
JudgeIt II: A Program for Evaluating Electoral Systems

and Redistricting Plans1

Andrew Gelman Gary King2 Andrew C. Thomas3

Version 1.3.3
August 26, 2008

1Available from CRAN (http://cran.r-project.org/) and http://GKing.Harvard.edu/judgeit.
2David Florence Professor of Government, Harvard University (Institute for Quantitative Social Sci-

ence, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; http://GKing.Harvard.Edu,
King@Harvard.Edu, (617) 495-2027).

3PhD Candidate, Department of Statistics, and Graduate Associate, Institute for Quantitative Social
Science, Harvard University. http://www.fas.harvard.edu/∼acthomas/; acthomas@fas.harvard.edu.

Contents

1 Introduction 2

2 Installation Instructions and Requirements 2

3 Usage Overview 3

4 Formatting Data Sets 3

5 Included Data Sets 3

6 Step 1: Create a JudgeIt object 4

7 Step 2: Conduct Analyses 6

8 Further JudgeIt output options 8

9 Accessing Raw judgeit.object Data 9

A The Underlying Method 9

B Demonstrations 11

1

1 Introduction

JudgeIt II brings the analytical routines of the original version of JudgeIt to the R Project
for Statistical Computing, while also greatly simplifying its interface and control system.1 The
methods implemented in this software were developed in Gelman and King (1990b,a); ?, 1994);
King and Gelman (1991); Gelman, Katz and King (2004).

JudgeIt allows a user to construct a model of a two-party election system over multiple
election cycles, derive quantities of interest about the system through statistical estimation and
simulation, and produce output summary statistics and graphical plots of those quantities. Some
of the quantities of interest are based on partisan symmetry as a standard of fairness in legislative
redistricting, such as partisan bias as the deviation from fairness and electoral responsiveness which
indexes how party control of legislative seats responds to changes in a party’s success at the polls
even in a fair system. (A uniform consensus has existed in the academic literature since at least
King and Browning (1987) on partisan symmetry as a standard for fairness, and even the U.S.
Supreme Court now appears to agree; see Grofman and King 2007.) JudgeIt also estimates
and graphs seats-votes curves, make specific vote and seat predictions for individual districts, and
calculate numerous other relevant statistics.

The program can evaluate electoral systems in three general situations:

1. When an election already has taken place,

2. When an election has not been held yet but a new redistricting plan (or plans) has been
proposed or implemented, and

3. When you wish to assess what an election would have been like if held under certain specified
counterfactual conditions (such as if no minority districts had been drawn, or term limitations
had prevented incumbents from running for reelection).

For bias, responsiveness, seats-votes curves, and virtually every other estimate, JudgeIt pro-
vides quantitative estimates of uncertainty (i.e., standard errors or confidence intervals). This are
recognized as essential by social scientists and even the Supreme Court (see Castaneda v. Partida,
430 U.S. 482, 1977, and Hazelwood School District v. United States, 433 U.S. 299, 1977).

2 Installation Instructions and Requirements

As this version of JudgeIt has been built as a package for the mathematical software R, it is
necessary to install this software before beginning.

The latest version of R is available for free from http://www.r-project.org. After installation,
retrieve the JudgeIt package through the following command:

> install.packages("JudgeIt")

To use the commands within, type

> library(JudgeIt)

JudgeIt requires the R package mvtnorm to function properly, and will load it automatically
when needed.

Case Syntax

In all instances, the stylized JudgeIt refers to the software; the mixed case JudgeIt refers explic-
itly to the library name; and the lower case judgeit is used for the primary analysis function and
any contained terms, such as judgeit.object.

1The original version of JudgeIt, written by Gary King and Andrew Gelman in versions available for DOS and
in the language Gauss, is still available at http://gking.harvard.edu/judgeit/judgeitI.

2

http://www.r-project.org
http://gking.harvard.edu/judgeit/judgeitI

3 Usage Overview

JudgeIt can conduct three types of analyses:

1. Evaluation, wherein the information gathered from one year’s elections is applied to itself.
This is done to suggest the underlying structure of an electoral system.

2. Prediction, which takes a set of observed covariates and predicts the outcome of an election.
This can be done with or without the previous election’s results and covariates included
explicitly.

3. Counterfactual analysis, which estimates the results if the election had been run under dif-
ferent circumstances (i.e. with different predictors.)

Two steps are required to perform a JudgeIt analysis: election data must be loaded into a
JudgeIt object, and a choice of analysis must be specified along with its required options.

4 Formatting Data Sets

JudgeIt requires each election to be reported in an object of type data.frame. This is natural if
your data is in a comma-separated or tab-delimited file, since operations like

data <- read.csv("ohio.csv")
data2 <- read.table("cali98.txt")

will automatically put these tables into the data frame format. It is important to make sure
that each variable is labeled before using it in the function judgeit , either by making the first
line of the data file contain variable names, or by assigning them afterwards. For example:

data <- read.csv("ohio.csv",header=FALSE)
colnames(data) <- c("district","vote","inc")

Since most JudgeIt analyses will involve a series of consecutive elections, judgeit accepts such
a series as an object of type list. Suppose we have three elections, say Ohio’s State Legislature
in 1992, 1994 and 1996, and that each election is stored in a data frame as above. To integrate the
separate data frames, use the command elections <- list(oh1992,oh1994,oh1996) which will
create an object named “elections”. Each year’s election data must use the same variable names,
so that JudgeIt can recognize the same quantity across different elections.

5 Included Data Sets

JudgeIt comes with data set ICSPR 6311, coded as house6311, containing the results for the
U.S. House of Representatives from 1896 through 1992. It is formatted as a list of 49 data frames,
each named for their election year, and containing six vectors:

• STATE, a numerical ICPSR state code for the state containing the district;

• DIST, a numerical indicator for the number of the district within the state;

• INC, an incumbency indicator, −1 for Republican and 1 for Democrat;

• VOTE, the share of the vote received by the Democratic candidate;

• TURNOUT, the number of votes for the two candidates combined, and

• DELSOUTH, an indicator for whether the district is located in the South.

3

6 Step 1: Create a JudgeIt object

Now that there is an object containing the elections we wish to analyze, we can load this object
into JudgeIt . To do this:

judg.obj <-
judgeit(model.formula=vote ~ predictor1 + predictor2 + some.function(predictor3),

data=elections, vote.formula=cbind(turnout,eligible)~seats, ...) }

where the ellipsis “...” represents other possible commands used by the R command model.frame.
The user may also apply a function to a variable in the data set as seen by some.function(...)

Model Formula

The model formula, model.formula, specifies the system’s outcome variable — the proportion of
the two-party vote received by the candidate for a specified party — and any desired predictors,
such as incumbency status. The predictor names must be the same as the variable names within
the data list (referred to here as elections.)

Functions can also be applied to the variables within the formula. For example, if we wish to
create an indicator for whether a win is decisive (for example, the winner more than triples the
loser’s vote share), we first create such a function,

some.function <- function(arg) -1*(arg<0.25)+1*(arg>0.75)

and then use it in the formula. For example, with data set house6311 this formula works:
model.formula=VOTE~INC+some.function(VOTE).

Voter Formula

We use the voter formula, vote.formula, to indicate the number of actual voters (also known as
the turnout), the number of eligible voters, and/or the number of seats each district elects to the
main assembly. If this is omitted, the number of seats is assumed to be one per district and the
turnout is assumed to be equal in all districts.

For example,

• vote.formula=cbind(turnout,eligible)~seats specifies all three quantities.

• vote.formula=cbind(turnout,eligible)~1 specifies turnout and eligible voters, and one
seat per district.

• vote.formula=turnout~1 specifies turnout. The number of eligible voters is ignored, and
seats are specified at one per district.

• vote.formula=~1 is the default option.

Specifying Populations of Groups

The routine voting.power allows the user to investigate the probability that a member of a
particular group would have on changing an election result. To specify the groups present in the
system, use the formula option

pop.groups=~farmers+white.collars+clowns+statisticians

substituting whichever groups desired for the analysis. (The tilde ˜ is necessary!)

4

Other Options

Selecting a data subset

It is possible to choose a subset of the data for analysis in each year. For example, the data set
house6311 contains an indicator DELSOUTH, which is 1 if a district is located in the south and 0
otherwise. To perform analyses on non-southern districts only, initialize a JudgeIt object (in this
example, jud.ob) with the expression

jud.ob <- judgeit(...,subset=DELSOUTH==0,data=house6311)

Automatic Use of Previous Year’s Results

The results of a previous year’s election is often among the best predictors of a current contest, and
they are included by default. To remove this option, include the option use.last.votes=FALSE
in your judgeit statement.

Redistricting

At some point during a state’s existence, the electoral map is redrawn to adjust for changes in the
demographics of the districts. Specifying whether the districts in one election are identical to the
previous one are vital to an accurate representation of the system.

By default, judgeit assumes that if two consecutive years have the same number of districts
in the map, then no redistricting has taken place.

To set a redistricting occurrence manually, judgeit accepts as an option same.districts,
which indicates whether the previous election used the same districting plan. In many states in
the American system, the easiest way to do this is to have a variable specifying the election years
and note whether the year ends in 2 (year %% 10 == 2). For other situations, you will need to
add a specially coded variable to the data frame and set same.districts to this value.

Uncontested Districts

JudgeIt includes several routines to deal with uncontested districts. By default JudgeIt assumes
that a vote proportion below 0.05 or above 0.95 indicates an uncontested district and are fixed
to default alternate values; these levels can be changes using the options uncontested.low and
uncontested.high.

The option uncontesteds.method indicates which method is to be used to deal with districts
tagged as uncontested:

• "default", which replaces uncontested values with assumed vote totals specified by uncon-
tested.low.new and uncontested.high.new (default values are 25% and 75%);

• "impute", which uses the behaviour of contested districts to estimate unknown vote shares,

• "remove", which simply eliminates uncontested districts from the analysis, or

• "nochange" which leaves the vote variable as entered.

Simulation Parameters

JudgeIt analyzes election systems by simulating a number of hypothetical draws of the election
of interest, and computing quantities of interest from these simulations. The default number
of simulated elections is 201; to change this, include the option simulations in the judgeit
command.

5

Applying District Weights: Some Count More than Others

Districts may have different influence than others when determining the parameters of a system.
To reflect this, we can assign a weight parameter to command judgeit :

• weight=constant (default) in which all districts have equal weight;

• weight=turnout, corresponding to the two-party votes cast in each district;

• weight=eligible.voters, corresponding to the total number of eligible voters in each dis-
trict, or

• weight=seats, the number of seats in each district.

This will have two distinct impacts on the analysis. First, in the linear modelling, each district
will have a variance equal to a constant (σ2) times the specified weight. Second, the mean vote will
be calculated with respect to this weight; a constant weight will yield the average district vote,
while setting the weight according to turnout will yield the grand average or “popular” vote.

7 Step 2: Conduct Analyses

Once an election system has been loaded into a JudgeIt object, quantities of interest can be
simulated. There are three types of analyses than can be performed:

Evaluation

The default setting of JudgeIt for analysis, evaluation mode examines an election under the actual
conditions that took place. Under these conditions, the systematic error component in simulation
(the amount estimated by the parameter λ) is identical, and total error estimates are therefore
smaller.

By default, all substantive outputs from judgeit use evaluation mode. For example, using a
previously created JudgeIt object judgeit.object, we can obtain a seats-votes curve using the
command

plot(seats(judgeit.object))

Prediction

Prediction takes the information gleaned from one election and uses it to forecast the results of a
new election. In this case, since the new election hasn’t taken place, the systematic error component
is inestimable, and the total error component is generated.

To enable predictive mode, add the option predict=TRUE to a judgeit analysis command.
To specify new covariates for this election, add the option new.covariates to specify the new
conditions, or use new.covariate.matrix to draw a new electoral map entirely.

Counterfactual Evaluation

This option supposes what might have happened if an election were rerun under different circum-
stances. The systematic error component is once again held constant to reflect that this is the
same “voting apparatus” as was used originally.

To enable a counterfactual analysis, specify new covariates by adding the option new.covariates
and changing the relevant values.

6

Using new.covariates to recode data

In order to recode the data for counterfactual analysis or prediction, the option new.predictors
must be added to a judgeit analysis command.

As an example, suppose we wish to find out what were happened if term limits were imposed
and no incumbent could run for re-election, and that the incumbency indicator is labelled INC.
The option

new.covariates=list("INC",0)

would instruct each routine to use this counterfactual data.
Suppose it came to pass that, instead, a group of representatives were forced to resign shortly

before the election. If the new incumbency indicators are stored in a variable new.incs,

new.covariates=list("INC",new.incs)

would make that substitution. Make sure, however, that the substitution variable has the same
number of districts as the model for that year; to confirm this, run the command

summary(judgeit.object,year).

district.report: Examine the estimation

The output of this routine is a reckoning of each district, including the observed and hypothetical
vote shares, the standard deviation of the hypothetical estimate, and the probability that a voter
in this district would be able to change the outcome of the entire election by reversing their vote.

To run a district report, run the command

district.report(judgeit.object).

By default the command will run a report for the last year in the system; to specify a year to
analyze, add the option year=1992 substituting whichever year desired.

seats: Given a vote share, determine the seat share

This is the basic tool used to determine the relationship between votes and seats in an electoral
system.

Example: seats(j.ob) will produce estimations and errors for the fraction of seats received
using the default options; in particular, in the final election in the system, at various values around
the observed average vote.

Plotting a seats-votes curve

If the output in a JudgeIt object was produced by seats, the plot() command will recognize
this and produce a seats-votes curve.

Example: plot(seats(j.ob)) will plot the seats-votes curve for values in the last year in the
system.

seats.with.prob: Determine the fraction of seats whose win probabilities
lie within a chosen range.

Example: seats.with.prob(j.ob) will produce estimations and errors for the fraction of seats
received using the default options: in particular, in the final election in the system, with various
average vote values between 0.45 and 0.55.

7

results.prob: Given a vote share or deviation, determine the probability
that the seat share is within a particular margin

Example: results.prob(j.ob) does the default: For the vote as it is, what is the probability
that the seat share will be between the default range of 0.45 to 0.55?

Example:

results.prob(j.ob,shift.in.votes=-0.05)

determines what the probability is that the seat share will be between the default range of 0.45 to
0.55, given that the resulting vote share was 5 points lower than actually experienced.

Example:

results.prob(j.ob,vote.range=c(0,0.5),mean.votes=0.5)

determines what the probability is that the seat share for Party 1 will be below 50 percent,
given that the resulting vote share was 50 percent for each party.

bias.resp, or svsum: Determine partisan bias and responsiveness

The output is a table containing the estimates and errors for four quantities: Partisan bias at
an even vote, both instantaneous and averaged over a 10-point swing, and responsiveness at the
midpoint and the observed vote percentage.

Example:

bias.resp(j.ob,year=1976)

will output those properties for the election held in 1976. (This assumes that the judgeit object
j.ob is specified to include the calendar years of each election.)

votes.for.result, or winvote: Given a probability of victory, determine the
total vote share required to attain it

The reverse procedure of results.prob, if the seat share was between 0.5 and 1.
Example:

votes.for.result(j.ob,prob.win=0.7)

outputs the expected vote percentage needed for a 70% chance of victory.

voting.power: Determine the power that distinct groups have in changing
an election result

Suppose there exists a distinct number of groups spread across the districts of an electoral map
(by race, language, or some other delineation.) The routine voting.power calculates the power of
an electoral group by estimating the probability that a vote from this group has in changing the
result of an election, by flipping the outcome of districts in which they live.

If the option pop.groups is specified in the original judgeit command, no further options are
required. If not, use the syntax

voting.power(j.ob,new.pop.groups=matrix1)

where matrix1 represents the voters in each group within each district.

8 Further JudgeIt output options

System summaries

Using the command summary() on a JudgeIt object will give one of two results. Without a year
given, the output will be the number of years, as well as the values of model parameters λ and σ.

With a year given, a report of the vote outcomes, predictors, seats and populations will be the
output.

8

9 Accessing Raw judgeit.object Data

All data are stored in an object of class judgeit . If desired, the user can access each component
within. Here is a list of components and their attributes:

• covars is a list of data frames comprising the predictors for each election in the system. So
judgeit.object$covars[[25]] is a data frame with the covariates from the 25th election.

• voteshare is a list of vectors comprising the vote shares for each election in the system. So
judgeit.object$voteshare[[25]] is a vector of the results of the 25th election.

• turnout,elgvotes,seats are lists of vectors comprising the actual turnout, the number of
eligible voters, and the seats per district in the system for each election.

• fullrow is a list of vectors containing those rows whose primary elements (covariates, vote
shares, eligible and actual voters and seats) contain complete data.

• uncL,uncLR,uncU,uncUR are the uncontested election detection thresholds and imputations
as listed above.

• svexpected.value.only is the value of expected.value.only as given above.

• simulations is the number of simulations conducted by JudgeIt during each analysis.

• weight is the option selected by the user to indicate what weights should be used in the
linear model, as described above.

• distweights is a list of the actual values of these weights.

• covarsnew is a list of data frames of counterfactual or future predictors as manipulated by
the option new.covariates. It must have the same data type in each column as covars
though not necessarily the same number of rows.

• same.dists is a vector indicating whether the previous election’s district map is identical to
the current one, as described above.

• output contains the output of the last analytical routine, and is displayed with the command
print(JudgeIt.object).

• outputyear, outputclass indicate the year and type of the last analysis conducted. These
are used mainly in plot(judgeit.object).

• beta,vc are the estimates given by the linear model for the system for the coefficients of the
covariates and their covariance matrix.

• sigma,lambda,sind,lind are, respectively, the mean and year-by-year estimates of the stan-
dard error and systematic error fraction of the system.

• years is a vector of the names of each election variable in the inputted data frame list. In
the case of house6311, this is a vector of the election years between 1896 and 1992.

A The Underlying Method

Sources of Error in Electoral Data

In principle, the source of error in an experimental outcome can be divided into systematic error,
in which the apparatus for conducting an experiment skews the result in the same way each time it
is run, and random error, which is different every time an experiment is conducted. In many cases
in political science, the estimated error in an experiment cannot be divided into its two component
types.

9

In the application of two-party elections, however, the “experimental apparatus” to be consid-
ered is an electoral system that changes minimally between elections in its construction. This gives
us a method for estimating what fraction of an election’s variation is caused by properties of the
system, and what changes can be considered to be random in nature.

Under this assumption, two different types of elections can be simulated: those in which the
existing system is no longer in place, such as the prediction of future elections, and those in which we
consider what would happen whether a particular election was run again using the same systematic
conditions, two fundamentally different sets of analyses with a common method of generation.

Quantities of interest in the political science literature can often be explained in terms of the
outcomes of hypothetical elections or properties of the election system.

The Gelman-King Model

JudgeIt is used to model two-party electoral systems; choose one party to identify as “Party 1”.
(All results for Party 2 are clearly the opposite for those of Party 1.)

In any particular election year, let vi be the share of the two-party vote received by Party 1 in
district i. We model the resulting vote share as

vi = X ′
iβ + γi + εi

where X ′
i is a vector of predictor variables with coefficient β, and γi ∼ N(0, λσ2) and εi ∼

N(0, (1 − λ)σ2) are the systematic and random error terms. In this presentation, σ2 is the total
error variance, and λ is the share attributed to the systematic error component. The error terms
in each district are independent of each other and of those in each other district in the system.

The standard approach to estimating the unknown quantities is to model each year under the
Bayesian framework, with noninformative priors on the β and σ2 parameters in each year. To
estimate σ2, take the total variance estimate in each year and pool those estimates together; then
use the mean of the pooled estimates as the value of σ2 as the value for each election.

To estimate λ for the electoral system, note that the systematic component of the error is
proportional to the votes received in each district in two subsequent elections, yielding

vi,t+1 = λvi,t + X ′
iβ + γi + εi,

where X ′
i may include as many variables as are available from elections t and t + 1. The value of

λ used is the mean of these estimated values. Note that estimates of λ can only be obtained when
two subsequent elections use the same electoral map, i.e. no redistricting has taken place.

Generating Hypothetical Elections

Now that the parameters in each election year are estimated, the model can be simulated. For a
predictive analysis, the hypothetical vote share in each district is found to be

ṽi = X̃ ′
iβ + δ̃ + γ̃i + ε̃i

where X̃ ′
i is a (possibly new) vector of predictors corresponding to those terms in β. In this case,

the two error terms are unidentifiable and once again combine so that

γ̃i + ε̃i ∼ N(0, σ2).

The δ̃ term is added under the general uniform partisan swing assumption; that is, for small
deviations from the observed outcome, a swing in the overall vote share can be represented as the
same swing in each district in the system. This allows the user to investigate two scenarios: what
would happen if the average vote were to shift by a small amount, or what the electoral map would
look like with a particular average vote share (corresponding to a particular shift in the average
vote.)

For an evaluation of an election’s underlying properties, or to examine what would happen
if we re-ran the election under counterfactual circumstances, we note that the systematic error

10

component γi can be estimated using the data. Since yi and γi are simulated from the bivariate
normal distribution, [

yi

γi

]
∼ N2

([
Xiβ
0

]
,

[
σ2 λσ2

λσ2 λσ2

])
,

we can obtain the conditional distribution,

γi|yi ∼ N(λ(yi − x′
iβ), λ(1− λ)σ2).

We then use this estimate of γi in the simulation equation

ṽi = X̃ ′
iβ + δ̃ + γi + ε̃i.

Note that Party 1 wins the election if their share of the two-party vote is greater than one-half.
Given β and γ, we then see that the expected seat share is

P (vi > 0.5|β, γ, δ) = 1− Φ

(
0.5− X̃ ′

iβ − δ̃ + γi√
(1− λ)σ2

)
.

To generate the probability distribution for this quantity, we then draw values for β and γ given
their conditional distributions, and set δ to its required value given the application.

Application: Calculating Partisan Bias

One definition of partisan bias is the extra seat share received by one party when the average vote
is split equally between both. We estimate the distribution of partisan bias conditional on β and
γ, then use their distributions to determine a probability interval.

To get one draw from the distribution of partisan bias:

• Draw β and γ from their respective distributions. These represent conditions in the electoral
system up until the election.2

• Calculate the mean and variance of the vote share in each district conditional on the draws
of β and γ.

• Calculate the grand mean vote (with whatever weights are being used) and subtract it from
0.5; this is the value of δ we use to adjust the mean vote to 0.5.

• Determine the expected seat share P (vi > 0.5|β, γ, δ) for each district and take the weighted
mean. Twice the (weighted mean minus 0.5) is the partisan bias conditional on β and γ.

Repeating this procedure gives us the distribution of the partisan bias.

B Demonstrations

After loading the JudgeIt library, the demonstrations seatsdemo, probdemo, distreportdemo
and svsumdemo are available through the command demo.

References

Gelman, Andrew and Gary King. 1990a. “Estimating Incumbency Advantage With-
out Bias.” American Journal of Political Science 34(4, November):1142–1164.
http://gking.harvard.edu/files/abs/inc-abs.shtml.

Gelman, Andrew and Gary King. 1990b. “Estimating the Electoral Consequences of Legisla-
tive Redistricting.” Journal of the American Statistical Association 85(410, June):274–282.
http://gking.harvard.edu/files/abs/svstat-abs.shtml.

2The routine used to generate multivariate normal random variables is taken explicitly from the R library MASS.

11

Gelman, Andrew and Gary King. 1994. “Enhancing Democracy Through Legisla-
tive Redistricting.” American Political Science Review 88(3, September):541–559.
http://gking.harvard.edu/files/abs/red-abs.shtml.

Gelman, Andrew, Jonathan Katz and Gary King. 2004. Rethinking the Vote: The
Politics and Prospects of American Electoreal Reform. New York: Oxford Univer-
sity Press chapter Chapter 5, Empirically Evaluating the Electoral College, pp. 75–88.
http://gking.harvard.edu/files/abs/rethink-abs.shtml.

Grofman, Bernard and Gary King. 2007. “The Future of Partisan Symmetry as a Judicial Test
for Partisan Gerrymandering after LULAC v. Perry.” Election Law Journal 6(1, January):2–35.
http://gking.harvard.edu/files/abs/jp-abs.shtml.

King, Gary and Andrew Gelman. 1991. “Systemic Consequences of Incumbency Advan-
tage in the U.S. House.” American Journal of Political Science 35(1, February):110–138.
http://gking.harvard.edu/files/abs/sysconseq-abs.shtml.

King, Gary and Robert X Browning. 1987. “Democratic Representation and Partisan Bias
in Congressional Elections.” American Political Science Review 81(4, December):1252–1273.
http://gking.harvard.edu/files/abs/sv-abs.shtml.

12

	Introduction
	Installation Instructions and Requirements
	Usage Overview
	Formatting Data Sets
	Included Data Sets
	Step 1: Create a JudgeIt object
	Step 2: Conduct Analyses
	Further JudgeIt output options
	Accessing Raw judgeit.object Data
	The Underlying Method
	Demonstrations

