
LaplacesDemon: An R Package for Bayesian Inference

Byron Hall
STATISTICAT, LLC

Abstract

LaplacesDemon, usually referred to as Laplace’s Demon, is a contributed R package
for Bayesian inference, and is freely available on the Comprehensive R Archive Network
(CRAN). Laplace’s Demon allows Laplace Approximation and the choice of four MCMC
algorithms to update a Bayesian model according to a user-specified model function. The
user-specified model function enables Bayesian inference for any model form, provided the
user specifies the likelihood. Laplace’s Demon also attempts to assist the user by creating
and offering R code, based on a previous model update, that can be copy/pasted and exe-
cuted. Posterior predictive checks and many other features are included as well. Laplace’s
Demon seeks to be generalizable and user-friendly to Bayesians, especially Laplacians.

Keywords:˜Adaptive, AM, Bayesian, Delayed Rejection, DR, DRAM, DRM, Gradient As-
cent, Laplace Approximation, LaplacesDemon, Laplace’s Demon, Markov chain Monte Carlo,
MCMC, Metropolis, Optimization, R, Random Walk, Random-Walk, STATISTICAT.

Bayesian inference is named after Reverend Thomas Bayes (1702-1761) for developing Bayes’
theorem, which was published posthumously after his death (Bayes and Price 1763). This
was the first instance of what would be called inverse probability1.

Unaware of Bayes, Pierre-Simon Laplace (1749-1827) independently developed Bayes’ theo-
rem and first published his version in 1774, eleven years after Bayes, in one of Laplace’s first
major works (Laplace 1774, p. 366–367). In 1812, Laplace introduced a host of new ideas
and mathematical techniques in his book, Theorie Analytique des Probabilites, (Laplace 1812).
Before Laplace, probability theory was solely concerned with developing a mathematical anal-
ysis of games of chance. Laplace applied probabilistic ideas to many scientific and practical
problems. Although Laplace is not the father of probability, Laplace may be considered the
father of the field of probability.

In 1814, Laplace published his “Essai Philosophique sur les Probabilites”, which introduced a
mathematical system of inductive reasoning based on probability (Laplace 1814). In it, the

1‘Inverse probability’ refers to assigning a probability distribution to an unobserved variable, and is in
essence, probability in the opposite direction of the usual sense. Bayes’ theorem has been referred to as “the
principle of inverse probability”. Terminology has changed, and the term ‘Bayesian probability’ has displaced
‘inverse probability’. The adjective “Bayesian” was introduced by R. A. Fisher as a derogatory term.

2 LaplacesDemon

Bayesian interpretation of probability was developed independently by Laplace, much more
thoroughly than Bayes, so some“Bayesians”refer to Bayesian inference as Laplacian inference.
This is a translation of a quote in the introduction to this work:

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes”
(Laplace 1814).

The ‘intellect’ has been referred to by future biographers as Laplace’s Demon. In this quote,
Laplace expresses his philosophical belief in hard determinism and his wish for a computational
machine that is capable of estimating the universe.

This article is an introduction to an R (R Development Core Team 2011) package called
LaplacesDemon (Hall 2011), which was designed without consideration for hard determinism,
but instead with a lofty goal toward facilitating high-dimensional Bayesian (or Laplacian)
inference2, posing as its own intellect that is capable of impressive analysis. The LaplacesDe-
mon R package is often referred to as Laplace’s Demon. This article guides the user through
installation, data, specifying a model, initial values, updating Laplace’s Demon, summarizing
and plotting output, posterior predictive checks, general suggestions, discusses independence
and observability, covers details of the algorithm, software comparisons, discusses large data
sets and speed, and explains future goals.

Herein, it is assumed that the reader has basic familiarity with Bayesian inference, numerical
approximation, and R. If any part of this assumption is violated, then suggested sources in-
clude the vignette entitled “Bayesian Inference” that comes with the LaplacesDemon package,
Gelman, Carlin, Stern, and Rubin (2004), and Crawley (2007).

1. Installation

To obtain Laplace’s Demon, simply open R and install the LaplacesDemon package from a
CRAN mirror:

> install.packages("LaplacesDemon")

A goal in developing Laplace’s Demon was to minimize reliance on other packages or software.
Therefore, the usual dep=TRUE argument does not need to be used, because LaplacesDemon
does not depend on anything other than base R. Once installed, simply use the library or
require function in R to activate the LaplacesDemon package and load its functions into
memory:

> library(LaplacesDemon)

2Even though the LaplacesDemon package is dedicated to Bayesian inference, frequentist inference may be
used instead with the same functions by omitting the prior distributions and maximizing the likelihood.

Byron Hall 3

LaplacesDemon: Software for Bayesian Inference

``Probability theory is nothing but common sense reduced to

calculation'' (Pierre-Simon Laplace, 1814).

Laplace's Demon is ready for you.

2. Data

Laplace’s Demon requires data that is specified in a list. As an example, there is a data set
called demonsnacks that is provided with the LaplacesDemon package. For no good reason,
other than to provide an example, the log of Calories will be fit as an additive, linear function
of the remaining variables. Since an intercept will be included, a vector of 1’s is inserted into
design matrix X.

> data(demonsnacks)

> N <- NROW(demonsnacks)

> J <- NCOL(demonsnacks)

> y <- log(demonsnacks$Calories)

> X <- cbind(1, as.matrix(demonsnacks[, c(1, 3:10)]))

> for (j in 2:J) {

+ X[, j] <- CenterScale(X[, j])

+ }

> mon.names <- c("LP", "tau")

> parm.names <- parm.names(list(beta = rep(0, J), log.tau = 0))

> MyData <- list(J = J, X = X, mon.names = mon.names,

+ parm.names = parm.names, y = y)

There are J=10 independent variables (including the intercept), one for each column in de-
sign matrix X. However, there are 11 parameters, since the residual precision, tau, must be
included as well. The reason why it is called log.tau will be explained later. Each parameter
must have a name specified in the vector parm.names, and parameter names must be included
with the data. This is using a function called parm.names. Also, note that each predictor has
been centered and scaled, as per Gelman (2008). Laplace’s Demon provides a CenterScale

function to center and scale predictors3.

Laplace’s Demon will consider using Laplace Approximation, and part of this consideration
includes determining the sample size. The user must specify the number of observations in
the data as either a scalar n or N. If these are not found by the LaplaceApproximation or
LaplacesDemon functions, then it will attempt to determine sample size as the number of
rows in y or Y.

3. Specifying a Model

3Centering and scaling a predictor is x.cs <- (x - mean(x)) / (2*sd(x)).

4 LaplacesDemon

Laplace’s Demon is capable with any Bayesian model for which the likelihood is specified4.
To use Laplace’s Demon, the user must specify a model. Let’s consider a linear regression
model, which is often denoted as:

y ∼ N (µ, σ2)

µ = Xβ

The dependent variable, y, is normally distributed according to expectation vector µ and
scalar variance σ2, and expectation vector µ is equal to the inner product of design matrix X
and parameter vector β.

For a Bayesian model, the notation for the residual variance, σ2, is often replaced with the
residual precision, τ−1. Prior probabilities are specified for β and τ :

βj ∼ N (0, 1000), j = 1, . . . , J

τ ∼ Γ(0.001, 0.001)

Each of the J β parameters is assigned an uninformative prior probability distribution that
is normally-distributed according to µ = 0 and σ2 = 1000, where the precision is τ = 0.001.
The large variance or small precision indicates a lot of uncertainty about each β, and is hence
an uninformative distribution. The residual precision τ is gamma-distributed according to
two parameters of its distribution: α = 0.001 and β = 0.001.

To specify a model, the user must create a function called Model. Here is an example for a
linear regression model:

> Model <- function(parm, Data) {

+ beta.mu <- rep(0, Data$J)

+ beta.tau <- rep(0.001, Data$J)

+ tau.alpha <- 0.001

+ tau.beta <- 0.001

+ beta <- parm[1:Data$J]

+ tau <- exp(parm[Data$J + 1])

+ beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau),

+ log = TRUE)

+ tau.prior <- dgamma(tau, tau.alpha, tau.beta,

+ log = TRUE)

+ mu <- beta %*% t(Data$X)

+ LL <- sum(dnorm(Data$y, mu, 1/sqrt(tau), log = TRUE))

+ LP <- LL + sum(beta.prior) + tau.prior

+ Modelout <- list(LP = LP, Dev = -2 * LL, Monitor = c(LP,

+ tau), yhat = mu, parm = parm)

+ return(Modelout)

+ }

4Examples of numerous Bayesian models may be found in the “Examples” vignette that comes with the
LaplacesDemon package.

Byron Hall 5

Laplace’s Demon iteratively maximizes the logarithm of the unnormalized joint posterior
density as specified in this Model function. In Bayesian inference, the logarithm of the unnor-
malized joint posterior density is proportional to the sum of the log-likelihood and logarithm
of the prior densities:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

where Θ is a set of parameters, y is the data, ∝ means ‘proportional to’5, p(Θ|y) is the joint
posterior density, p(y|Θ) is the likelihood, and p(Θ) is the set of prior densities.

During each iteration in which Laplace’s Demon is maximizing the logarithm of the unnormal-
ized joint posterior density, Laplace’s Demon passes two arguments to Model: parm and Data,
where parm is short for the set of parameters, and Data is a list of data. These arguments are
specified in the beginning of the function:

Model <- function(parm, Data)

Then, the Model function is evaluated and the logarithm of the unnormalized joint posterior
density is calculated as LP, and returned to Laplace’s Demon in a list called Modelout, along
with the deviance (Dev), a vector (Monitor) of any variables desired to be monitored in
addition to the parameters, yrep (yhat) or replicates of y, and the parameter vector parm.
All arguments must be returned. Even if there is no desire to observe the deviance and any
monitored variable, a scalar must be placed in the second position of the Modelout list, and
at least one element of a vector for a monitored variable. This can be seen in the end of the
function:

LP <- LL + sum(beta.prior) + tau.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,tau),

yhat=mu, parm=parm)

return(Modelout)

The rest of the function specifies the hyperparameters, parameters, log of the prior densities,
and calculates the log-likelihood. The hyperparameters specify the parameters for the prior
distributions. Since design matrix X has J=10 column vectors (including the intercept), there
are 10 beta parameters and a tau parameter for residual precision, the inverse of the variance.
Each of the J beta parameters will be distributed normally according to mean beta.mu and
precision beta.tau, and the additional tau parameter will be gamma-distributed according
to tau.alpha and tau.beta. Here are the specifications for the hyperparameters:

beta.mu <- rep(0,Data$J)

beta.tau <- rep(1.0E-3,Data$J)

tau.alpha <- 1.0E-3

tau.beta <- 1.0E-3

Since Laplace’s Demon passes a vector of parameters called parm to Model, the function
needs to know which parameter is associated with which element of parm. For this, the vector
beta is declared, and then each element of beta is populated with the value associated in the
corresponding element of parm. The reason why tau is exponentiated will, again, be explained
later.

5For those unfamiliar with ∝, this symbol simply means that two quantities are proportional if they vary
in such a way that one is a constant multiplier of the other. This is due to an unspecified constant of
proportionality in the equation. Here, this can be treated as ‘equal to’.

6 LaplacesDemon

beta <- parm[1:Data$J]

tau <- exp(parm[Data$J+1])

To work with the log of the prior densities and according to the assigned names of the
parameters and hyperparameters, they are specified as follows:

beta.prior <- dnorm(beta, beta.mu, 1/sqrt(beta.tau), log=TRUE)

tau.prior <- dgamma(tau, tau.alpha, tau.beta, log=TRUE)

It is important to reparameterize all parameters to be real-valued. For example, a positive-
only parameter such as variance should be allowed to range from −∞ to ∞, and be trans-
formed in the Model function with the exp function, which will force it to positive values. A
parameter θ that needs to be bounded in the model, such as in the interval [1,5], can be trans-
formed to that range with a logistic function, such as 1+4[exp(θ)/(exp(θ)+1)]. Alternatively,
each parameter may be constrained in the Model function. Laplace’s Demon will attempt to
increase or decrease the value of each parameter to maximize LP, without consideration for
the distributional form of the parameter. In the above example, the residual precision tau

receives a gamma-distributed prior of the form:

τ ∼ Γ(0.001, 0.001)

In this specification, tau cannot be negative. By reparameterizing tau as

tau <- exp(parm[Data$J+1])

Laplace’s Demon will increase or decrease parm[Data$J+1], which is effectively log(tau).
Now it is possible for Laplace’s Demon to decrease log(tau) below zero without causing an
error or violating its gamma-distributed specification.

Finally, everything is put together to calculate LP, the logarithm of the unnormalized joint
posterior density. The expectation vector mu is the inner product (%*%) of the vector beta and
the transposed design matrix, t(Data$X). Expectation vector mu, vector Data$y, and scalar
tau are used to estimate the sum of the log-likelihoods, where:

y ∼ N (µ, τ−1)

and as noted before, the logarithm of the unnormalized joint posterior density is:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

mu <- beta %*% t(Data$X)

LL <- sum(dnorm(Data$y, mu, 1/sqrt(tau), log=TRUE)

LP <- LL + sum(beta.prior) + tau.prior

Specifying the model in the Model function is the most involved aspect for the user of Laplace’s
Demon. But it has been designed so it is also incredibly flexible, allowing a wide variety of
Bayesian models to be specified. Missing values are also easy to estimate (see the “Examples”
vignette).

4. Initial Values

Byron Hall 7

Laplace’s Demon requires a vector of initial values for the parameters. Each initial value is
a starting point for the estimation of a parameter. When all initial values are set to zero,
Laplace’s Demon will optimize initial values using a step-adaptive gradient ascent algorithm in
the LaplaceApproximation function. Laplace Approximation is asymptotic with respect to
sample size, so it is inappropriate in this example with a sample size of 39 and 11 parameters.
Laplace’s Demon will not use Laplace Approximation when the sample size is not at least five
times the number of parameters. Otherwise, the user may prefer to optimize initial values
in the LaplaceApproximation function before using the LaplacesDemon function. When
Laplace’s Demon receives initial values that are not all set to zero, it will begin to update
each parameter.

In this example, there are 11 parameters. With no prior knowledge, it is a good idea either
to randomize each initial value within an interval, say -3 to 3, or set all of them equal to
zero and let the LaplaceApproximation function optimize the initial values, provided there
is sufficient sample size. Here, the LaplaceApproximation function will be introduced in the
LaplacesDemon function, so the first 10 parameters, the beta parameters, have been set equal
to zero, and the remaining parameter, log.tau, has been set equal to log(1), which is equal
to zero. This visually reminds me that I am working with the log of tau, rather than tau,
and is merely a personal preference. The order of the elements of the vector of initial values
must match the order of the parameters associated with each element of parm passed to the
Model function.

> Initial.Values <- c(rep(0, J), log(1))

5. Laplace’s Demon

Compared to specifying the model in the Model function, the actual use of Laplace’s Demon
is very easy. Since Laplace’s Demon is stochastic, or involves pseudo-random numbers, it’s a
good idea to set a ‘seed’ for pseudo-random number generation, so results can be reproduced.
Pick any number you like, but there’s only one number appropriate for a demon6:

> set.seed(666)

As with any R package, the user can learn about a function by using the help function
and including the name of the desired function. To learn the details of the LaplacesDemon
function, enter:

> help(LaplacesDemon)

Here is one of many possible ways to begin:

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 900,

+ Covar = NULL, DR = 1, Initial.Values, Iterations = 10000,

+ Periodicity = 10, Status = 1000, Thinning = 10)

6Demonic references are used only to add flavor to the software and its use, and in no way endorse beliefs
in demons. This specific pseudo-random seed is often referred to, jokingly, as the ‘demon seed’.

8 LaplacesDemon

In this example, an output object called Fit will be created as a result of using the Laplaces-
Demon function. Fit is an object of class demonoid, which means that since it has been
assigned a customized class, other functions have been custom-designed to work with it.
Laplace’s Demon offers Laplace Approximation and four MCMC algorithms (which are ex-
plained in section 11). The above example did not use Laplace Approximation due to small
sample size, and instead used the Delayed Rejection Adaptive Metropolis (DRAM) algorithm
for updating.

This example tells the LaplacesDemon function to maximize the first component in the list
output from the user-specified Model function, given a data set called Data, and according to
several settings.

� The Adaptive=900 argument indicates that a non-adaptive MCMC algorithm will begin,
and that it will become adaptive at the 900th iteration. Beginning with the 900th
iteration, the MCMC algorithm will estimate the proposal variance or covariance based
on the history of the chains.

� The Covar=NULL argument indicates that a user-specified variance vector or covariance
matrix has not been supplied, so the algorithm will begin with its own estimate.

� The DR=1 argument indicates that delayed rejection will occur, such that when a pro-
posal is rejected, an additional proposal will be attempted, thus potentially delaying
rejection of proposals.

� The Initial.Values argument requires a vector of initial values for the parameters.

� The Iterations=10000 argument indicates that the LaplacesDemon function will up-
date 10,000 times before completion.

� The Periodicity=10 argument indicates that once adaptation begins, the algorithm
will adapt every 10 iterations.

� The Status=1000 argument indicates that a status message will be printed to the R
console every 1,000 iterations.

� Finally, the Thinning=10 argument indicates that only every nth iteration will be re-
tained in the output, and in this case, every 10th iteration will be retained.

By running the LaplacesDemon function, the following output was obtained:

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 900,

+ Covar = NULL, DR = 1, Initial.Values, Iterations = 10000,

+ Periodicity = 10, Status = 1000, Thinning = 10)

Laplace's Demon was called on Sat Apr 2 13:48:05 2011

Performing initial checks...

Algorithm: Delayed Rejection Adaptive Metropolis

Laplace's Demon is beginning to update...

Byron Hall 9

Iteration: 1000, Proposal: Multivariate

Iteration: 2000, Proposal: Multivariate

Iteration: 3000, Proposal: Multivariate

Iteration: 4000, Proposal: Multivariate

Iteration: 5000, Proposal: Multivariate

Iteration: 6000, Proposal: Multivariate

Iteration: 7000, Proposal: Multivariate

Iteration: 8000, Proposal: Multivariate

Iteration: 9000, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Creating Output

Laplace's Demon has finished.

Laplace’s Demon finished quickly, though it had a small data set (N=39), few parameters
(K=11), and the model was very simple. At each status of 1000 iterations, the proposal was
multivariate, so it did not have to resort to single-component proposals. The output object,
Fit, was created as a list. As with any R object, use str() to examine its structure:

> str(Fit)

To access any of these values in the output object Fit, simply append a dollar sign and the
name of the component. For example, here is how to access the observed acceptance rate:

> Fit$Acceptance.Rate

[1] 0.3158

6. Summarizing Output

The output object, Fit, has many components. The (copious) contents of Fit can be printed
to the screen with the usual R functions:

> Fit

> print(Fit)

Both return the same output, which is:

> Fit

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 900, Covar = NULL,

10 LaplacesDemon

DR = 1, Initial.Values = Initial.Values, Iterations = 10000,

Periodicity = 10, Status = 1000, Thinning = 10)

Acceptance Rate: 0.3158

Adaptive: 900

Algorithm: Delayed Rejection Adaptive Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

[1] 0.084759 0.081693 0.695060 0.355258 0.155647 0.052688

[7] 0.148212 0.131299 0.170847 0.368145 0.103156

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 91.273 86.046

pD 968.638 106.959

DIC 1059.911 193.004

Delayed Rejection (DR): 1

Initial Values:

[1] 0 0 0 0 0 0 0 0 0 0 0

Iterations: 10000

Log(Marginal Likelihood): -89.763

Minutes of run-time: 0.37

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 10

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 301

Recommended Burn-In of Un-thinned Samples: 3010

Recommended Thinning: 290

Status is displayed every 1000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 10

Summary of All Samples

Mean SD MCSE ESS LB

beta[1] 4.98575 0.41962 0.060709 47.776 4.55879

beta[2] -0.52199 0.39939 0.032998 146.492 -1.31310

beta[3] -0.76316 1.16481 0.211942 30.205 -3.74508

beta[4] 0.05211 0.82495 0.168197 24.056 -1.27877

beta[5] -0.54739 0.55229 0.052224 111.836 -1.66639

Byron Hall 11

beta[6] -0.51761 0.31742 0.020297 244.575 -1.15368

beta[7] 2.33422 0.53727 0.039787 182.354 1.24725

beta[8] 0.69312 0.50935 0.063835 63.666 -0.24318

beta[9] -0.19174 0.56505 0.041635 184.184 -1.21528

beta[10] 1.87953 0.84446 0.093782 81.081 0.41744

log.tau 0.57753 0.44770 0.072955 37.658 -0.25642

Deviance 91.27320 44.01450 3.487605 159.271 74.34135

LP -96.88605 21.90373 1.683197 169.343 -133.61290

tau 1.95984 0.76054 0.070424 116.626 0.72221

Median UB

beta[1] 5.033012 5.285545

beta[2] -0.505730 0.233485

beta[3] -0.669652 1.143706

beta[4] -0.021369 2.346119

beta[5] -0.527179 0.484156

beta[6] -0.519699 0.075785

beta[7] 2.349993 3.496501

beta[8] 0.658268 1.831501

beta[9] -0.176907 0.851550

beta[10] 1.814351 3.787706

log.tau 0.623115 1.135299

Deviance 83.617162 167.446819

LP -93.056475 -88.744643

tau 1.894297 3.505554

Summary of Stationary Samples

Mean SD MCSE ESS LB

beta[1] 5.04557 0.11868 0.004881 591.23 4.814571

beta[2] -0.52362 0.39048 0.035129 123.56 -1.311910

beta[3] -0.47931 0.89817 0.054157 275.05 -2.167081

beta[4] -0.11374 0.62000 0.032336 367.62 -1.282226

beta[5] -0.47736 0.54689 0.045461 144.71 -1.527810

beta[6] -0.49279 0.27033 0.017765 231.55 -1.023104

beta[7] 2.30835 0.52407 0.042463 152.32 1.222653

beta[8] 0.59179 0.45094 0.033123 185.34 -0.295607

beta[9] -0.15060 0.55303 0.043271 163.35 -1.165710

beta[10] 1.74735 0.76890 0.053745 204.68 0.371212

log.tau 0.65451 0.27090 0.018185 221.92 0.095373

Deviance 86.04567 14.62590 0.851933 294.74 74.070956

LP -94.33643 7.31275 0.411682 315.53 -110.073588

tau 2.01495 0.63118 0.039498 255.36 0.944870

Median UB

beta[1] 5.04186 5.299255

beta[2] -0.50511 0.189954

beta[3] -0.49805 1.296241

beta[4] -0.13297 1.078877

12 LaplacesDemon

beta[5] -0.48085 0.556542

beta[6] -0.49886 0.053826

beta[7] 2.32787 3.421885

beta[8] 0.57468 1.501888

beta[9] -0.13048 0.888065

beta[10] 1.71997 3.302169

log.tau 0.66436 1.139950

Deviance 82.89749 117.858803

LP -92.79119 -88.656286

tau 1.98189 3.489243

Several components are labeled as NOT SHOWN HERE, due to their size, such as the covariance
matrix Covar or the stationary posterior samples Posterior2. As usual, these can be printed
to the screen by appending a dollar sign, followed by the desired component, such as:

> Fit$Posterior2

Although a lot can be learned from the above output, notice that it completed 10000 iterations
of 11 variables in 0.37 minutes. Of course this was fast, since there were only 39 records, and
the form of the specified model was simple. As discussed later, Laplace’s Demon does better
than most other MCMC software with large numbers of records, such as 100,000 (see section
13).

In R, there is usually a summary function associated with each class of output object. The
summary function usually summarizes the output. For example, with frequentist models, the
summary function usually creates a table of parameter estimates, complete with p-values.

Since this is not a frequentist package, p-values are not part of any table with the LaplacesDemon
function, and the marginal posterior distributions of the parameters and other variables have
already been summarized in Fit, there is no point to have an associated summary function.
Going one more step toward useability, LaplacesDemon has a Consort function, where the
user consorts with Laplace’s Demon about the output object.

Consorting with Laplace’s Demon produces two kinds of output. The first section is identical
to print(Fit), but by consorting with Laplace’s Demon, it also produces a second section
called Demonic Suggestion.

> Consort(Fit)

###

Consort with Laplace's Demon

###

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 900, Covar = NULL,

DR = 1, Initial.Values = Initial.Values, Iterations = 10000,

Periodicity = 10, Status = 1000, Thinning = 10)

Acceptance Rate: 0.3158

Adaptive: 900

Byron Hall 13

Algorithm: Delayed Rejection Adaptive Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

[1] 0.084759 0.081693 0.695060 0.355258 0.155647 0.052688

[7] 0.148212 0.131299 0.170847 0.368145 0.103156

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 91.273 86.046

pD 968.638 106.959

DIC 1059.911 193.004

Delayed Rejection (DR): 1

Initial Values:

[1] 0 0 0 0 0 0 0 0 0 0 0

Iterations: 10000

Log(Marginal Likelihood): -89.763

Minutes of run-time: 0.37

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 10

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 301

Recommended Burn-In of Un-thinned Samples: 3010

Recommended Thinning: 290

Status is displayed every 1000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 10

Summary of All Samples

Mean SD MCSE ESS LB

beta[1] 4.98575 0.41962 0.060709 47.776 4.55879

beta[2] -0.52199 0.39939 0.032998 146.492 -1.31310

beta[3] -0.76316 1.16481 0.211942 30.205 -3.74508

beta[4] 0.05211 0.82495 0.168197 24.056 -1.27877

beta[5] -0.54739 0.55229 0.052224 111.836 -1.66639

beta[6] -0.51761 0.31742 0.020297 244.575 -1.15368

beta[7] 2.33422 0.53727 0.039787 182.354 1.24725

beta[8] 0.69312 0.50935 0.063835 63.666 -0.24318

beta[9] -0.19174 0.56505 0.041635 184.184 -1.21528

beta[10] 1.87953 0.84446 0.093782 81.081 0.41744

14 LaplacesDemon

log.tau 0.57753 0.44770 0.072955 37.658 -0.25642

Deviance 91.27320 44.01450 3.487605 159.271 74.34135

LP -96.88605 21.90373 1.683197 169.343 -133.61290

tau 1.95984 0.76054 0.070424 116.626 0.72221

Median UB

beta[1] 5.033012 5.285545

beta[2] -0.505730 0.233485

beta[3] -0.669652 1.143706

beta[4] -0.021369 2.346119

beta[5] -0.527179 0.484156

beta[6] -0.519699 0.075785

beta[7] 2.349993 3.496501

beta[8] 0.658268 1.831501

beta[9] -0.176907 0.851550

beta[10] 1.814351 3.787706

log.tau 0.623115 1.135299

Deviance 83.617162 167.446819

LP -93.056475 -88.744643

tau 1.894297 3.505554

Summary of Stationary Samples

Mean SD MCSE ESS LB

beta[1] 5.04557 0.11868 0.004881 591.23 4.814571

beta[2] -0.52362 0.39048 0.035129 123.56 -1.311910

beta[3] -0.47931 0.89817 0.054157 275.05 -2.167081

beta[4] -0.11374 0.62000 0.032336 367.62 -1.282226

beta[5] -0.47736 0.54689 0.045461 144.71 -1.527810

beta[6] -0.49279 0.27033 0.017765 231.55 -1.023104

beta[7] 2.30835 0.52407 0.042463 152.32 1.222653

beta[8] 0.59179 0.45094 0.033123 185.34 -0.295607

beta[9] -0.15060 0.55303 0.043271 163.35 -1.165710

beta[10] 1.74735 0.76890 0.053745 204.68 0.371212

log.tau 0.65451 0.27090 0.018185 221.92 0.095373

Deviance 86.04567 14.62590 0.851933 294.74 74.070956

LP -94.33643 7.31275 0.411682 315.53 -110.073588

tau 2.01495 0.63118 0.039498 255.36 0.944870

Median UB

beta[1] 5.04186 5.299255

beta[2] -0.50511 0.189954

beta[3] -0.49805 1.296241

beta[4] -0.13297 1.078877

beta[5] -0.48085 0.556542

beta[6] -0.49886 0.053826

beta[7] 2.32787 3.421885

beta[8] 0.57468 1.501888

beta[9] -0.13048 0.888065

Byron Hall 15

beta[10] 1.71997 3.302169

log.tau 0.66436 1.139950

Deviance 82.89749 117.858803

LP -92.79119 -88.656286

tau 1.98189 3.489243

Demonic Suggestion

Due to the combination of the following conditions,

1. Delayed Rejection Adaptive Metropolis

2. The acceptance rate (0.3158) is within the interval [0.15,0.5].

3. At least one target MCSE is >= 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

301 iterations.

Laplace's Demon has not been appeased, and suggests

copy/pasting the following R code into the R console,

and running it.

Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples,]

Fit <- LaplacesDemon(Model, Data=MyData, Adaptive=35,

Covar=Fit$Covar, DR=0, Initial.Values, Iterations=290000,

Periodicity=918, Status=27027, Thinning=290)

Laplace's Demon is finished consorting.

The Demonic Suggestion is a very helpful section of output. When Laplace’s Demon was
developed initially in late 2010, there were not to my knowledge any tools of Bayesian inference
that make suggestions to the user.

Before making its Demonic Suggestion, Laplace’s Demon considers and presents five condi-
tions: the algorithm, acceptance rate, Monte Carlo standard error (MCSE), effective sample
size (ESS), and stationarity. There are 48 combinations of these five conditions, though many
combinations lead to the same conclusions. In addition to these conditions, there are other
suggested values, such as a recommended number of iterations or values for the Periodicity

and Status arguments. The suggested value for Status is seeking to print a status message
every minute when the expected time is longer than a minute, and is based on the time in
minutes it took, the number of iterations, and the recommended number of iterations. This
estimate is fairly accurate for non-adaptive algorithms, and is hard to estimate for adaptive
algorithms. But, back to the really helpful part. . .

If these five conditions are unsatisfactory, then Laplace’s Demon is not appeased, and suggests
it should continue updating, and that the user should copy/paste and execute its suggested R
code. Here are the criteria it measures against. The final algorithm must be non-adaptive, so

16 LaplacesDemon

that the Markov property holds (this is covered in section 11). The acceptance rate is consid-
ered satisfactory if it is within the interval [15%,50%]7. MCSE is considered satisfactory for
each target distribution if it is less than 6.27% of the standard deviation of the target distri-
bution. This allows the true mean to be within 5% of the area under a Gaussian distribution
around the estimated mean. ESS is considered satisfactory for each target distribution if it is
at least 100, which is usually enough to describe 95% probability intervals. And finally, each
variable must be estimated as stationary.

Notice that since stationarity has been estimated beginning with the 301st iteration, the
suggested R code changes from Adaptive=900 to Adaptive=0. The suggestion is to abandon
the adaptive MCMC algorithm in favor of a non-adaptive algorithm, specifically a Random-
Walk Metropolis (RWM). It is also replacing the initial values with the latest values of the
parameter chains, and is suggesting to begin with the latest covariance matrix. Some of
the arguments in the suggested R code seem excessive, such as Iterations=290000 and
Thinning=290. For the sake of the example and saving the reader from a few pages of
output, the suggested R code will not be run and the following will be run instead:

> Initial.Values <- Fit$Posterior1[Fit$Thinned.Samples,

+]

> Fit <- LaplacesDemon(Model, Data = MyData, Adaptive = 0,

+ Covar = Fit$Covar, DR = 0, Initial.Values, Iterations = 180000,

+ Periodicity = 0, Status = 10000, Thinning = 180)

Laplace's Demon was called on Sat Apr 2 13:48:27 2011

Performing initial checks...

Adaptation will not occur due to the Adaptive argument.

Adaptation will not occur due to the Periodicity argument.

Algorithm: Random-Walk Metropolis

Laplace's Demon is beginning to update...

Iteration: 10000, Proposal: Single-Component

Iteration: 20000, Proposal: Multivariate

Iteration: 30000, Proposal: Multivariate

Iteration: 40000, Proposal: Multivariate

Iteration: 50000, Proposal: Multivariate

Iteration: 60000, Proposal: Multivariate

Iteration: 70000, Proposal: Multivariate

Iteration: 80000, Proposal: Multivariate

Iteration: 90000, Proposal: Multivariate

Iteration: 100000, Proposal: Multivariate

Iteration: 110000, Proposal: Multivariate

Iteration: 120000, Proposal: Multivariate

Iteration: 130000, Proposal: Multivariate

7While Spiegelhalter, Thomas, Best, and Lunn (2003) recommend updating until the acceptance rate is
within the interval [20%,40%], and Roberts and Rosenthal (2001) suggest [10%,40%], the interval recommended
here is [15%,50%].

Byron Hall 17

Iteration: 140000, Proposal: Multivariate

Iteration: 150000, Proposal: Multivariate

Iteration: 160000, Proposal: Multivariate

Iteration: 170000, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Creating Output

Laplace's Demon has finished.

Next, the user consorts with Laplace’s Demon:

> Consort(Fit)

###

Consort with Laplace's Demon

###

Call:

LaplacesDemon(Model = Model, Data = MyData, Adaptive = 0, Covar = Fit$Covar,

DR = 0, Initial.Values = Initial.Values, Iterations = 180000,

Periodicity = 0, Status = 10000, Thinning = 180)

Acceptance Rate: 0.17264

Adaptive: 180001

Algorithm: Random-Walk Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

[1] 0.084759 0.081693 0.695060 0.355258 0.155647 0.052688

[7] 0.148212 0.131299 0.170847 0.368145 0.103156

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 82.767 82.855

pD 17.566 18.021

DIC 100.333 100.876

Delayed Rejection (DR): 0

Initial Values:

beta[1] beta[2] beta[3] beta[4] beta[5] beta[6]

5.223185 -0.258280 -0.127803 0.051125 -0.727624 -1.010162

beta[7] beta[8] beta[9] beta[10] log.tau

2.047204 0.069733 -0.329800 2.074757 0.305603

Iterations: 180000

Log(Marginal Likelihood): NaN

18 LaplacesDemon

Minutes of run-time: 1.99

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 11

Periodicity: 180001

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 101

Recommended Burn-In of Un-thinned Samples: 18180

Recommended Thinning: 180

Status is displayed every 10000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 180

Summary of All Samples

Mean SD MCSE ESS LB

beta[1] 5.038749 0.11646 0.0036829 1000.00 4.804800

beta[2] -0.459686 0.36099 0.0127183 805.61 -1.206870

beta[3] -0.450027 0.94921 0.0322922 864.03 -2.266950

beta[4] -0.087439 0.71256 0.0225333 1000.00 -1.498926

beta[5] -0.432082 0.51110 0.0181564 792.41 -1.461060

beta[6] -0.477028 0.29573 0.0100647 863.38 -1.044564

beta[7] 2.256190 0.54976 0.0191678 822.64 1.138339

beta[8] 0.613356 0.43754 0.0145697 901.85 -0.240514

beta[9] -0.158728 0.58660 0.0195076 904.22 -1.298208

beta[10] 1.661952 0.77912 0.0271239 825.09 0.122949

log.tau 0.667271 0.28286 0.0089448 1000.00 0.060415

Deviance 82.766960 5.92724 0.2130495 774.01 73.743243

LP -92.705809 2.79787 0.1004620 775.62 -99.230567

tau 2.011161 0.55770 0.0176360 1000.00 1.051018

Median UB

beta[1] 5.041494 5.25577

beta[2] -0.456871 0.22997

beta[3] -0.479041 1.40472

beta[4] -0.052237 1.33462

beta[5] -0.428363 0.57156

beta[6] -0.476297 0.07648

beta[7] 2.274999 3.29131

beta[8] 0.627241 1.46009

beta[9] -0.168592 0.95889

beta[10] 1.654995 3.17903

log.tau 0.676537 1.16755

Deviance 81.935652 96.66287

LP -92.297541 -88.45990

Byron Hall 19

tau 1.944181 3.22751

Summary of Stationary Samples

Mean SD MCSE ESS LB

beta[1] 5.037064 0.11662 0.0038874 900.00 4.801999

beta[2] -0.457591 0.36406 0.0121354 900.00 -1.225101

beta[3] -0.447784 0.95503 0.0318345 900.00 -2.275635

beta[4] -0.071333 0.71772 0.0239241 900.00 -1.483336

beta[5] -0.426331 0.51569 0.0171897 900.00 -1.495565

beta[6] -0.483570 0.30108 0.0100360 900.00 -1.048696

beta[7] 2.261568 0.55191 0.0188148 860.48 1.126839

beta[8] 0.616376 0.43182 0.0143938 900.00 -0.205416

beta[9] -0.179314 0.58955 0.0196518 900.00 -1.298250

beta[10] 1.656385 0.78816 0.0283596 772.37 0.124178

log.tau 0.666857 0.28514 0.0095047 900.00 0.055071

Deviance 82.854714 6.00355 0.2257224 707.40 73.733602

LP -92.748294 2.83437 0.1067622 704.82 -99.275690

tau 2.009609 0.56238 0.0187462 900.00 1.046095

Median UB

beta[1] 5.040274 5.256832

beta[2] -0.450436 0.228595

beta[3] -0.465163 1.387763

beta[4] -0.026182 1.366174

beta[5] -0.416428 0.576283

beta[6] -0.489486 0.084237

beta[7] 2.289064 3.284359

beta[8] 0.625241 1.496912

beta[9] -0.208225 0.971124

beta[10] 1.649771 3.198003

log.tau 0.678813 1.175322

Deviance 81.985021 96.805919

LP -92.318844 -88.449905

tau 1.944181 3.264851

Demonic Suggestion

Due to the combination of the following conditions,

1. Random-Walk Metropolis

2. The acceptance rate (0.17264) is within the interval [0.15,0.5].

3. Each target MCSE is < 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

101 iterations.

20 LaplacesDemon

Laplace's Demon has been appeased, and suggests

the marginal posterior samples should be plotted

and subjected to any other MCMC diagnostic deemed

fit before using these samples for inference.

Laplace's Demon is finished consorting.

In 1.99 minutes, Laplace’s Demon updated 180000 iterations, retaining every 180th iteration
due to thinning, and reported an acceptance rate of 0.173. Notice that all criteria have been
met: MCSE’s are sufficiently small, ESS’s are sufficiently large, and stationarity was estimated
beginning with the first iteration. Since the algorithm was RWM, the Markov property holds,
so let’s look at some plots.

7. Plotting Output

Laplace’s Demon has a plot.demonoid function to enable its own customized plots with
demonoid objects. The variable BurnIn (below) may be left as it is so it will show only
the stationary samples (samples that are no longer trending), or set equal to one so that all
samples can be plotted. In this case, it will already be one, so I will leave it alone. The
function also enables the user to specify whether or not the plots should be saved as a .pdf
file, and allows the user to limit the number of parameters plotted, in case the number is very
large and only a quick glance is desired.

> BurnIn <- Fit$Rec.BurnIn.Thinned

> plot(Fit, BurnIn, MyData, PDF = FALSE, Parms = Fit$Parameters)

There are three plots for each parameter, the deviance, and each monitored variable (which
in this example are tau and mu[1]). The leftmost plot is a trace-plot, showing the history
of the value of the parameter according to the iteration. The middlemost plot is a kernel
density plot. The rightmost plot is an ACF or autocorrelation function plot, showing the
autocorrelation at different lags. The chains look stationary (do not exhibit a trend), the
kernel densities look Gaussian, and the ACF’s show low autocorrelation.

Another useful plot is called the caterpillar plot, which plots a horizontal representation
of three quantiles (2.5%, 50%, and 97.5%) of each selected parameter from the posterior
samples summary. The caterpillar plot will attempt to plot the stationary samples first
(Fit$Summary2), but if stationary samples do not exist, then it will plot all samples (Fit$Summary1).
Here, only the first ten parameters are selected for a caterpillar plot:

> caterpillar.plot(Fit, Parms = 1:10)

When predicting the logarithm of y (Calories) with the demonsnacks data, the caterpillar plot
shows that the best fitting variables are beta[6] (Sodium), beta[7] (Total.Carbohydrate),
and beta[10] (Protein). Overall, Laplace’s Demon seems to have done well, eating demonsnacks
for breakfast.

Byron Hall 21

200 600 1000

4.
6

5.
0

5.
4

beta[1]

Iterations

V
al

ue
4.6 5.0 5.4

0.
0

1.
5

3.
0

beta[1]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[1]

Lag

C
or

re
la

tio
n

200 600 1000

−
1.

5
0.

0
1.

0

beta[2]

Iterations

V
al

ue

−2.0 −1.0 0.0 1.0

0.
0

0.
4

0.
8

beta[2]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[2]

Lag

C
or

re
la

tio
n

200 600 1000

−
4

0
2

4

beta[3]

Iterations

V
al

ue

−4 −2 0 2 4

0.
0

0.
2

0.
4

beta[3]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[3]

Lag

C
or

re
la

tio
n

Figure 1: Plots of Marginal Posterior Samples

200 600 1000

−
2

0
2

beta[4]

Iterations

V
al

ue

−3 −1 1 2 3

0.
0

0.
3

0.
6

beta[4]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[4]

Lag

C
or

re
la

tio
n

200 600 1000

−
2.

0
−

0.
5

1.
0

beta[5]

Iterations

V
al

ue

−2 −1 0 1

0.
0

0.
4

0.
8

beta[5]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[5]

Lag

C
or

re
la

tio
n

200 600 1000

−
1.

5
−

0.
5

0.
5

beta[6]

Iterations

V
al

ue

−2.0 −1.0 0.0

0.
0

0.
6

1.
2

beta[6]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[6]

Lag

C
or

re
la

tio
n

Figure 2: Plots of Marginal Posterior Samples

22 LaplacesDemon

200 600 1000

1
2

3
4

beta[7]

Iterations

V
al

ue
0 1 2 3 4

0.
0

0.
4

beta[7]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[7]

Lag

C
or

re
la

tio
n

200 600 1000

−
0.

5
1.

0

beta[8]

Iterations

V
al

ue

−1.0 0.0 1.0 2.0

0.
0

0.
4

0.
8

beta[8]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[8]

Lag

C
or

re
la

tio
n

200 600 1000

−
3

−
1

1

beta[9]

Iterations

V
al

ue

−3 −1 0 1 2

0.
0

0.
3

0.
6

beta[9]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[9]

Lag

C
or

re
la

tio
n

Figure 3: Plots of Marginal Posterior Samples

200 600 1000

−
1

1
3

beta[10]

Iterations

V
al

ue

−1 1 2 3 4 5

0.
0

0.
2

0.
4

beta[10]

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

beta[10]

Lag

C
or

re
la

tio
n

200 600 1000

0.
0

1.
0

log.tau

Iterations

V
al

ue

−0.5 0.5 1.0 1.5

0.
0

0.
6

1.
2

log.tau

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

log.tau

Lag

C
or

re
la

tio
n

200 600 1000

80
10

0

Deviance

Iterations

V
al

ue

70 80 90 110

0.
00

0.
04

Deviance

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

Deviance

Lag

C
or

re
la

tio
n

Figure 4: Plots of Marginal Posterior Samples

Byron Hall 23

200 600 1000

−
10

5
−

95

LP

Iterations

V
al

ue

−105 −95 −85

0.
00

0.
10

LP

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

LP

Lag

C
or

re
la

tio
n

200 600 1000

1
2

3
4

tau

Iterations

V
al

ue

1 2 3 4

0.
0

0.
4

tau

Value

D
en

si
ty

0 5 10 20 30

0.
0

0.
4

0.
8

tau

Lag

C
or

re
la

tio
n

Figure 5: Plots of Marginal Posterior Samples

−2 0 2 4

Stationary Samples

●

●

●

●

●

●

●

●

●

●beta[10]

beta[9]

beta[8]

beta[7]

beta[6]

beta[5]

beta[4]

beta[3]

beta[2]

beta[1]

Figure 6: Caterpillar Plot

24 LaplacesDemon

If all is well, then the Markov chains should be studied with MCMC diagnostics, and finally,
further assessments of model fit should be estimated with posterior predictive checks, showing
how well (or poorly) the model fits the data. When the user is satisfied, the BayesFactor

function may be useful in selecting the best model, and the marginal posterior samples may
be used for inference.

8. Posterior Predictive Checks

A posterior predictive check is a method to assess discrepancies between the model and the
data (Gelman, Meng, and Stern 1996a). To perform posterior predictive checks with Laplace’s
Demon, simply use the predict function:

> Pred <- predict(Fit, Model, MyData)

This creates Pred, which is an object of class demonoid.ppc (where ppc is short for posterior
predictive check) that is a list which contains y and yhat. If the data set that was used to
estimate the model is supplied in predict, then replicates of y (also called yrep) are estimated.
If a new data set is supplied in predict, then new, unobserved instances of y (called ynew)
are estimated. Note that with new data, a y vector must still be supplied, and if unknown,
can be set to something sensible such as the mean of the y vector in the model.

The predict function calls the Model function once for each set of stationary samples in
Fit$Posterior2. Each set of samples is used to calculate mu, which is the expectation of y,
and mu is reported here as yhat. When there are few discrepancies between y and yrep, the
model is considered to fit well to the data.

Since Pred$yhat is a large (39 x 1000) matrix, let’s look at the summary of the posterior
predictive distribution:

> summary(Pred)

Concordance: 0.84615

Discrepancy Statistic: 0

Records:

y Mean SD LB Median UB PQ Discrep

1 4.1744 4.1554 0.19958 3.7569 4.1573 4.5457 0.4633333 NA

2 5.3613 5.2779 0.40995 4.5077 5.2846 6.0940 0.4333333 NA

3 6.0890 5.2488 0.56046 4.1031 5.2828 6.2971 0.0588889 NA

4 5.2983 5.1287 0.32527 4.5225 5.1432 5.7738 0.3077778 NA

5 4.4067 4.0714 0.24256 3.6150 4.0778 4.5495 0.0744444 NA

6 2.1972 3.7847 0.21294 3.3722 3.7846 4.2027 1.0000000 NA

7 5.0106 4.5314 0.18901 4.1594 4.5242 4.9193 0.0100000 NA

8 1.6094 3.8441 0.21079 3.4557 3.8417 4.2577 1.0000000 NA

9 4.3438 4.2150 0.23151 3.7378 4.2169 4.6569 0.2866667 NA

10 4.8122 4.7045 0.22569 4.2526 4.7014 5.1578 0.3077778 NA

11 4.1897 4.3951 0.19999 4.0063 4.3952 4.7953 0.8622222 NA

12 4.9200 4.5176 0.18663 4.1535 4.5271 4.9179 0.0255556 NA

13 4.7536 4.3610 0.19303 3.9823 4.3652 4.7610 0.0266667 NA

Byron Hall 25

14 4.1271 4.1479 0.17417 3.7763 4.1481 4.4803 0.5455556 NA

15 3.7136 4.0779 0.20372 3.6884 4.0845 4.4967 0.9644444 NA

16 4.6728 4.3840 0.22698 3.9375 4.3917 4.8290 0.0966667 NA

17 6.9305 7.1724 0.53716 6.0722 7.1803 8.2126 0.6733333 NA

18 5.0689 4.7904 0.25144 4.3268 4.7895 5.2797 0.1311111 NA

19 6.7754 6.3287 0.49707 5.3762 6.3324 7.2899 0.1766667 NA

20 6.5539 7.2313 0.48924 6.1942 7.2261 8.2012 0.9233333 NA

21 4.8903 5.3742 0.36537 4.6564 5.3688 6.0934 0.9122222 NA

22 4.4427 4.2431 0.27006 3.7171 4.2416 4.7853 0.2111111 NA

23 2.8332 3.0834 0.51024 2.0786 3.0808 4.0732 0.6900000 NA

24 4.7875 4.9290 0.25896 4.4336 4.9261 5.4385 0.7077778 NA

25 6.9334 7.2306 0.64160 5.8709 7.2599 8.5254 0.6866667 NA

26 6.1800 6.0758 0.60984 4.8684 6.1053 7.2282 0.4444444 NA

27 5.6525 5.3365 0.30624 4.7078 5.3379 5.9275 0.1455556 NA

28 5.4293 4.4533 0.21510 4.0434 4.4475 4.8982 0.0000000 NA

29 5.6348 5.5007 0.70196 4.0060 5.5188 6.8680 0.4355556 NA

30 4.2627 4.0472 0.21568 3.6271 4.0483 4.4821 0.1488889 NA

31 3.8918 4.0495 0.25002 3.5462 4.0448 4.5420 0.7533333 NA

32 6.6134 6.6235 0.40237 5.8314 6.6219 7.4616 0.5066667 NA

33 4.9200 4.3900 0.19699 4.0219 4.3994 4.7850 0.0066667 NA

34 6.5410 6.4554 0.49434 5.5089 6.4732 7.4336 0.4333333 NA

35 6.3456 6.4213 0.48730 5.4675 6.4209 7.3654 0.5677778 NA

36 3.7377 4.0511 0.25659 3.5367 4.0524 4.5672 0.8900000 NA

37 7.3563 7.9271 0.66413 6.6515 7.9456 9.2677 0.7966667 NA

38 5.7398 4.7552 0.17873 4.4015 4.7497 5.0852 0.0000000 NA

39 5.5175 5.1305 0.26659 4.6350 5.1266 5.6582 0.0733333 NA

The summary.demonoid.ppc function returns a list with 3 components:

� Concordance is the predictive concordance of Gelfand (1996), that indicates the per-
centage of times that y that was within the 95% probability interval of yhat. A goal
is to have 95% predictive concordance. For more information, see the accompanying
vignette entitled “Bayesian Inference”. In this case, roughly 1% of the time, y is within
the 95% probability interval of yhat. These results suggest that the model should be
attempted again under different conditions, such as using different predictors, or speci-
fying a different form to the model.

� Discrepancy.Statistic is a summary of a specified discrepancy measure. There are
many options for discrepancy measures that may be specified in the Discrep argument.
In this example, a discrepancy measure was not specified.

� The last part of the summarized output reports y, information about the distribution
of yhat, and the predictive quantile (PQ). The mean prediction of y[1], or yrep1 , given
the model and data, is 4.155. Most importantly, PQ[1] is 0.463, indicating that 46.3%
of the time, yhat[1,] was greater than y[1], or that y[1] is close to the mean of
yhat[1,]. Contrast this with the 6th record, where y[6]=2.197 and PQ[6]=1. There-
fore, yhat[6,] was not a good replication of y[6], because the distribution of yhat[6,]
is always greater than y[6]. While y[1] is within the 95% probability interval of

26 LaplacesDemon

3.5 4.0 4.5

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[1,]

Black=Density, Red=y
Value

D
en

si
ty

3.5 4.5 5.5 6.5

0.
0

0.
4

0.
8

Post. Pred. Plot of yhat[2,]

Black=Density, Red=y
Value

D
en

si
ty

3 4 5 6 7

0.
0

0.
4

Post. Pred. Plot of yhat[3,]

Black=Density, Red=y
Value

D
en

si
ty

4.0 5.0 6.0

0.
0

0.
6

1.
2

Post. Pred. Plot of yhat[4,]

Black=Density, Red=y
Value

D
en

si
ty

3.0 3.5 4.0 4.5 5.0

0.
0

1.
0

Post. Pred. Plot of yhat[5,]

Black=Density, Red=y
Value

D
en

si
ty

3.0 3.5 4.0 4.5

0.
0

1.
0

Post. Pred. Plot of yhat[6,]

Black=Density, Red=y
Value

D
en

si
ty

4.0 4.5 5.0

0.
0

1.
0

2.
0

Post. Pred. Plot of yhat[7,]

Black=Density, Red=y
Value

D
en

si
ty

3.0 3.5 4.0 4.5

0.
0

1.
0

Post. Pred. Plot of yhat[8,]

Black=Density, Red=y
Value

D
en

si
ty

3.5 4.0 4.5 5.0

0.
0

1.
0

Post. Pred. Plot of yhat[9,]

Black=Density, Red=y
Value

D
en

si
ty

Figure 7: Posterior Predictive Plots

yhat[1,], the 95% probability interval of yhat[6,] is above y[6] 100% of the time,
indicating a strong discrepancy between the model and data, in this case.

The last component of this summary may be viewed graphically as well. Rather than observing
plots for each of 39 records or rows, only the first 9 will be shown here:

> plot(Pred, Rows = c(1:9))

These posterior predictive checks indicate that there is plenty of room to improve this model.

9. General Suggestions

Following are general suggestions on how best to use Laplace’s Demon:

� As suggested by Gelman (2008), continuous predictors should be centered and scaled.
Here is an explicit example in R of how to center and scale a single predictor called
x: x.cs <- (x - mean(x)) / (2*sd(x)). However, it is instead easier to use the
CenterScale function provided in LaplacesDemon.

� Do not forget to reparameterize any bounded parameters in the Model function to be
real-valued in the parm vector.

� MCMC is a stochastic method of numerical approximation, and as such, results may
differ with each run due to the use of pseudo-random number generation. It is good
practice to set a seed so that each update of the model may be reproduced. Here is an
example in R: set.seed(666).

Byron Hall 27

� Once a model has been specified in the Model function, it may be tempting to specify a
large number of iterations and thinning in the LaplacesDemon function, and simply let
the model update a long time, hoping for convergence. Instead, it is wise to begin with
few iterations such as Iterations=20, set Adaptive=0 (preventing adaptation), and set
Thinning=1. User-error in specifying the Model function will be frustrating otherwise.

� As model complexity increases, the number of parameters increases, and as initial values
are further from high-probability regions, the initial acceptance rate may be very low.
If the previous general suggestion was successful, but the aceptance rate was zero, then
update the model again, but for more iterations. The goal here is to verify that proposals
are accepted without problems before attempting an “actual” model update.

� After studying updates with few iterations, the first “actual” update should be long
enough that proposals are accepted (the acceptance rate is not zero), adaptation begins
to occur, and that enough iterations occur after the first adaptation to allow the user to
study the adaptation. In the supplied example, adaptation was allowed to begin at the
900th iteration (Adaptive=900), but also occurred with Periodicity=10, so every 10th
iteration, adaptation occurred. It is also wise to use delayed rejection to assist with the
acceptance rate when the algorithm may begin far from its solution, so set DR=1.

� If adaptation does not seem to improve estimation or the initial movement in the
chains is worse than expected, then consider optimizing the initial values with the
LaplaceApproximation function, changing the initial values, or setting all initial val-
ues equal to zero so the LaplacesDemon function will use the LaplaceApproximation

function. In MCMC, initial values are most effective when the starting points are close
to the target distributions (though, if the target distributions were known a priori, then
there would be little point in much of this). When initial values are far enough away from
the target distributions to be in low-probability regions, the algorithms (both Laplace
Approximation and MCMC) may take longer than usual. The MCMC algorithms herein
will struggle more as the proposal covariance matrix approaches near-singularity. In ex-
treme examples, it is possible for the proposal covariance matrix to become singular,
which will stop Laplace’s Demon. If there is no information available to make a better
selection, then randomize the initial values and use LaplaceApproximation. Centered
and scaled predictors also help by essentially standardizing the possible range of the
target distributions.

� If Laplace’s Demon exhibits an unreasonably low acceptance rate (say, arbitrarily, lower
than 15%, but greater than 0%) and is having a hard time exploring (but is still able
to explore) after significant iterations, then investigate the latest proposal covariance
matrix by entering Fit$Covar. Chances are that the elements of the diagonal, the
variances, are large. In this case, it may be best to set Covar=NULL for the next time it
continues to update, which will begin by default with a scaled identity matrix that should
get more movement in the chains. As is usual practice, the latest sampled values should
also replace the initial values, so it begins from the last update, but with larger proposal
variances. The chains will mix better the closer they get to their target distributions.
The user can confirm that Laplace’s Demon is making progress and moving overall in the
right direction by observing the trace-plots of the deviance, or better yet, the logarithm
of the unnormalized joint posterior density. If the deviance is decreasing and the joint

28 LaplacesDemon

posterior is increasing run after run, then the model is continuously fitting better and
better, and one possible sign of convergence will be when the deviance and the joint
posterior seem to become stationary or no longer show a trend.

� If Laplace’s Demon is exploring areas of the state space that the user knows a priori
should not be explored, then the parameters may be constrained in the Model function
before being passed back to the LaplacesDemon function. Simply change the parameter
of interest as appropriate and place the constrained value back in the parm vector.

� Demonic Suggestion is intended as an aid, not an infallible replacement for criti-
cal thinking. As with anything else, its suggestions are based on assumptions, and
it is the responsibility of the user to check those assumptions. For example, the
Geweke.Diagnostic may indicate stationarity (lack of a trend) when it does not exist,
and this most likely occurs when too few thinned samples remain. Or, the Demonic

Suggestion may indicate that the next update may need to run for a million iterations
in a complex model, requiring weeks to complete. Is this really best for the user?

� Use a two-phase approach with Laplace’s Demon, where the first phase consists of using
the AM or DRAM algorithm to achieve stationary samples that seem to have converged
to the target distributions (convergence can never be determined with MCMC, but some
instances of non-convergence can be observed). Once it is believed that convergence
has occurred, continue Laplace’s Demon with Adaptive=0 so that adaptation will not
occur. The final samples should again be checked for signs of non-convergence and, if
satisfactory, used for inference.

� The desirable number of final, thinned samples for inference depends on the required
precision of the inferential goal. A good, general goal is to end up with 1,000 thinned
samples (Gelman et˜al. 2004, p. 295), where the ESS is at least 100 (and more is
desirable).

� Disagreement exists in MCMC literature as to whether to update one, long chain (Geyer
1992), or multiple, long chains with different, randomized initial values (Gelman and
Rubin 1992). Laplace’s Demon is not designed to simultaneously update multiple chains.
Nonetheless, if multiple chains are desired, then Laplace’s Demon can be updated a series
of times, each beginning with different initial values, until multiple output objects of
class demonoid exist with stationary samples, if time allows.

10. Independence and Observability

For the user, one set of advantages of Laplace’s Demon compared to many other available
methods is that it was designed with independence and observability in mind. By indepen-
dence, it is meant that a goal was to minimize dependence on other software. Laplace’s
Demon is performed completely within base R (though of course the LaplacesDemon package
is required). A goal is to provide a complete, Bayesian environment. From personal experi-
ence, I’ve used multiple packages to achieve goals before, and have been trapped when one of
those packages failed to keep pace with other changes.

Byron Hall 29

Common Bayesian probability distributions (such as Dirichlet, multivariate normal, Wishart,
and others, as well as truncated forms of distributions) have been included in LaplacesDemon
so the user does not have to load numerous R packages. All functions in Laplace’s Demon are
written entirely in R, so the user can easily observe or manipulate the algorithm or functions.
For example, to print the code for LaplacesDemon to the R console, simply enter:

> LaplacesDemon

11. Details

The LaplacesDemon package uses two broad types of numerical approximation algorithms:
Laplace Approximation and Markov chain Monte Carlo (MCMC). Each are described below,
but MCMC is emphasized.

11.1. Laplace Approximation

The Laplace Approximation or Laplace Method is a family of asymptotic techniques used to
approximate integrals. Laplace’s method seems to accurately approximate uni-modal poste-
rior moments and marginal posterior distributions in many cases. Since it is not applicable
in all cases, it is recommended here that Laplace Approximation is used cautiously in its own
right, or preferably, it is used before MCMC.

After introducing the Laplace Approximation (Laplace 1774, p. 366–367), a proof was pub-
lished later (Laplace 1814) as part of a mathematical system of inductive reasoning based on
probability. Laplace used this method to approximate posterior moments.

Since its introduction, the Laplace Approximation has been applied successfully in many
disciplines. In the 1980s, the Laplace Approximation experienced renewed interest, espe-
cially in statistics, and some improvements in its implementation were introduced (Tierney
and Kadane 1986; Tierney, Kass, and Kadane 1989). Only since the 1980s has the Laplace
Approximation been seriously considered by statisticians in practical applications.

There are many variations of Laplace Approximation, with an effort toward replacing Markov
chain Monte Carlo (MCMC) algorithms as the dominant form of numerical approximation in
Bayesian inference. The run-time of Laplace Approximation is a little longer than Maximum
Likelihood Estimation (MLE), and much shorter than MCMC (Azevedo-Filho and Shachter
1994). In the LaplacesDemon package, Laplace Approximation may iterate faster or slower
than MCMC, so this is not the fastest possible implementation of Laplace Approximation.
Laplace Approximation extends MLE, but shares similar limitations, such as its asymptotic
nature with respect to sample size. Bernardo and Smith (2000) note that Laplace Approx-
imation is an attractive numerical approximation algorithm, and will continue to develop,
though it currently works best with few parameters.

The LaplaceApproximation function may be called by the user before using LaplacesDemon,
or LaplacesDemon may call this function if all initial values are zero. Chasing convergence
with LaplaceApproximation may be time-consuming and unimportant. The goal, instead,
is to improve the logarithm of the unnormalized joint posterior density so that it is easier
for the LaplacesDemon function to begin updating the parameters in search of the target

30 LaplacesDemon

distributions. This can be difficult when the initial values are in low-probability regions, and
can cause unreasonably low acceptance rates.

LaplaceApproximation seeks a global maximum of the logarithm of the unnormalized joint
posterior density by taking steps proportional to an adaptive scale of the approximate gradi-
ent. This portion of the LaplaceApproximation function uses a gradient ascent algorithm,
and is called a gradient descent or steepest descent algorithm elsewhere for minimization
problems. Laplace’s Demon uses the LaplaceApproximation algorithm to optimize initial
values, estimate covariance, and save time for the user, though it is used only when sample
size is at least five times the number of parameters or initial values.

This algorithm assumes that the logarithm of the unnormalized joint posterior density is
defined and differentiable. An approximate gradient is taken for each initial value as the
difference in the logarithm of the unnormalized joint posterior density due to a slight increase
versus decrease in the parameter.

At 10 evenly-space times, LaplaceApproximation attempts several step sizes, which are also
called rate parameters in other literature, and selects the best step size from a set of 10 fixed
options. Thereafter, each iteration in which an improvement does not occur, the step size
shrinks, being multiplied by 0.999.

Gradient ascent is criticized for sometimes being relatively slow when close to the maximum,
and its asymptotic rate of convergence is inferior to other methods. However, compared to
other popular optimization algorithms such as Newton-Rhapson, an advantage of the gradi-
ent ascent is that it works in infinite dimensions, requiring only sufficient computer memory.
Although Newton-Rhapson converges in fewer iterations, calculating the inverse of the neg-
ative Hessian matrix of second-derivatives is more computationally expensive and subject to
singularities. Therefore, gradient ascent takes longer to converge, but is more generalizable.

After LaplaceApproximation finishes, due either to early convergence or completing the
number of specified iterations, it approximates the Hessian matrix of second derivatives, and
attempts to calculate the covariance matrix by taking the inverse of the negative of this
matrix. If successful, then this covariance matrix may be passed to LaplacesDemon, and
the diagonal of this matrix is the variance of the parameters. If unsuccessful, then a scaled
identity matrix is returned, and each parameter’s variance will be 1.

11.2. Markov Chain Monte Carlo

Although the LaplacesDemon function may be assisted by Laplace Approximation, Laplace’s
Demon mainly accomplishes numerical approximation with Markov chain Monte Carlo (MCMC)
algorithms. There are a large number of MCMC algorithms, too many to review here. Pop-
ular families (which are often non-distinct) include Gibbs sampling, Metropolis-Hastings,
Random-Walk Metropolis (RWM), slice sampling, and many others, including hybrid algo-
rithms. RWM was developed first (Metropolis, Rosenbluth, M.N., and Teller 1953), and
Metropolis-Hastings was a generalization of RWM (Hastings 1970). All MCMC algorithms
are known as special cases of the Metropolis-Hastings algorithm. Regardless of the algorithm,
the goal in Bayesian inference is to maximize the unnormalized joint posterior distribution
and collect samples of the target distributions, which are marginal posterior distributions,
later to be used for inference.

While designing Laplace’s Demon, the primary goal in numerical approximation was gener-
alization. The most generalizable MCMC algorithm is the Metropolis-Hastings (MH) gener-

Byron Hall 31

alization of the RWM algorithm. The MH algorithm extended RWM to include asymmetric
proposal distributions. Having no need of asymmetric proposals, Laplace’s Demon uses varia-
tions of the original RWM algorithm, which use symmetric proposal distributions, specifically
Gaussian proposals. For years, the main disadvantage of the RWM and MH algorithms was
that the proposal variance (see below) had to be tuned manually, and therefore other MCMC
algorithms have become popular because they do not need to be tuned.

Gibbs sampling became popular for Bayesian inference, though it requires conditional sam-
pling of conjugate distributions, so it is precluded from non-conjugate sampling in its purest
form. Gibbs sampling also suffers under high correlations (Gilks and Roberts 1996). Due to
these limitations, Gibbs sampling is less generalizable than RWM. Slice sampling samples a
distribution by sampling uniformly from the region under the plot of its density function, and
is more appropriate with bounded distributions that cannot approach infinity.

There are valid ways to tune the RWM algorithm as it updates. This is known by many
names, including adaptive Metropolis and adaptive MCMC, among others. A brief discussion
follows of RWM and its adaptive variants.

Block Updating

Usually, there is more than one target distribution, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once.
Block updating refers to splitting a multivariate vector into groups called blocks, so each
block may be treated differently. A block may contain one or more variables. Advantages
of block updating are that a different MCMC algorithm may be used for each block (or
variable, for that matter), creating a more specialized approach, and the acceptance of a
newly proposed state is likely to be higher than sampling from all target distributions at once
in high dimensions. Disadvantages of block updating are that correlations probably exist
between variables between blocks, and each block is updated while holding the other blocks
constant, ignoring these correlations of variables between blocks. Without simultaneously
taking everything into account, the algorithm may converge slowly or never arrive at the
proper solution. Also, as the number of blocks increases, more computation is required,
which slows the algorithm. In general, block updating allows a more specialized approach at
the expense of accuracy, generalization, and speed. Laplace’s Demon avoids block updating,
though this increases the importance that the initial values are not in low-probability regions,
and may cause Laplace’s Demon to have chains that are slow to begin moving.

Random-Walk Metropolis

In MCMC algorithms, each iterative estimate of a parameter is part of a changing state.
The succession of states or iterations constitutes a Markov chain when the current state
is influenced only by the previous state. In random-walk Metropolis (RWM), a proposed
future estimate, called a proposal8 or candidate, of the joint posterior density is calculated,
and a ratio of the proposed to the current joint posterior density, called α, is compared to
a random number drawn uniformly from the interval (0,1). In practice, the logarithm of

8Laplace’s Demon allows the user to constrain proposals in the Model function. Laplace’s Demon generates
a proposal vector, which is passed to the Model function in the parm vector. In the Model function, the user
may constrain the proposal to prevent the sampler from exploring certain areas of the state space by altering
the proposed values and placing them back into the parm vector, which will be passed back to Laplace’s Demon.

32 LaplacesDemon

the unnormalized joint posterior density is used, so log(α) is the proposal density minus the
current density. The proposed state is accepted, replacing the current state with probability 1
when the proposed state is an improvement over the current state, and may still be accepted
if the logarithm of a random draw from a uniform distribution is less than log(α). Otherwise,
the proposed state is rejected, and the current state is repeated so that another proposal may
be estimated at the next iteration. By comparing log(α) to the log of a random number when
log(α) is not an improvement, random-walk behavior is included in the algorithm, and it is
possible for the algorithm to backtrack while it explores.

Random-walk behavior is desirable because it allows the algorithm to explore, and hopefully
avoid getting trapped in undesirable regions. On the other hand, random-walk behavior is
undesirable because it takes longer to converge to the target distribution while the algorithm
explores. The algorithm generally progresses in the right direction, but may periodically
wander away. Such exploration may uncover multi-modal target distributions, which other
algorithms may fail to recognize, and then converge incorrectly. With enough iterations,
RWM is guaranteed theoretically to converge to the correct target distribution, regardless of
the starting point of each parameter, provided the proposal variance for each proposal of a
target distribution is sensible.

Multiple parameters usually exist, and therefore correlations may occur between the param-
eters. All MCMC algorithms in Laplace’s Demon are modified to attempt to estimate multi-
variate proposals, thereby taking correlations into account through a covariance matrix. If a
failure is experienced in attempting to estimate multivariate proposals, or if the acceptance
rate is less than 5%, then Laplace’s Demon temporarily resorts to single-component propos-
als by updating one randomly-selected parameter, and will continue to attempt to return to
multivariate proposals at each iteration.

Throughout the RWM algorithm, the proposal covariance or variance remains fixed. The
user may enter a vector of proposal variances or a proposal covariance matrix, and if neither
is supplied, then Laplace’s Demon estimates both before it begins, based on the number of
variables.

The acceptance or rejection of each proposal should be observed at the completion of the
RWM algorithm as the acceptance rate, which is the number of acceptances divided by the
total number of iterations. If the acceptance rate is too high, then the proposal variance or
covariance is too small. In this case, the algorithm will take longer than necessary to find the
target distribution and the samples will be highly autocorrelated. If the acceptance rate is too
low, then the proposal variance or covariance is too large, and the algorithm is ineffective at
exploration. In the worst case scenario, no proposals are accepted and the algorithm fails to
move. Under theoretical conditions, the optimal acceptance rate for a sole, independent and
identically distributed (IID), Gaussian, marginal posterior distribution is 0.44 or 44%. The
optimal acceptance rate for an infinite number of distributions that are IID and Gaussian is
0.234 or 23.4%.

Delayed Rejection Metropolis

The Delayed Rejection Metropolis (DRM or DR) algorithm is a RWM with one, small twist.
Whenever a proposal is rejected, the DRM algorithm will try one or more alternate pro-
posals, and correct for the probability of this conditional acceptance. By delaying rejection,
autocorrelation in the chains may be decreased, and the algorithm is encouraged to move.

Byron Hall 33

Currently, Laplace’s Demon will attempt one alternate proposal when using the DRAM (see
below) or DRM algorithm. The additional calculations may slow each iteration of the algo-
rithm in which the first set of proposals is rejected, but it may also converge faster. For more
information on DRM, see Mira (2001).

DRM may be considered to be an adaptive MCMC algorithm, because it adapts the proposal
based on a rejection. However, DRM does not violate the Markov property (see below),
because the proposal is based on the current state. For the purposes of Laplace’s Demon,
DRM is not considered to be an adaptive MCMC algorithm, because it is not adapting to
the target distribution by considering previous states in the Markov chain, but merely makes
more attempts from the current state. DRM is rarely suggested by Laplace’s Demon, though
the combination of DRM and AM, called DRAM (see below), is suggested frequently.

Laplace’s Demon also temporarily shrinks the proposal covariance arbitrarily by 50% for
delayed rejection. A smaller proposal covariance is more likely to be accepted, and the goal
of delayed rejection is to increase acceptance. In the long-term, a proposal covariance that is
too small is undesirable, and so it is only used in this case to assist acceptance.

Adaptive Metropolis

In traditional, non-adaptive RWM, the Markov property is satisfied, creating valid Markov
chains, but it is difficult to manually optimize the proposal variance or covariance, and it is
crucial that it is optimized for good mixing of the Markov chains. Adaptive MCMC may
be used to automatically optimize the proposal variance or covariance based on the history
of the chains, though this violates the Markov property, which declares the proposed state
is influenced only by the current state9. To retain the Markov property, and therefore valid
Markov chains, a two-phase approach may be used, in which adaptive MCMC is used in the
first phase to arrive at the target distributions while violating the Markov property, and non-
adaptive DRM or RWM is used in the second phase to sample from the target distributions
for inference, while possessing the Markov property.

There are too many adaptive MCMC algorithms to review here. All of them adapt the pro-
posal variance to improve mixing. Some adapt the proposal variance to also optimize the
acceptance rate (which becomes difficult as dimensionality increases), minimize autocorrela-
tion, or optimize a scale factor. Laplace’s Demon uses a variation of the Adaptive Metropolis
(AM) algorithm of Haario et˜al. (2001).

Given the number of dimensions (d) or parameters, the optimal scale of the proposal variance,
also called the jumping kernel, has been reported as 2.42/d10 based on the asymptotic limit
of infinite-dimensional Gaussian target distributions that are independent and identically-
distributed (Gelman, Roberts, and Gilks 1996b). In applied settings, each problem is dif-
ferent, so the amount of correlation varies between variables, target distributions may be
non-Gaussian, the target distributions may be non-IID, and the scale should be optimized.
Laplace’s Demon uses a scale that is accurate to more decimals: 2.3812042/d. There are
algorithms in statistical literature that attempt to optimize this scale, and it is hoped that
these algorithms will be included in Laplace’s Demon in the future.

Haario et˜al. (2001) tested their algorithm with up to 200 dimensions or parameters, so it is

9Haario, Saksman, and Tamminen (2001) assert that the chains remain ergodic in the limit as the amount
of change in the adaptations should decrease to zero as the chains approach the target distributions.

10The optimal proposal standard deviation in this case is approximately 2.4/
√
d.

34 LaplacesDemon

capable of large-scale Bayesian inference. The version in Laplace’s Demon should be capable
of more dimensions than the AM algorithm as it was presented, because when Laplace’s
Demon experiences an error in multivariate AM, or when the acceptance rate is less than 5%,
it defaults to single-component adaptive proposals (Haario, Saksman, and Tamminen 2005).
Although single-component adaptive proposals should take more iterations to converge, the
algorithm is limited in dimension only by the RAM of the computer.

For multivariate adaptive tuning, the formula across K parameters and t iterations is:

Σ∗ = [φKcov(Θ1:t,1:K)] + (φKCIK)

where φK is the scale according to K parameters, C is a small (1.0E-5) constant to ensure the
proposal covariance matrix is positive definite (does not have zero or negative variance on the
diagonal), and IK is a K x K identity matrix. The initial proposal covariance matrix, when
none is provided, defaults to the scaling component multiplied by its identity matrix: φKIK .

For single-component adaptive tuning, the formula across K parameters and t iterations is:

σ∗2k = φkvar(Θ1:t,k) + φkC

Each element in the initial vector of proposal variances is set equal to the asymptotic scale
according to its dimensions: φk.

In both the multivariate and single-component cases, the AM algorithm begins with a fixed
proposal variance or covariance that is either estimated internally or supplied by the user.
Next, the algorithm begins, and it does not adapt until the iteration is reached that is specified
by the user in the Adaptive argument of the LaplacesDemon function. Then, the algorithm
will adapt with every n iterations according to the Periodicity argument. Therefore, the user
has control over when the AM algorithm begins to adapt, and how often it adapts. The value
of the Adaptive argument in Laplace’s Demon is chosen subjectively by the user according
to their confidence in the accuracy of the initial proposal covariance or variance. The value
of the Periodicity argument is chosen by the user according to their patience: when the
value is 1, the algorithm will adapt continuously, which will be slower to calculate. The AM
algorithm adapts the proposal covariance or variance according to the observed covariance or
variance in the entire history of all parameter chains, as well as the scale factor.

As recommended by Haario et˜al. (2001), there are two tricks that may be used to assist
the AM algorithm in the beginning. Although Laplace’s Demon does not use the suggested
“greedy start”method (and will instead use Laplace Approximation whensample size permits),
it uses the second suggested trick of shrinking the proposal as long as the acceptance rate
is less than 5%, and there have been at least five acceptances. Haario et˜al. (2001) suggest
loosely that if “it has not moved enough during some number of iterations, the proposal could
be shrunk by a constant factor”. For each iteration that the acceptance rate is less than 5%
and that the AM algorithm is used but the current iteration is prior to adaptation, Laplace’s
Demon multiplies the proposal covariance or variance by (1 - 1/Iterations). Over pre-adaptive
time, this encourages a smaller proposal covariance or variance to increase the acceptance rate
so that when adaptation begins, the observed covariance or variance of the chains will not be
constant, and then shrinkage will cease and adaptation will take it from there.

Byron Hall 35

Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm is merely the combination
of both DRM (or DR) and AM (Haario, Laine, Mira, and Saksman 2006). DRAM has been
demonstrated as robust in extreme situations where DRM or AM fail separately. Haario et˜al.
(2006) present an example involving ordinary differential equations in which least squares
could not find a stable solution, and DRAM did well.

11.3. Afterward

Once the model is updated with the LaplacesDemon function, the Geweke.Diagnostic func-
tion of Geweke (1992) is iteratively applied to successively smaller tail-sections of the thinned
samples to assess stationarity (or lack of trend). When all parameters are estimated as sta-
tionary beyond a given iteration, the previous iterations are suggested to be considered as
burn-in and discarded. The number of thinned samples is divided into cumulative 10% groups,
and the Geweke.Diagnostic function is applied by beginning with each cumulative group.

The importance of Monte Carlo Standard Error (MCSE) is debated. Here, it is considered
important enough to be one of five main criteria to appease Laplace’s Demon. It is often
recommended that one of several competing batch methods should be used to estimate MCSE,
arguing that the simple method (MCSE = σ/

√
m) is biased and reports less error (where m is

the ESS). I have calculated both the simple method and non-overlapping batch MCSE’s on a
wide range of applied models, and noted just as many cases of the simple method producing
higher MCSE’s as lower MCSE’s. As far as Laplace’s Demon is concerned, the simple method
is used to estimate MCSE, but it is open to debate.

12. Software Comparisons

There is now a wide variety of software to perform MCMC for Bayesian inference. Per-
haps the most common is BUGS, which is an acronym for Bayesian Using Gibbs Sampling
(Lunn, Spiegelhalter, Thomas, and Best 2009). BUGS has several versions. A popular vari-
ant is JAGS, which is an acronym for Just Another Gibbs Sampler (Plummer 2003). The
only other comparisons made here are with some R packages (AMCMC, mcmc, MCMC-
pack, and UMACS) and SAS. Many other R packages use MCMC, but are not intended
as general-purpose MCMC software. Hopefully I have not overlooked any general-purpose
MCMC packages in R.

WinBUGS has been the most common version of BUGS, though it is no longer developed.
BUGS is an intelligent MCMC engine that is capable of numerous MCMC algorithms, but
prefers Gibbs sampling. According to its user manual (Spiegelhalter et˜al. 2003), WinBUGS
1.4 uses Gibbs sampling with full conditionals that are continuous, conjugate, and standard.
For full conditionals that are log-concave and non-standard, derivative-free Adaptive Rejection
Sampling (ARS) is used. Slice sampling is selected for non-log-concave densities on a restricted
range, and tunes itself adaptively for 500 iterations. Seemingly as a last resort, an adaptive
MCMC algorithm is used for non-conjugate, continuous, full conditionals with an unrestricted
range. The standard deviation of the Gaussian proposal distribution is tuned over the first
4,000 iterations to obtain an acceptance rate between 20% and 40%. Samples from the
tuning phases of both Slice sampling and adaptive MCMC are ignored in the calculation of

36 LaplacesDemon

all summary statistics, although they appear in trace-plots.

The current version of BUGS, OpenBUGS, allows the user to specify an MCMC algorithm
from a long list for each parameter (Lunn et˜al. 2009). This is a step forward, overcoming
what is perceived here as an over-reliance on Gibbs sampling. However, if the user does not
customize the selection of the MCMC sampler, then Gibbs sampling will be selected for full
conditionals that are continuous, conjugate, and standard, just as with WinBUGS.

Based on years of almost daily experience with WinBUGS and JAGS, which are excellent
software packages for Bayesian inference, Gibbs sampling is selected too often in these auto-
matic, MCMC engines. An advantage of Gibbs sampling is that the proposals are accepted
with probability 1, so convergence may be faster, whereas the RWM algorithm backtracks due
to its random-walk behavior. Unfortunately, Gibbs sampling is not as generalizable, because
it can function only when certain conjugate distributional forms are known a priori (Gilks
and Roberts 1996). Moreover, Gibbs sampling was avoided for Laplace’s Demon because it
doesn’t perform well with correlated variables or parameters, which usually exist, and I have
been bitten by that bug many times.

The BUGS and JAGS families of MCMC software are excellent. BUGS is capable of several
things that Laplace’s Demon is not. BUGS allows the user to specify the model graphically
as a directed acyclic graph (DAG) in Doodle BUGS. Laplace’s Demon limits the user to one
chain per parameter per update, where BUGS can update multiple chains per parameter
simultaneously. Lastly, many textbooks in several fields have been written that are full of
WinBUGS examples.

The four MCMC algorithms in Laplace’s Demon are generalizable, and generally robust to
correlation between variables or parameters. The disadvantages are that convergence is slower
and RWM may get stuck in regions of low probability. The advantages, however, are faster
convergence when correlations are high, and more confidence in the results.

At the time this article was written, the AMCMC package in R is unavailable on CRAN, but
may be downloaded from the author’s website11. This download is best suited for a Linux,
Mac, or UNIX operating system, because it requires the gcc C compiler, which is unavailable
in Windows. It performs adaptive Metropolis-within-Gibbs (Roberts and Rosenthal 2007),
and uses C language for significantly faster sampling. Metropolis-within-Gibbs is not as
generalizable as adaptive MCMC. Otherwise, if the user wishes to see the code of the AMCMC
sampler, then the user must also be familiar with C language.

Also in R, the mcmc package (Geyer 2010) offers RWM with multivariate Gaussian proposals
and allows batching, as well as a simulated tempering algorithm, but it does not have any
adaptive algorithms.

The MCMCpack package (Martin, Quinn, and Park 2011) in R takes a canned-function
approach to RWM, which is convenient if the user needs the specific form provided, but is
otherwise not generalizable. General-purpose RWM is included, but adaptive algorithms are
not. It also offers the option of Laplace Approximation to optimize initial values, though
the algorithm is evaluated in optim, which has not performed well in my testing of Laplace
Approximations.

At the time this article was written, the UMACS package (Kerman 2007) has been removed
from CRAN. It became outdated due to lack of interest, but did include an adaptive MCMC

11AMCMC is available from J. S. Rosenthal’s website at http://www.probability.ca/amcmc/

http://www.probability.ca/amcmc/

Byron Hall 37

algorithm as well as Gibbs sampling.

In SAS 9.2 (SAS Institute Inc. 2008), an experimental procedure called PROC MCMC has been
introduced. It is undeniably a rip-off of BUGS (including its syntax), though OpenBUGS is
much more powerful, tested, and generalizable. Since SAS is proprietary, the user cannot see
or manipulate the source code, and should expect much more from it than OpenBUGS or any
open-source software, given the absurd price.

13. Large Data Sets and Speed

An advantage of Laplace’s Demon compared to other MCMC software is that the model is
specified in a way that takes advantage of R’s vectorization. BUGS and JAGS, for example,
require models to be specified so that each record of data is processed one by one inside a
‘for loop’, which significantly slows updating with larger data sets. In contrast, Laplace’s
Demon avoids ‘for loops’ wherever possible12. For example, a data set of 100,000 rows and 16
columns (the dependent variable, a column vector of 1’s for the intercept, and 14 predictors)
was updated 1,000 times with Adaptive=2, DR=0, and Periodicity=10 in 1.55 minutes by
Laplace’s Demon, according to a simple, linear regression13. It was nowhere near convergence,
but updating the same model with the same data for 1,000 iterations took 45.55 minutes in
JAGS.

However, the speed with which an iteration is estimated is not a good, overall criterion of
performance. For example, a Gibbs sampling algorithm with uncorrelated target distributions
should converge in fewer iterations than a random-walk algorithm, such as those used in
Laplace’s Demon. Depending on circumstances, Laplace’s Demon may handle larger data
sets better, and it may estimate each iteration faster, but it may also take more iterations to
converge.

However, with small data sets, other MCMC software (AMCMC is a good example) can be
faster than Laplace’s Demon, if it is programmed in a faster language such as Component
Pascal, C, or C++. I have not studied all MCMC algorithms in R, but most are probably pro-
grammed in C and called from R. And Laplace’s Demon could be much faster if programmed
in C as well.

When the non-adaptive algorithm updates in Laplace’s Demon, the expected speed of an
iteration should not differ depending on how many iterations it has previously updated.
However, the adaptive algorithm will slow as iterations are updated, because each time it
adapts, it is adapting to the covariance of the entire history of the chains. As the history
increases, the calculations take longer to complete, and the expected speed of an adaptive
iteration decreases, compared to earlier adaptive iterations. If time is of the essence and the
algorithm needs to be adaptive, then it may be best to make multiple, shorter updates in
place of one, longer update.

14. Laplace’s Demon Predicts Its Own Future

12However, when ‘for loops’ must be used, Laplace’s Demon is typically slower than BUGS. For example,
models with multivariate normal distributions must generally use a ‘for loop’.

13These updates were performed on a 2010 System76 Pangolin Performance laptop with 64-bit Debian Linux
and 8GB RAM.

38 LaplacesDemon

Following are some predictions of the future of Laplace’s Demon:

1. Additional MCMC algorithms will be explored and considered for inclusion.

2. The MCMC algorithms will be attempted to be coded in C++ for faster sampling, but
will remain available in R code. The user will have the option to run the algorithm in R
or C++, probably with an additional command such as C=TRUE in the LaplacesDemon

function.

3. The “Examples” vignette will grow as numerous examples of methods are included.

4. Everything else will be expanded. Posterior predictive checks will be attempted to be
expanded to accommodate a wider variety of methods, and more checks and plotting
options will be included. More methods will be included for calculating the logarithm of
the marginal likelihood. Attempts will be made to make LaplaceApproximation faster.

The LaplacesDemon package is a significant contribution toward Bayesian inference in R. In
turn, contributions toward the development of Laplace’s Demon are welcome. Please send
an email to statisticat@gmail.com with constructive criticism, reports of software bugs, or
offers to contribute to Laplace’s Demon.

References

Azevedo-Filho A, Shachter R (1994). “Laplace’s Method Approximations for Probabilistic
Inference in Belief Networks with Continuous Variables.” In R˜Mantaras, D˜Poole (eds.),
Uncertainty in Artificial Intelligence, pp. 28–36. Morgan Kauffman, San Francisco, CA.

Bayes T, Price R (1763). “An Essay Towards Solving a Problem in the Doctrine of Chance.
By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, MA.
and F.R.S.” Philosophical Transactions of the Royal Society of London, 53, 370–418.

Bernardo J, Smith A (2000). Bayesian Theory. John Wiley & Sons, West Sussex, England.

Crawley M (2007). The R Book. John Wiley & Sons Ltd, West Sussex, England.

Gelfand A (1996). “Model Determination Using Sampling Based Methods.” In W˜Gilks,
S˜Richardson, D˜Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 145–
161. Chapman & Hall, Boca Raton, FL.

Gelman A (2008). “Scaling Regression Inputs by Dividing by Two Standard Deviations.”
Statistics in Medicine, 27, 2865–2873.

Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman
& Hall, Boca Raton, FL.

Gelman A, Meng X, Stern H (1996a). “Posterior Predictive Assessment of Model Fitness via
Realized Discrepancies.” Statistica Sinica, 6, 773–807.

Gelman A, Roberts G, Gilks W (1996b). “Efficient Metropolis Jumping Rules.” Bayesian
Statistics, 5, 599–608.

mailto:statisticat@gmail.com

Byron Hall 39

Gelman A, Rubin D (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472.

Geweke J (1992). “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation
of Posterior Moments.” Bayesian Statistics, 4, 1–31.

Geyer C (1992). “Practical Markov Chain Monte Carlo (with Discussion).” Statistical Science,
7(4), 473–511.

Geyer C (2010). mcmc: Markov Chain Monte Carlo. R package version 0.8, URL http:

//cran.r-project.org/web/packages/mcmc/index.html.

Gilks W, Roberts G (1996). “Strategies for Improving MCMC.” In W˜Gilks, S˜Richardson,
D˜Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 89–114. Chapman &
Hall, Boca Raton, FL.

Haario H, Laine M, Mira A, Saksman E (2006). “DRAM: Efficient Adaptive MCMC.” Sta-
tistical Computing, 16, 339–354.

Haario H, Saksman E, Tamminen J (2001). “An Adaptive Metropolis Algorithm.” Bernoulli,
7(2), 223–242.

Haario H, Saksman E, Tamminen J (2005). “Componentwise Adaptation for High Dimensional
MCMC.” Computational Statistics, 20(2), 265–274.

Hall B (2011). LaplacesDemon: Software for Bayesian Inference. R package ver-
sion 11.04.04, URL http://cran.r-project.org/web/packages/LaplacesDemon/index.

html.

Hastings W (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their Appli-
cations.” Biometrika, 57(1), 97–109.

Kerman J (2007). UMACS: Universal Markov Chain Sampler. R package version 0.924,
URL http://www.R-project.org/package=UMACS.

Laplace P (1774). “Memoire sur la Probabilite des Causes par les Evenements.” l’Academie
Royale des Sciences, 6, 621–656. English translation by S.M. Stigler in 1986 as “Memoir
on the Probability of the Causes of Events” in Statistical Science, 1(3), 359–378.

Laplace P (1812). Theorie Analytique des Probabilites. Courcier, Paris. Reprinted as“Oeuvres
Completes de Laplace”, 7, 1878–1912. Paris: Gauthier-Villars.

Laplace P (1814). “Essai Philosophique sur les Probabilites.” English translation in Truscott,
F.W. and Emory, F.L. (2007) from (1902) as “A Philosophical Essay on Probabilities”.
ISBN 1602063281, translated from the French 6th ed. (1840).

Lunn D, Spiegelhalter D, Thomas A, Best N (2009). “The BUGS Project: Evolution, Critique,
and Future Directions.” Statistics in Medicine, 28, 3049–3067.

Martin A, Quinn K, Park J (2011). MCMCpack: Markov chain Monte Carlo (MCMC)
Package. R package version 1.0-10, URL http://cran.r-project.org/web/packages/

MCMCpack/index.html.

http://cran.r-project.org/web/packages/mcmc/index.html
http://cran.r-project.org/web/packages/mcmc/index.html
http://cran.r-project.org/web/packages/LaplacesDemon/index.html
http://cran.r-project.org/web/packages/LaplacesDemon/index.html
http://www.R-project.org/package=UMACS
http://cran.r-project.org/web/packages/MCMCpack/index.html
http://cran.r-project.org/web/packages/MCMCpack/index.html

40 LaplacesDemon

Metropolis N, Rosenbluth A, MN R, Teller E (1953). “Equation of State Calculations by Fast
Computing Machines.” Journal of Chemical Physics, 21, 1087–1092.

Mira A (2001). “On Metropolis-Hastings Algorithms with Delayed Rejection.” Metron,
LIX(3–4), 231–241.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using
Gibbs Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statis-
tical Computing (DSC 2003). March 20-22, Vienna, Austria. ISBN 1609–395X.

R Development Core Team (2011). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

Roberts G, Rosenthal J (2001). “Optimal Scaling for Various Metropolis-Hastings Algo-
rithms.” Statistical Science, 16, 351–367.

Roberts G, Rosenthal J (2007). “Examples of Adaptive MCMC.” Computational Statistics
and Data Analysis, 51, 5467–5470.

SAS Institute Inc (2008). SAS/STAT 9.2 User’s Guide. Cary, NC: SAS Institute Inc.

Spiegelhalter D, Thomas A, Best N, Lunn D (2003). WinBUGS User Manual, Version 1.4.
MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and
Public Health, Imperial College School of Medicine, UK. http://www.mrc-bsu.cam.ac.

uk/bugs.

Tierney L, Kadane J (1986). “Accurate Approximations for Posterior Moments and Marginal
Densities.” Journal of the American Statistical Association, 81(393), 82–86.

Tierney L, Kass R, Kadane J (1989). “Fully Exponential Laplace Approximations to Ex-
pectations and Variances of Nonpositive Functions.” Journal of the American Statistical
Association, 84(407), 710–716.

Affiliation:

Byron Hall
STATISTICAT, LLC
Farmington, CT
E-mail: statisticat@gmail.com
URL: http://www.statisticat.com/laplacesdemon.html

http://www.R-project.org
http://www.mrc-bsu.cam.ac.uk/bugs
http://www.mrc-bsu.cam.ac.uk/bugs
mailto:statisticat@gmail.com
http://www.statisticat.com/laplacesdemon.html

	Installation
	Data
	Specifying a Model
	Initial Values
	Laplace's Demon
	Summarizing Output
	Plotting Output
	Posterior Predictive Checks
	General Suggestions
	Independence and Observability
	Details
	Laplace Approximation
	Markov Chain Monte Carlo
	Block Updating
	Random-Walk Metropolis
	Delayed Rejection Metropolis
	Adaptive Metropolis
	Delayed Rejection Adaptive Metropolis

	Afterward

	Software Comparisons
	Large Data Sets and Speed
	Laplace's Demon Predicts Its Own Future

