 Approximation by Piecewise Linear Fuzzy Numbers

When approximating arbitrary fuzzy numbers by trapezoidal ones we generally take care for the
core and support of a fuzzy number (i.e. for values that surely belong or do not belong at all to
the set under study), while the sides of a fuzzy number corresponding to all intermediate degrees
of membership are linearized. This approach may not be suitable if we are also interested in
focusing on some other degrees of uncertainty except for 0 or 1.
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Thus, given a fuzzy number A and a fixed knot.alpha=α vector, we are interested in finding
a piecewise linear fuzzy number P(A) that has some desirable properties.

In this subsection we will use the following fuzzy number A for the sake of illustration:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

The approximation procedure has been implemented in piecewiseLinearApproximation().
The method argument selects the algorithm used to project A into the space of PLFNs (for given
knot.alpha).

6.3.1 Naïve Approximation

The "Naive" method generates a PLFN with the same core and support as A and with sides
interpolating the membership function of A at given α-cuts.

P1 <- piecewiseLinearApproximation(A, method='Naive',

knot.n=1, knot.alpha=0.5)

P1['allknots']

## alpha L U

## supp 0.0 -5.000000 20.000

## knot_1 0.5 -4.583591 6.875

## core 1.0 3.000000 6.000

print(distance(A, P1), 8)

## [1] 2.4753305
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The approximation error may be quite high. However, it may be shown that e.g. for equidistant
knots if knot.n → ∞, then it approaches 0.

6.3.2 L2-nearest Approximation

Similarly to the L2-nearest TFN case, here we are looking for

P(A) = min
T ∈PLFN(α)

dE(A, T ).
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It may be shown that the solution to this problem always exists and is unique, see [5] and [6].
The "NearestEuclidean" method uses the algorithm described in [5] and [6]. This imple-

mentation relies on numeric integration, so for large knot.n may be slow.

P2 <- piecewiseLinearApproximation(A,

method='NearestEuclidean', knot.n=3, knot.alpha=c(0.25,0.5,0.75))

print(P2['allknots'], 6)

## alpha L U

## supp 0.00 -5.003841 19.22964

## knot_1 0.25 -4.966165 9.91416

## knot_2 0.50 -4.578596 6.66686

## knot_3 0.75 -3.941608 6.00278

## core 1.00 -0.494012 6.00278

print(distance(A, P2), 12)

## [1] 0.28896014678
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Example: Convergence. As the naïve approximator’s error approaches 0 as knot.n → ∞
for equidistant knots, so does the error of the nearest L2 approximator. Let us study the
convergence behavior for our exemplary A.

n <- 1:27

d <- matrix(NA, ncol=4, nrow=length(n))

# d[,1] - Naive approximator's error for given knot.n

# d[,2] - Best L2 approximator's error

# d[,3] - theoretical upper bound

for (i in seq_along(n))

{

P1 <- piecewiseLinearApproximation(A, method='Naive',

knot.n=n[i]) # equidistant knots

P2 <- piecewiseLinearApproximation(A, method='NearestEuclidean',

knot.n=n[i]) # equidistant knots

d[i,1] <- distance(A, P1)

d[i,2] <- distance(A, P2)

acut <- alphacut(A, seq(0, 1, length.out=n[i]+2))

# d[i,3] <- sqrt(sum((c(diff(acut[,1]), diff(acut[,2]))^2)/(n[i]+1))) # beter ubound

d[i,3] <- sqrt(2)*max(abs(c(diff(acut[,1]), diff(acut[,2]))))
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}

matplot(n, d, type='l', log="y", lty=c(1,2,4), col=c(1,2,4))
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Example: Finding best knot.alpha for knot.n = 1 numerically. The approximation
problem is stated using a fixed knit.alpha. However, we may e.g. depict the “best” L2 distance
as a function of α, i.e. the DA(α) function.

a <- seq(1e-9, 1-1e-9, length.out=100) # many alphas from (0,1)

d <- numeric(length(a)) # distances /to be calculated/

for (i in seq_along(a))

{

P1 <- piecewiseLinearApproximation(A, method='NearestEuclidean',

knot.n=1, knot.alpha=a[i])

d[i] <- distance(A, P1)

}

plot(a, d, type='l', xlab=expression(alpha), ylab=expression(D[A](alpha)))
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For knot.n = 1 we may find best knot.alpha using numerical optimization. It may be
shown, see [5], that the distance function DA(α) is continuous, but in general the minimum is
not necessarily unique.

for (i in 1:5) # 5 iterations

{
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a0 <- runif(1,0,1) # random starting point

optim(a0,

function(a)

{

P1 <- piecewiseLinearApproximation(A, method='NearestEuclidean',

knot.n=1, knot.alpha=a)

distance(A, P1)

}, method='L-BFGS-B', lower=1e-9, upper=1-1e-9) -> res

cat(sprintf('%.9f %6g *%.9f* %.9f\n', a0, res$counts[1], res$par, res$value))

}

## 0.240763798 49 *0.363080763* 0.650344833

## 0.620345437 22 *0.363035732* 0.650345318

## 0.152540508 47 *0.363090838* 0.650345217

## 0.617319523 52 *0.363076442* 0.650344626

## 0.179268566 47 *0.363078759* 0.650344741

6.3.3 L2-nearest Approximation Preserving Support and Core

Fix α. The next method searches for:

P(A) = min
T ∈PLFN(α)

dE(A, T ).

such that supp(A) = supp(P(A)) and core(A) = core(P(A)), see [7].
The "SupportCorePreserving" method of the piecewiseLinearApproximation() function

currently implements only the knot.n==1 case.

Example 1. Let us consider the following FN.

A <- FuzzyNumber(0, 3, 4, 5,

lower=function(x) qbeta(x, 2, 1),

upper=function(x) 1-x^3

)

Here are its unrestricted (P1) and supp-core-restricted (P2) PLFN approximations for α =
(0.2).

knot.alpha <- 0.2

P1 <- piecewiseLinearApproximation(A, knot.alpha=knot.alpha)

P2 <- piecewiseLinearApproximation(A, method="SupportCorePreserving",

knot.alpha=knot.alpha)

distance(A, P1)

## [1] 0.1050667

print(alphacut(P1, c(0, knot.alpha, 1)))

## L U

## 0.0 0.3416417 5.0782

## 0.2 1.4633436 5.0782

## 1.0 3.0854103 4.2577

distance(A, P2)

## [1] 0.2124758

print(alphacut(P2, c(0, knot.alpha, 1)))
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## L U

## 0.0 0.000000 5

## 0.2 1.531672 5

## 1.0 3.000000 4
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Let us find α0 for which we get the minimal approximation distance (error).

D <- function(a) distance(A,

piecewiseLinearApproximation(A, method="SupportCorePreserving", knot.alpha=a))

optimize(D, lower=0, upper=1)

## $minimum

## [1] 0.2989562

##

## $objective

## [1] 0.1987527

Note that D(α) = dE(A, Pα(A)) may not be a well-behaving function, see [7] for discussion.
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7 Ranking Fuzzy Numbers in the Setting of Possibility Theory

There are several possible approaches towards ranking of fuzzy numbers. Dubois and Prade [11]
point out that some are counterintuitive or consider only one point of view on comparing fuzzy
numbers. To overcome this issue the set of ranking indices was proposed by Dubois and Prade
[11]. The ranking is done within the framework of Possibility theory which means that for each
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comparison operator <=, >=, <,> there is a measure of possibility and necessity assessing the
truthfulness of the statement (Possibility theory is in detail desribed in [12]). Both measures
takes values from the interval [0,1]. Value 1 means complete truthfulness of the statement, 0
means absolute untruthfulness and values in between describe partial truthfulness.

If there are two fuzzy numbers X and Y then the possibility (Π) and necessity (N ) of
X >= Y (named exceedance in FuzzyNumbers) is given by these equations [11]:

ΠX([Y, ∞)) = sup
x

min(µX(x), sup
y≤x

µY (y)), (21)

NX([Y, ∞)) = inf
x

max(1 − µX(x), sup
y≤x

µY (y)). (22)

The possiblity and necessity of X > Y (named strict exceedance in FuzzyNumbers) are
defined as[11]:

ΠX(]Y, ∞)) = sup
x

min(µX(x), inf
y≥x

1 − µY (y)), (23)

NX(]Y, ∞)) = inf
x

max(1 − µX(x), inf
y≥x

1 − µY (y)). (24)

Changing the [Y, ∞) to (−∞, Y ] etc. in these formulas will produce other four indices
indicating X <= Y and X < Y [11, 12].

Now lets create two PiecewiseLinearFuzzyNumbers that we will be comparing.

x = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(0.2, 1.0, 2.8))

y = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(0, 1.8, 2.2))

We can visualized them together.

plot(x, col=2)

plot(y, col=4, add=TRUE)
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The comparison if X >= Y is done using functions possibilityExceedance() and
necessityExceedance().

possibilityExceedance(x,y)

## [1] 0.7777778

necessityExceedance(x,y)

## [1] 0.3846154

In the same way we can determine the truthfulness of statement X > Y with functions
possibilityStrictExceedance() and necessityStrictExceedance().
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possibilityStrictExceedance(x,y)

## [1] 0.4545455

necessityStrictExceedance(x,y)

## [1] 0

The image image above shows that there is no clear domination of one of the fuzzy numbers
and so tell us the indices.

To assess the inverse situations X <= Y and X < Y the following code can be used.

possibilityUndervaluation(x,y)

## [1] 1

necessityUndervaluation(x,y)

## [1] 0.5454545

possibilityStrictUndervaluation(x,y)

## [1] 0.6153846

necessityStrictUndervaluation(x,y)

## [1] 0.2222222

The results show that again there is no strict domination of one fuzzy number by another
(in such case all the indices would be either 1 or 0). But the values of all indices are higher for
X <= Y ,X < Y than in cases X >= Y , X > Y . Such outcome can be interpred as X being
generally smaller then Y but the result is not conclusive. The amount of uncertainty is desribed
by these indices.

A slightly more illustrative example is provided below. Note that third and fourth line
provide limits for visualization of fuzzy numbers.

x = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(1.7, 2.7, 2.8), knot.n = 9)

y = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(0, 1.8, 2.2), knot.n = 9)

min = min(x@a1,y@a1)

max = max(x@a4,y@a4)

plot(x, col=2, xlim = c(min,max))

plot(y, col=4, add=TRUE)
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possibilityExceedance(x,y)

## [1] 1

necessityExceedance(x,y)
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## [1] 0.9642857

possibilityStrictExceedance(x,y)

## [1] 1

necessityStrictExceedance(x,y)

## [1] 0.6428571

possibilityUndervaluation(x,y)

## [1] 0.3571429

necessityUndervaluation(x,y)

## [1] 0

possibilityStrictUndervaluation(x,y)

## [1] 0.03571429

necessityStrictUndervaluation(x,y)

## [1] 0

8 Minimum and Maximum of Fuzzy Numbers

In the same way as a minimum and maximum of two crisp numbers can be determined, a
minimum and a maximum of two fuzzy numbers can be calculated [19]. A minimum and
maximum of two fuzzy numbers is also a fuzzy number.

The minimum of fuzzy numbers is defined for α cuts as [19]:

Aα ∧ Bα = [AL(α) ∧ BL(α), AU (α) ∧ BU (α)], (25)

while the maximum is defined as:

Aα ∨ Bα = [AL(α) ∨ BL(α), AU (α) ∨ BU (α)]. (26)

The definition allows determination of minimum and maximum only for Piecewise Linear
Fuzzy Numbers. As such the result is only an approximation, which may cause problems with
the result is the number of knots is too small (please see examples in the package help for the
functions).

x = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(-4.8, -3 , -1.5), knot.n = 9)

y = as.PiecewiseLinearFuzzyNumber(TriangularFuzzyNumber(-5.5, -2.5, -1.1), knot.n = 9)

min = min(x@a1,y@a1)

max = max(x@a4,y@a4)

plot(x, col=1, xlim = c(min,max))

plot(y, col=2, add=TRUE)

maxFN = maximum(x,y)

minFN = minimum(x,y)

plot(minFN, col=4)

plot(maxFN, col=6, add=TRUE)
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