
LaplacesDemon: A Complete Environment for

Bayesian Inference within R

Statisticat, LLC

Abstract

LaplacesDemon, usually referred to as Laplace’s Demon, is a contributed R package
for Bayesian inference, and is freely available on the Comprehensive R Archive Network
(CRAN). Laplace’s Demon is a complete environment for Bayesian inference. The user
may build any kind of probability model with a user-specified model function. The model
may be updated with Laplace Approximation, numerous MCMC algorithms, and PMC.
After updating, a variety of facilities are available, including MCMC diagnostics, posterior
predictive checks, and validation. Laplace’s Demon seeks to be generalizable and user-
friendly to Bayesians, especially Laplacians.

Keywords:˜Adaptive, AM, Bayesian, Delayed Rejection, DR, DRAM, DRM, DEMC, En-
semble, Gradient Ascent, HARM, Hamiltonian, High Performance Computing, Hit-And-
Run, HMC, HPC, Importance Sampling, INCA, Laplace Approximation, LaplacesDemon,
Laplace’s Demon, Markov chain Monte Carlo, MCMC, Metropolis, Metropolis-within-Gibbs,
No-U-Turn Sampler, NUTS, Optimization, Parallel, R, PMC, Random Walk, Random-Walk,
Resilient Backpropagation, Reversible-Jump, Slice, Statisticat, t-walk.

Bayesian inference is named after Reverend Thomas Bayes (1701-1761) for developing Bayes’
theorem, which was published posthumously after his death (Bayes and Price 1763). This
was the first instance of what would be called inverse probability1.

Unaware of Bayes, Pierre-Simon Laplace (1749-1827) independently developed Bayes’ theo-
rem and first published his version in 1774, eleven years after Bayes, in one of Laplace’s first
major works (Laplace 1774, p. 366–367). In 1812, Laplace introduced a host of new ideas
and mathematical techniques in his book, Theorie Analytique des Probabilites (Laplace 1812).
Before Laplace, probability theory was solely concerned with developing a mathematical anal-
ysis of games of chance. Laplace applied probabilistic ideas to many scientific and practical
problems. Although Laplace is not the father of probability, Laplace may be considered the
father of the field of probability.

1‘Inverse probability’ refers to assigning a probability distribution to an unobserved variable, and is in
essence, probability in the opposite direction of the usual sense. Bayes’ theorem has been referred to as “the
principle of inverse probability”. Terminology has changed, and the term ‘Bayesian probability’ has displaced
‘inverse probability’. The adjective “Bayesian” was introduced by R. A. Fisher as a derogatory term.

2 LaplacesDemon

In 1814, Laplace published his “Essai Philosophique sur les Probabilites”, which introduced a
mathematical system of inductive reasoning based on probability (Laplace 1814). In it, the
Bayesian interpretation of probability was developed independently by Laplace, much more
thoroughly than Bayes, so some“Bayesians”refer to Bayesian inference as Laplacian inference.
This is a translation of a quote in the introduction to this work:

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know all
forces that set nature in motion, and all positions of all items of which nature is
composed, if this intellect were also vast enough to submit these data to analysis,
it would embrace in a single formula the movements of the greatest bodies of
the universe and those of the tiniest atom; for such an intellect nothing would
be uncertain and the future just like the past would be present before its eyes”
(Laplace 1814).

The ‘intellect’ has been referred to by future biographers as Laplace’s Demon. In this quote,
Laplace expresses his philosophical belief in hard determinism and his wish for a computational
machine that is capable of estimating the universe.

This article is an introduction to an R (R Development Core Team 2012) package called
LaplacesDemon (Statisticat LLC. 2013), which was designed without consideration for hard
determinism, but instead with a lofty goal toward facilitating high-dimensional Bayesian
(or Laplacian) inference2, posing as its own intellect that is capable of impressive analysis.
The LaplacesDemon R package is often referred to as Laplace’s Demon. This article guides
the user through installation, data, specifying a model, initial values, updating Laplace’s
Demon, summarizing and plotting output, posterior predictive checks, general suggestions,
discusses independence and observability, high performance computing, covers details of the
algorithms, software comparisons, discusses large data sets and speed, and introduces www.

bayesian-inference.com.

Herein, it is assumed that the reader has basic familiarity with Bayesian inference, numerical
approximation, and R. If any part of this assumption is violated, then suggested sources in-
clude the vignette entitled “Bayesian Inference” that comes with the LaplacesDemon package,
Gelman, Carlin, Stern, and Rubin (2004), and Crawley (2007).

1. Installation

To obtain Laplace’s Demon, simply open R and install the LaplacesDemon package from a
CRAN mirror:

> install.packages("LaplacesDemon")

A goal in developing Laplace’s Demon was to minimize reliance on other packages or software.
Therefore, the usual dep=TRUE argument does not need to be used, because LaplacesDemon
does not depend on anything other than base R. Once installed, simply use the library or

2Even though the LaplacesDemon package is dedicated to Bayesian inference, frequentist inference may be
used instead with the same functions by omitting the prior distributions and maximizing the likelihood.

www.bayesian-inference.com
www.bayesian-inference.com

Statisticat 3

require function in R to activate the LaplacesDemon package and load its functions into
memory:

> library(LaplacesDemon)

2. Data

Laplace’s Demon requires data that is specified in a list3. As an example, there is a data set
called demonsnacks that is provided with the LaplacesDemon package. For no good reason,
other than to provide an example, the log of Calories will be fit as an additive, linear function
of the log of some of the remaining variables. Since an intercept will be included, a vector of
1’s is inserted into design matrix X.

> data(demonsnacks)

> N <- nrow(demonsnacks)

> y <- log(demonsnacks$Calories)

> X <- cbind(1, as.matrix(log(demonsnacks[,c(1,4,10)]+1)))

> J <- ncol(X)

> for (j in 2:J) {X[,j] <- CenterScale(X[,j])}

> mon.names <- c("LP","sigma")

> parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))

> PGF <- function(Data) return(c(rnormv(Data$J,0,10), log(rhalfcauchy(1,25))))

> MyData <- list(J=J, PGF=PGF, X=X, mon.names=mon.names,

+ parm.names=parm.names, y=y)

There are J=4 independent variables (including the intercept), one for each column in design
matrix X. However, there are 5 parameters, since the residual variance, σ2, must be included
as well. The reason why it is called log.sigma will be explained later. Each parameter must
have a name specified in the vector parm.names, and parameter names must be included with
the data. This is using a function called as.parm.names. Also, note that each predictor has
been centered and scaled, as per Gelman (2008). Laplace’s Demon provides a CenterScale

function to center and scale predictors4.

Laplace’s Demon will consider using Laplace Approximation, and part of this consideration
includes determining the sample size. The user must specify the number of observations in
the data as either a scalar n or N. If these are not found by the LaplaceApproximation or
LaplacesDemon functions, then it will attempt to determine sample size as the number of
rows in y or Y.

PGF is an optional, but highly recommended, user-specified function. PGF stands for Parameter-
Generating Function, and is used by the GIV function, where GIV stands for Generating Initial
Values. Although the PGF is not technically data, it is most convenient in the list of data.
When PGF is not specified and GIV is used, initial values are generated randomly without

3Though most R functions use data in the form of a data frame, Laplace’s Demon uses one or more numeric
matrices in a list. It is much faster to process a numeric matrix than a data frame in iterative estimation.

4Centering and scaling a predictor is x.cs <- (x - mean(x)) / (2*sd(x)).

4 LaplacesDemon

respect to prior distributions. To see why PGF was specified as it was, consider the following
sections on specifying a model and initial values.

3. Specifying a Model

Laplace’s Demon is capable of estimating any Bayesian model for which the likelihood is
specified5. To use Laplace’s Demon, the user must specify a model. Let’s consider a linear
regression model, which is often denoted as:

y ∼ N (µ, σ2)

µ = Xβ

The dependent variable, y, is normally distributed according to expectation vector µ and
scalar variance σ2, and expectation vector µ is equal to the inner product of design matrix X
and transposed parameter vector β.

For a Bayesian model, the notation for the residual variance, σ2, has often been replaced
with the inverse of the residual precision, τ−1. Here, σ2 will be used. Prior probabilities are
specified for β and σ (the standard deviation, rather than the variance):

βj ∼ N (0, 1000), j = 1, . . . , J

σ ∼ HC(25)

Each of the J β parameters is assigned a vague6 prior probability distribution that is normally-
distributed according to µ = 0 and σ2 = 1000. The large variance or small precision indicates
a lot of uncertainty about each β, and is hence a vague distribution. The residual standard
deviation σ is half-Cauchy-distributed according to its hyperparameter, scale=25. When
exploring new prior distributions, the user is encouraged to use the is.proper function to
check for prior propriety.

To specify a model, the user must create a function called Model. Here is an example for a
linear regression model:

> Model <- function(parm, Data)

+ {

+ ### Parameters

+ beta <- parm[1:Data$J]

+ sigma <- exp(parm[Data$J+1])

+ ### Log(Prior Densities)

+ beta.prior <- dnormv(beta, 0, 1000, log=TRUE)

5Examples of more than 80 Bayesian models may be found in the “Examples” vignette that comes with the
LaplacesDemon package. Likelihood-free estimation is also possible by approximating the likelihood, such as
in Approximate Bayesian Computation (ABC).

6‘Traditionally, a vague prior would be considered to be under the class of uninformative or non-informative
priors. ’Non-informative’ may be more widely used than ’uninformative’, but here that is considered poor
English, such as saying something is ‘non-correct’ when there’s a word for that . . . ‘incorrect’. In any case,
uninformative priors do not actually exist (Irony and Singpurwalla 1997), because all priors are informative in
some way. These priors are being described here as vague, but not as uninformative.

Statisticat 5

+ sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

+ ### Log-Likelihood

+ mu <- tcrossprod(beta, Data$X)

+ LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))

+ ### Log-Posterior

+ LP <- LL + sum(beta.prior) + sigma.prior

+ Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma),

+ yhat=rnorm(length(mu), mu, sigma), parm=parm)

+ return(Modelout)

+ }

Laplace’s Demon iteratively maximizes the logarithm of the unnormalized joint posterior
density as specified in this Model function. In Bayesian inference, the logarithm of the unnor-
malized joint posterior density is proportional to the sum of the log-likelihood and logarithm
of the prior densities:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

where Θ is a set of parameters, y is the data, ∝ means ‘proportional to’7, p(Θ|y) is the joint
posterior density, p(y|Θ) is the likelihood, and p(Θ) is the set of prior densities.

During each iteration in which Laplace’s Demon is maximizing the logarithm of the unnormal-
ized joint posterior density, Laplace’s Demon passes two arguments to Model: parm and Data,
where parm is short for the set of parameters, and Data is a list of data. These arguments are
specified in the beginning of the function:

Model <- function(parm, Data)

Then, the Model function is evaluated and the logarithm of the unnormalized joint posterior
density is calculated as LP, and returned to Laplace’s Demon in a list called Modelout, along
with the deviance (Dev), a vector (Monitor) of any variables desired to be monitored in
addition to the parameters, yrep (yhat) or replicates of y, and the parameter vector parm.
All arguments must be returned. Even if there is no desire to observe the deviance and any
monitored variable, a scalar must be placed in the second position of the Modelout list, and
at least one element of a vector for a monitored variable. This can be seen in the end of the
function:

LP <- LL + sum(beta.prior) + sigma.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma),

yhat=rnorm(length(mu), mu, sigma), parm=parm)

return(Modelout)

The rest of the function specifies the parameters, log of the prior densities, and calculates the
log-likelihood. Since design matrix X has J=4 column vectors (including the intercept), there
are 4 beta parameters and a sigma parameter for the residual standard deviation.

Since Laplace’s Demon passes a vector of parameters called parm to Model, the function
needs to know which parameter is associated with which element of parm. For this, the vector

7For those unfamiliar with ∝, this symbol simply means that two quantities are proportional if they vary
in such a way that one is a constant multiplier of the other. This is due to an unspecified constant of
proportionality in the equation. Here, this can be treated as ‘equal to’.

6 LaplacesDemon

beta is declared, and then each element of beta is populated with the value associated in
the corresponding element of parm. The reason why sigma is exponentiated will, again, be
explained later.

beta <- parm[1:Data$J]

sigma <- exp(parm[Data$J+1])

To work with the log of the prior densities and according to the assigned names of the
parameters and hyperparameters, they are specified as follows:

beta.prior <- dnormv(beta, 0, 1000, log=TRUE)

sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)

It is important to reparameterize all parameters to be real-valued. For example, a positive-
only parameter such as variance should be allowed to range from −∞ to ∞, and be trans-
formed in the Model function with the exp function, which will force it to positive values.
A parameter θ that needs to be bounded in the model, such as in the interval [1,5], can be
transformed to that range with a logistic function, such as 1+4[exp(θ)/(exp(θ)+1)]. Alterna-
tively, each parameter may be constrained in the Model function, such as with the interval

function. Laplace’s Demon will attempt to increase or decrease the value of each parameter
to maximize LP, without consideration for the distributional form of the parameter. In the
above example, the residual standard deviation sigma receives a half-Cauchy distributed prior
of the form:

σ ∼ HC(25)

In this specification, sigma cannot be negative. By reparameterizing sigma as

sigma <- exp(parm[Data$J+1])

Laplace’s Demon will increase or decrease parm[Data$J+1], which is effectively log(sigma).
Now it is possible for Laplace’s Demon to decrease log(sigma) below zero without causing
an error or violating its half-Cauchy distributed specification.

Finally, everything is put together to calculate LP, the logarithm of the unnormalized joint
posterior density. The expectation vector mu is the inner product of the design matrix, Data$X,
and the transpose of the vector beta. Expectation vector mu, vector Data$y, and scalar sigma
are used to estimate the sum of the log-likelihoods, where:

y ∼ N (µ, σ2)

and as noted before, the logarithm of the unnormalized joint posterior density is:

log[p(Θ|y)] ∝ log[p(y|Θ)] + log[p(Θ)]

mu <- tcrossprod(Data$X, t(beta))

LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE)

LP <- LL + sum(beta.prior) + sigma.prior

Specifying the model in the Model function is the most involved aspect for the user of Laplace’s
Demon. But it has been designed so it is also incredibly flexible, allowing a wide variety of
Bayesian models to be specified.

Statisticat 7

4. Initial Values

Laplace’s Demon requires a vector of initial values for the parameters. Each initial value is
a starting point for the estimation of a parameter. When all initial values are set to zero,
Laplace’s Demon will optimize initial values using a hit-and-run algorithm with adaptive
length in the LaplaceApproximation function. Laplace Approximation is asymptotic with
respect to sample size, so it is inappropriate in this example with a sample size of 39 and 5
parameters. Laplace’s Demon will not use Laplace Approximation when the sample size is
not at least five times the number of parameters. Otherwise, the user may prefer to optimize
initial values in the LaplaceApproximation function before using the LaplacesDemon func-
tion. When Laplace’s Demon receives initial values that are not all set to zero, it will begin
to update each parameter with MCMC.

In this example, there are 5 parameters. With no prior knowledge, it is a good idea either to
randomize each initial value, such as with the GIV function (which stands for “generate initial
values”), or set all of them equal to zero and let the LaplaceApproximation function optimize
the initial values, provided there is sufficient sample size. Here, the LaplaceApproximation

function will be introduced in the LaplacesDemon function, so the first 4 parameters, the
beta parameters, have been set equal to zero, and the remaining parameter, log.sigma, has
been set equal to log(1), which is equal to zero. This visually reminds me that I am working
with the log of sigma, rather than sigma, and is merely a personal preference. The order of
the elements of the vector of initial values must match the order of the parameters associated
with each element of parm passed to the Model function.

> Initial.Values <- c(rep(0,J), log(1))

5. Laplace’s Demon

Compared to specifying the model in the Model function, the actual use of Laplace’s Demon
is very easy. Since Laplace’s Demon is stochastic, or involves pseudo-random numbers, it’s a
good idea to set a ‘seed’ for pseudo-random number generation, so results can be reproduced.
Pick any number you like, but there’s only one number appropriate for a demon8:

> set.seed(666)

As with any R package, the user can learn about a function by using the help function
and including the name of the desired function. To learn the details of the LaplacesDemon
function, enter:

> help(LaplacesDemon)

Here is one of many possible ways to begin:

8Demonic references are used only to add flavor to the software and its use, and in no way endorses beliefs
in demons. This specific pseudo-random seed is often referred to, jokingly, as the ‘demon seed’.

8 LaplacesDemon

> Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

+ Covar=NULL, Iterations=150000, Status=50000, Thinning=150,

+ Algorithm="HARM", Specs=NULL)

In this example, an output object called Fit will be created as a result of using the Laplaces-
Demon function. Fit is an object of class demonoid, which means that since it has been
assigned a customized class, other functions have been custom-designed to work with it.
Laplace’s Demon offers Laplace Approximation, numerous MCMC algorithms, and PMC
(which are explained in section 12). The above example specifies the HARM algorithm for
updating.

This example tells the LaplacesDemon function to maximize the first component in the list
output from the user-specified Model function, given a data set called Data, and according to
several settings.

• The Initial.Values argument requires a vector of initial values for the parameters.

• The Covar=NULL argument indicates that a user-specified variance vector or covariance
matrix has not been supplied. HARM does not use proposal variance or covariance.

• The Iterations=150000 argument indicates that the LaplacesDemon function will up-
date 150,000 times before completion.

• The Status=50000 argument indicates that a status message will be printed to the R
console every 50,000 iterations.

• The Thinning=150 argument indicates that only ever Kth iteration will be retained
in the output, and in this case, every 150th iteration will be retained. See the Thin

function for more information on thinning.

• The Algorithm argument requires the abbreviated name of the MCMC algorithm in
quotes.

• Finally, the Specs argument contains specifications for each algorithm named in the
Algorithm argument. The HARM algorithm does not require specifications. Details on
algorithms and specifications are given later.

By running9 the LaplacesDemon function, the following output was obtained:

> Fit <- LaplacesDemon(Model, Data=MyData, Initial.Values,

+ Covar=NULL, Iterations=150000, Status=50000, Thinning=150,

+ Algorithm="HARM", Specs=NULL)

Laplace's Demon was called on Mon Mar 4 05:54:43 2013

Performing initial checks...

Laplace Approximation will be used on initial values.

9This is “turning the Bayesian crank”, as Dennis Lindley used to say.

Statisticat 9

Sample Size: 39

Laplace Approximation begins...

Iteration: 10 of 100

Iteration: 20 of 100

Iteration: 30 of 100

Iteration: 40 of 100

Iteration: 50 of 100

Iteration: 60 of 100

Iteration: 70 of 100

Iteration: 80 of 100

Iteration: 90 of 100

Iteration: 100 of 100

Creating Summary from Point-Estimates

Laplace Approximation is finished.

The covariance matrix from Laplace Approximation has been scaled

for Laplace's Demon, and the posterior modes are now the initial

values for Laplace's Demon.

Algorithm: Hit-And-Run Metropolis

Laplace's Demon is beginning to update...

Iteration: 50000, Proposal: Multivariate

Iteration: 100000, Proposal: Multivariate

Iteration: 150000, Proposal: Multivariate

Assessing Stationarity

Assessing Thinning and ESS

Creating Summaries

Estimating Log of the Marginal Likelihood

Creating Output

Laplace's Demon has finished.

Laplace’s Demon finished quickly, though it had a small data set (N=39), few parameters
(K=5), and the model was very simple. The output object, Fit, was created as a list. As
with any R object, use str() to examine its structure:

> str(Fit)

To access any of these values in the output object Fit, simply append a dollar sign and the
name of the component. For example, here is how to access the observed acceptance rate:

> Fit$Acceptance.Rate

[1] 0.25884

10 LaplacesDemon

5.1. Warnings

Warnings did not occur with this example. If warnings result after updating the model with
LaplacesDemon, and if the model was specified correctly, then the most likely cause is the
posterior predictive distribution, returned in the Model function as yhat. Early in a model
update, this may not be alarming, since extreme values may be generated. Sometimes it is
related to the MCMC algorithm, so selecting a different algorithm may be necessary.

If warnings continue to occur, then the priors or parameterization should be considered. An
example is when a scale parameter for the posterior predictive distribution is allowed to be
too small or large.

6. Summarizing Output

The output object, Fit, has many components. The (copious) contents of Fit can be printed
to the screen with the usual R functions:

> Fit

> print(Fit)

While a user is welcome to continue this R convention, the LaplacesDemon package adds an-
other feature below the print function output in the Consort function. But before describing
the additional feature, the results are obtained as:

> Consort(Fit)

###

Consort with Laplace's Demon

###

Call:

LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values,

Covar = NULL, Iterations = 150000, Status = 50000, Thinning = 150,

Algorithm = "HARM", Specs = NULL)

Acceptance Rate: 0.25884

Adaptive: 150001

Algorithm: Hit-And-Run Metropolis

Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)

beta[1] beta[2] beta[3] beta[4] log.sigma

0.01251693 0.06675336 0.08426281 0.09839474 0.01490159

Covariance (Diagonal) History: (NOT SHOWN HERE)

Deviance Information Criterion (DIC):

All Stationary

Dbar 82.464 82.464

pD 5.655 5.655

DIC 88.119 88.119

Statisticat 11

Delayed Rejection (DR): 0

Initial Values:

beta[1] beta[2] beta[3] beta[4] log.sigma

4.9953242 1.4004802 0.2367366 1.4449045 -0.1482325

Iterations: 150000

Log(Marginal Likelihood): -42.34361

Minutes of run-time: 0.31

Model: (NOT SHOWN HERE)

Monitor: (NOT SHOWN HERE)

Parameters (Number of): 5

Periodicity: 150001

Posterior1: (NOT SHOWN HERE)

Posterior2: (NOT SHOWN HERE)

Recommended Burn-In of Thinned Samples: 0

Recommended Burn-In of Un-thinned Samples: 0

Recommended Thinning: 150

Status is displayed every 50000 iterations

Summary1: (SHOWN BELOW)

Summary2: (SHOWN BELOW)

Thinned Samples: 1000

Thinning: 150

Summary of All Samples

Mean SD MCSE ESS LB Median

beta[1] 5.0417834 0.11192541 0.003720039 1000.0000 4.83038688 5.0436767

beta[2] 0.5836047 0.25720204 0.008637783 1000.0000 0.06104056 0.5832081

beta[3] 1.1818292 0.28888399 0.011076396 857.9352 0.63070495 1.1837260

beta[4] 0.8984559 0.31336022 0.011608385 738.1927 0.26284314 0.8920060

log.sigma -0.3637774 0.12194278 0.004074110 1000.0000 -0.58314712 -0.3657482

Deviance 82.4638879 3.36317267 0.100995857 1000.0000 78.06989779 81.8115011

LP -62.4085755 1.68175074 0.050502065 1000.0000 -66.64758396 -62.0828035

sigma 0.7002596 0.08651203 0.002905813 1000.0000 0.55813907 0.6936774

UB

beta[1] 5.2634989

beta[2] 1.0817447

beta[3] 1.7388334

beta[4] 1.5088035

log.sigma -0.1135596

Deviance 90.9399473

LP -60.2115151

sigma 0.8926513

Summary of Stationary Samples

12 LaplacesDemon

Mean SD MCSE ESS LB Median

beta[1] 5.0417834 0.11192541 0.003720039 1000.0000 4.83038688 5.0436767

beta[2] 0.5836047 0.25720204 0.008637783 1000.0000 0.06104056 0.5832081

beta[3] 1.1818292 0.28888399 0.011076396 857.9352 0.63070495 1.1837260

beta[4] 0.8984559 0.31336022 0.011608385 738.1927 0.26284314 0.8920060

log.sigma -0.3637774 0.12194278 0.004074110 1000.0000 -0.58314712 -0.3657482

Deviance 82.4638879 3.36317267 0.100995857 1000.0000 78.06989779 81.8115011

LP -62.4085755 1.68175074 0.050502065 1000.0000 -66.64758396 -62.0828035

sigma 0.7002596 0.08651203 0.002905813 1000.0000 0.55813907 0.6936774

UB

beta[1] 5.2634989

beta[2] 1.0817447

beta[3] 1.7388334

beta[4] 1.5088035

log.sigma -0.1135596

Deviance 90.9399473

LP -60.2115151

sigma 0.8926513

Demonic Suggestion

Due to the combination of the following conditions,

1. Hit-And-Run Metropolis

2. The acceptance rate (0.25884) is within the interval [0.15,0.5].

3. Each target MCSE is < 6.27% of its marginal posterior

standard deviation.

4. Each target distribution has an effective sample size (ESS)

of at least 100.

5. Each target distribution became stationary by

1 iteration.

Laplace's Demon has been appeased, and suggests

the marginal posterior samples should be plotted

and subjected to any other MCMC diagnostic deemed

fit before using these samples for inference.

Laplace's Demon is finished consorting.

Several components are labeled as NOT SHOWN HERE, due to their size, such as the covariance
matrix Covar or the stationary posterior samples Posterior2. As usual, these can be printed
to the screen by appending a dollar sign, followed by the desired component, such as:

> Fit$Posterior2

Although a lot can be learned from the above output, notice that it completed 150000 itera-
tions of 5 variables in 0.31 minutes. Of course this was fast, since there were only 39 records,

Statisticat 13

and the form of the specified model was simple. As discussed later, Laplace’s Demon does
better than most other MCMC software with large numbers of records, such as 100,000 (see
section 14).

In R, there is usually a summary function associated with each class of output object. The
summary function usually summarizes the output. For example, with frequentist models, the
summary function usually creates a table of parameter estimates, complete with p-values.

Since this is not a frequentist package, p-values are not part of any table with the LaplacesDemon
function, and the marginal posterior distributions of the parameters and other variables have
already been summarized in Fit, there is no point to have an associated summary function.
Going one more step toward useability, the Consort function of LaplacesDemon allows the
user to consort with Laplace’s Demon about the output object.

The additional feature is a second section called Demonic Suggestion. The Demonic Suggestion

is a very helpful section of output. When Laplace’s Demon was developed initially in late
2010, there were not to my knowledge any tools of Bayesian inference that make suggestions
to the user.

Before making its Demonic Suggestion, Laplace’s Demon considers and presents five condi-
tions: the algorithm, acceptance rate, Monte Carlo standard error (MCSE), effective sample
size (ESS), and stationarity. In addition to these conditions, there are other suggested val-
ues, such as a recommended number of iterations or values for the Periodicity and Status

arguments. The suggested value for Status is seeking to print a status message every minute
when the expected time is longer than a minute, and is based on the time in minutes it took,
the number of iterations, and the recommended number of iterations.

In the above output, Laplace’s Demon is appeased. However, if any of these five conditions
is unsatisfactory, then Laplace’s Demon is not appeased, and suggests it should continue
updating, and that the user should copy/paste and execute its suggested R code. Here are the
criteria it measures against. The final algorithm must be non-adaptive, so that the Markov
property holds (this is covered in section 12). The acceptance rate of most algorithms is
considered satisfactory if it is within the interval [15%,50%]10, and LMC or MALA must be
in the interval [50%, 65%]. MCSE is considered satisfactory for each target distribution if it
is less than 6.27% of the standard deviation of the target distribution. This allows the true
mean to be within 5% of the area under a Gaussian distribution around the estimated mean.
ESS is considered satisfactory for each target distribution if it is at least 100, which is usually
enough to describe 95% probability intervals. And finally, each variable must be estimated
as stationary.

In this example, notice that all criteria have been met: MCSEs are sufficiently small, ESSs
are sufficiently large, and all parameters were estimated to be stationary. Since the algorithm
was the non-adaptive HARM, the Markov property holds, so let’s look at some plots.

7. Plotting Output

Laplace’s Demon has a plot.demonoid function to enable its own customized plots with
demonoid objects. The variable BurnIn (below) may be left as it is so it will show only

10While Spiegelhalter, Thomas, Best, and Lunn (2003) recommend updating until the acceptance rate is
within the interval [20%,40%], and Roberts and Rosenthal (2001) suggest [10%,40%], the interval recommended
here is [15%,50%]. HMC must be in the interval [60%, 70%].

14 LaplacesDemon

0 200 600 1000

4.
6

5.
0

5.
4

beta[1]

Iterations

V
al

ue

4.6 5.0 5.4

0.
0

1.
5

3.
0

beta[1]

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

beta[1]

Lag

C
or

re
la

tio
n

0 200 600 1000

−
0.

5
0.

5

beta[2]

Iterations

V
al

ue

−0.5 0.5 1.0 1.5

0.
0

1.
0

beta[2]

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

beta[2]

Lag

C
or

re
la

tio
n

0 200 600 1000

0.
5

1.
5

beta[3]

Iterations

V
al

ue

0.0 1.0 2.0

0.
0

0.
6

1.
2

beta[3]

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

beta[3]

Lag

C
or

re
la

tio
n

Figure 1: Plots of Marginal Posterior Samples

the stationary samples (samples that are no longer trending), or set equal to one so that all
samples can be plotted. In this case, all thinned samples are plotted: BurnIn=1.

The plot function also enables the user to specify whether or not the plots should be
saved as a .pdf file, and allows the user to select the parameters to be plotted. For ex-
ample, Parms=c("beta[1]","beta[2]") would plot only the first two regression effects, and
Parms=NULL will plot everything.

> plot(Fit, BurnIn=1, MyData, PDF=FALSE, Parms=NULL)

There are three plots for each parameter, the deviance, and each monitored variable (which
in this example are LP and sigma). The leftmost plot is a trace-plot, showing the history
of the value of the parameter according to the iteration. The middlemost plot is a kernel
density plot. The rightmost plot is an ACF or autocorrelation function plot, showing the
autocorrelation at different lags. The chains look stationary (do not exhibit a trend), the
kernel densities look Gaussian, and the ACF’s show low autocorrelation.

The Hellinger distances between batches of chains can be plotted with

> plot(BMK.Diagnostic(Fit))

These distances occur in the interval [0, 1], and lower (darker) is better. The LaplacesDemon

function considers any Hellinger distance greater than 0.5 to indicate non-stationarity and
non-convergence. This plot is useful for quickly finding problematic parts of chains. All
Hellinger distances here are acceptably small (dark).

Another useful plot is called the caterpillar plot, which plots a horizontal representation
of three quantiles (2.5%, 50%, and 97.5%) of each selected parameter from the posterior

Statisticat 15

0 200 600 1000

0.
0

1.
0

2.
0

beta[4]

Iterations

V
al

ue

0.0 1.0 2.0

0.
0

0.
6

1.
2

beta[4]

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

beta[4]

Lag

C
or

re
la

tio
n

0 200 600 1000

−
0.

6
−

0.
2

log.sigma

Iterations

V
al

ue

−0.8 −0.4 0.0

0.
0

1.
5

3.
0

log.sigma

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

log.sigma

Lag

C
or

re
la

tio
n

0 200 600 1000

80
90

10
0

Deviance

Iterations

V
al

ue

75 85 95 105

0.
00

0.
06

0.
12

Deviance

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

Deviance

Lag

C
or

re
la

tio
n

Figure 2: Plots of Marginal Posterior Samples

0 200 600 1000

−
72

−
66

−
60

LP

Iterations

V
al

ue

−70 −65 −60

0.
00

0.
15

LP

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

LP

Lag

C
or

re
la

tio
n

0 200 600 1000

0.
5

0.
7

0.
9

sigma

Iterations

V
al

ue

0.4 0.6 0.8 1.0

0
1

2
3

4

sigma

Value

D
en

si
ty

0 5 15 25

0.
0

0.
4

0.
8

sigma

Lag

C
or

re
la

tio
n

Figure 3: Plots of Marginal Posterior Samples

16 LaplacesDemon

100 200 300 400 500 600 700 800 900

log.sigma

beta[4]

beta[3]

beta[2]

beta[1]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: Hellinger Distances

samples summary. The caterpillar plot will attempt to plot the stationary samples first
(Fit$Summary2), but if stationary samples do not exist, then it will plot all samples (Fit$Summary1).
Here, only the first four parameters are selected for a caterpillar plot:

> caterpillar.plot(Fit, Parms=1:4)

If all is well, then the Markov chains should be studied with MCMC diagnostics (such as visual
inspections with the CSF or Cumulative Sample Function, introduced in the LaplacesDemon
package), and finally, further assessments of model fit should be estimated with posterior
predictive checks, showing how well (or poorly) the model fits the data. When the user
is satisfied, the BayesFactor function may be useful in selecting the best model, and the
marginal posterior samples may be used for inference.

8. Posterior Predictive Checks

A posterior predictive check is a method to assess discrepancies between the model and the
data (Gelman, Meng, and Stern 1996a). To perform posterior predictive checks with Laplace’s
Demon, simply use the predict function:

> Pred <- predict(Fit, Model, MyData)

This creates Pred, which is an object of class demonoid.ppc (where ppc is short for posterior
predictive check). Pred is a list that contains three components: y, yhat, and Deviance

(though the LaplaceApproximation output differs a little). If the data set that was used to
estimate the model is supplied in predict, then replicates of y (also called yrep) are estimated.
If, instead, a new data set is supplied in predict, then new, unobserved instances of y (called

Statisticat 17

0 1 2 3 4 5

Stationary Samples

●

●

●

●beta[4]

beta[3]

beta[2]

beta[1]

Figure 5: Caterpillar Plot

ynew) are estimated. Note that with new data, a y vector must still be supplied, and if
unknown, can be set to something sensible such as the mean of the y vector in the model.

The predict function calls the Model function once for each set of stationary samples in
Fit$Posterior2. When there are few discrepancies between y and yrep, the model is consid-
ered to fit well to the data.

Since Pred$yhat is a large (39 x 1000) matrix, let’s look at the summary of the posterior
predictive distribution:

> summary(Pred, Discrep="Chi-Square")

Bayesian Predictive Information Criterion:

Dbar pD BPIC

82.464 5.655 93.774

Concordance: 0.9487179

Discrepancy Statistic: 30.111

L-criterion: 36.477, S.L: 0.299

Records:

y Mean SD LB Median UB PQ Discrep

1 4.174387 4.127 0.740 2.664 4.137 5.535 0.476 0.004

2 5.361292 4.940 0.744 3.410 4.910 6.405 0.289 0.321

3 6.089045 6.102 0.780 4.542 6.150 7.646 0.534 0.000

4 5.298317 4.787 0.731 3.295 4.804 6.193 0.243 0.490

5 4.406719 4.988 0.734 3.483 5.000 6.378 0.798 0.627

6 2.197225 3.652 0.744 2.098 3.658 5.142 0.969 3.827

7 5.010635 4.630 0.725 3.149 4.640 6.036 0.305 0.276

8 1.609438 3.428 0.748 1.995 3.447 4.896 0.990 5.907

18 LaplacesDemon

9 4.343805 4.662 0.753 3.150 4.654 6.143 0.667 0.178

10 4.812184 3.775 0.701 2.411 3.751 5.155 0.066 2.190

11 4.189655 3.595 0.704 2.135 3.595 4.929 0.188 0.713

12 4.919981 4.470 0.715 3.098 4.475 5.879 0.256 0.396

13 4.753590 4.371 0.731 2.874 4.401 5.786 0.291 0.274

14 4.127134 4.343 0.720 2.948 4.363 5.754 0.621 0.090

15 3.713572 3.356 0.749 1.819 3.384 4.857 0.322 0.229

16 4.672829 4.499 0.727 3.006 4.508 5.907 0.412 0.057

17 6.930495 6.940 0.731 5.513 6.977 8.324 0.522 0.000

18 5.068904 4.142 0.710 2.830 4.152 5.521 0.099 1.706

19 6.775366 6.855 0.735 5.469 6.851 8.281 0.541 0.012

20 6.553933 6.538 0.728 5.085 6.538 8.037 0.490 0.000

21 4.890349 4.533 0.719 3.148 4.525 5.931 0.317 0.247

22 4.442651 4.570 0.704 3.177 4.572 5.958 0.569 0.033

23 2.833213 4.475 0.742 3.038 4.487 5.831 0.990 4.888

24 4.787492 4.288 0.724 2.741 4.320 5.676 0.230 0.475

25 6.933423 6.379 0.725 5.012 6.391 7.790 0.215 0.586

26 6.180017 5.615 0.742 4.049 5.645 7.041 0.224 0.579

27 5.652489 5.564 0.740 4.107 5.578 7.062 0.441 0.014

28 5.429346 5.302 0.742 3.882 5.290 6.712 0.425 0.030

29 5.634790 6.317 0.808 4.693 6.324 8.003 0.811 0.714

30 4.262680 4.078 0.755 2.662 4.094 5.532 0.415 0.060

31 3.891820 4.464 0.750 3.036 4.446 5.934 0.774 0.581

32 6.613384 6.543 0.722 5.078 6.546 7.922 0.467 0.010

33 4.919981 4.494 0.711 3.190 4.501 5.878 0.283 0.359

34 6.541030 6.592 0.730 5.163 6.586 8.030 0.529 0.005

35 6.345636 6.447 0.705 5.058 6.431 7.907 0.548 0.021

36 3.737670 4.758 0.766 3.268 4.768 6.286 0.910 1.775

37 7.356280 7.669 0.806 6.141 7.668 9.296 0.649 0.151

38 5.739793 5.812 0.725 4.382 5.799 7.244 0.529 0.010

39 5.517453 4.426 0.724 2.991 4.427 5.868 0.065 2.276

The summary.demonoid.ppc function returns a list with 5 components when y is continu-
ous (different output occurs for categorical dependent variables when given the argument
Categorical=TRUE):

• BPIC is the Bayesian Predictive Information Criterion of Ando (2007). BPIC is a varia-
tion of the Deviance Information Criterion (DIC) that has been modified for predictive
distributions. For more information on DIC, see the accompanying vignette entitled
“Bayesian Inference”.

• Concordance is the predictive concordance of Gelfand (1996), that indicates the per-
centage of times that y was within the 95% probability interval of yhat. A goal is to
have 95% predictive concordance. For more information, see the accompanying vignette
entitled “Bayesian Inference”. In this case, roughly 95% of the time, y is within the 95%
probability interval of yhat. These results suggest that the model should be attempted
again under different conditions, such as using different predictors, or specifying a dif-
ferent form to the model.

Statisticat 19

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[1,]

Black=Density, Red=y
Value

D
en

si
ty

2 3 4 5 6 7

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[2,]

Black=Density, Red=y
Value

D
en

si
ty

3 4 5 6 7 8 9

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[3,]

Black=Density, Red=y
Value

D
en

si
ty

2 3 4 5 6 7

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[4,]

Black=Density, Red=y
Value

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[5,]

Black=Density, Red=y
Value

D
en

si
ty

1 2 3 4 5 6

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[6,]

Black=Density, Red=y
Value

D
en

si
ty

2 3 4 5 6 7 8

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[7,]

Black=Density, Red=y
Value

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Post. Pred. Plot of yhat[8,]

Black=Density, Red=y
Value

D
en

si
ty

2 3 4 5 6 7

0.
0

0.
2

0.
4

Post. Pred. Plot of yhat[9,]

Black=Density, Red=y
Value

D
en

si
ty

Figure 6: Posterior Predictive Densities

• Discrepancy.Statistic is a summary of a specified discrepancy measure. There are
many options for discrepancy measures that may be specified in the Discrep argument.
In this example, the specified discrepancy measure was the χ2 test in Gelman et˜al.
(2004, p. 175), and higher values indicate a worse fit.

• L-criterion is a posterior predictive check for model and variable selection that mea-
sures the distance between y and yrep, providing a criterion to be minimized (Laud and
Ibrahim 1995).

• The last part of the summarized output reports y, information about the distribution of
yhat, and the predictive quantile (PQ). The mean prediction of y[1], or yrep

1 , given the
model and data, is 4.127. Most importantly, PQ[1] is 0.476, indicating that 47.6% of the
time, yhat[1,] was greater than y[1], or that y[1] is close to the mean of yhat[1,].
Contrast this with the 6th record, where y[6]=2.197 and PQ[6]=0.969. Therefore,
yhat[6,] was not a good replication of y[6], because the distribution of yhat[6,] is
almost always greater than y[6]. While y[1] is within the 95% probability interval of
yhat[1,], yhat[6,] is above y[6] 96.9% of the time, indicating a strong discrepancy
between the model and data, in this case.

There are also a variety of plots for posterior predictive checks, and the type of plot is
controlled with the Style argument. Many styles exist, such as producing plots of covariates
and residuals. The last component of this summary may be viewed graphically as posterior
densities. Rather than observing plots for each of 39 records or rows, only the first 9 densities
will be shown here:

> plot(Pred, Style="Density", Rows=1:9)

Among many other options, the fit may be observed:

20 LaplacesDemon

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

2 3 4 5 6 7

2
4

6
8

Fitted

y

yh
at

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

Figure 7: Posterior Predictive Fit

> plot(Pred, Style="Fitted")

This plot shows a poor fit between the dependent variable and its expectation, and model
revision should be considered.

The Importance function is not presented here in detail, but is a useful way to assess variable
importance, which is defined here as the impact of each variable on yrep, when the variable
is removed (or set to zero). Variable importance consists of differences in model fit or dis-
crepancy statistics, showing how well the model fits the data with each variable removed.
This information may be used for model revision, or presenting the relative importance of
variables.

These posterior predictive checks indicate that there is plenty of room to improve this model.

9. General Suggestions

Following are general suggestions on how best to use Laplace’s Demon:

• As suggested by Gelman (2008), continuous predictors should be centered and scaled.
Here is an explicit example in R of how to center and scale a single predictor called
x: x.cs <- (x - mean(x)) / (2*sd(x)). However, it is instead easier to use the
CenterScale function provided in LaplacesDemon.

• Do not forget to reparameterize any bounded parameters in the Model function to be
real-valued in the parm vector, and this is a good time to check for prior propriety with
the is.proper function.

• MCMC and PMC are stochastic methods of numerical approximation, and as such,
results may differ with each run due to the use of pseudo-random number generation.

Statisticat 21

It is good practice to set a seed so that each update of the model may be reproduced.
Here is an example in R: set.seed(666).

• Rather than specify the final, intended model in the Model function, start by specifying
the simplest possible form. Rather than beginning with actual data, start by simulat-
ing data given specified parameters. Update the simple model on simulated data and
verify that the algorithm converges to the correct target distributions. One by one, add
components to the model specification, simulate more complicated data, update, verify,
and progress toward the intended model. Also, during this phase, use the Juxtapose

function to compare the inefficiency of several MCMC algorithms (via integrated auto-
correlation time or IAT), and use this information to select the least inefficient algorithm
for your particular model. When confident the model is specified correctly and with in-
formed algorithmic selection, finally use actual data, but with few iterations, such as
Iterations=20.

• After studying updates with few iterations, the first “actual” update should be long
enough that proposals are accepted (the acceptance rate is not zero), adaptation begins
to occur (if used), and that enough iterations occur after the first adaptation to allow
the user to study the adaptation (assuming an adaptive algorithm is used). In the
supplied example, the HARM algorithm is non-adaptive, so this is not a consideration.

• Depending on the model specification function, data, and intended iterations, it is a
good idea to use the LaplacesDemon.RAM function to estimate the amount of random-
access memory (RAM) that LaplacesDemon will use. If Laplace’s Demon uses more
RAM than the computer has available, then the computer will crash. This can be used
to estimate the maximum number of iterations or thinned samples for a particular model
and data set on a given computer.

• Once the final, intended model has begun (finally!), the mixing of the chains should
be observed after a larger trial run, say, arbitrarily, for 10,000 iterations. If the chains
do not mix as expected, then try a different algorithm, either one suggested by the
Consort function (such as when diminishing adaptation is violated), or use the next
least inefficient algorithm as indicated previously in the Juxtapose function.

• If adaptation does not seem to improve estimation (if adaptation is used) or the ini-
tial movement in the chains is worse than expected, then consider optimizing the ini-
tial values with the LaplaceApproximation function, changing the initial values, or
setting all initial values equal to zero so the LaplacesDemon function will use the
LaplaceApproximation function. In MCMC, initial values are most effective when
the starting points are close to the target distributions (though, if the target distribu-
tions were known a priori, then there would be little point in much of this). When initial
values are far enough away from the target distributions to be in low-probability regions,
the algorithms (both Laplace Approximation and MCMC) may take longer than usual.
Some MCMC algorithms use a proposal covariance matrix, and these algorithms will
struggle more as the proposal covariance matrix approaches near-singularity (though
some algorithms do not use a proposal covariance matrix, such as AIES, CHARM,
DEMC, HARM, HMC, HMCDA, NUTS, RJ, Slice, THMC, t-walk, and the MWG fam-
ily). In extreme examples, it is possible for the proposal covariance matrix to become

22 LaplacesDemon

singular, which will stop MCMC algorithms that depend on it. If there is no informa-
tion available to make a better selection, then randomize the initial values with the GIV

function and use LaplaceApproximation. Centered and scaled predictors also help by
essentially standardizing the possible range of the target distributions.

• When speed is a concern, such as with complex models, there may be things in the
Model function that can be commented out, such as sometimes calculating yhat. The
model can be updated without some features, that can be un-commented and used for
posterior predictive checks. By commenting out things that are strictly unnecessary to
updating, the model will update more quickly. Other helpful hints for speed are found
in the documentation for the Model.Spec.Time function.

• If Laplace’s Demon is exploring areas of the state space that the user knows a priori
should not be explored, then the parameters may be constrained in the Model function
before being passed back to the LaplacesDemon function. Simply change the parameter
of interest as appropriate and place the constrained value back in the parm vector.

• Demonic Suggestion is intended as an aid, not an infallible replacement for critical
thinking. As with anything else, its suggestions are based on assumptions, and it is the
responsibility of the user to check those assumptions. For example, the BMK.Diagnostic
may indicate stationarity (lack of a trend) when it does not exist. Or, the Demonic

Suggestion may indicate that the next update may need to run for a million iterations
in a complex model, requiring weeks to complete.

• Use a two-phase approach with MCMC (unless using a non-adaptive algorithm such as
the HARM algorithm), where the first phase consists of using an adaptive algorithm
(usually AHMC, AMWG, AMM, AM, DEMC, DRAM, HMCDA. INCA, NUTS, RAM,
SAMWG, or USAMWG) to achieve stationary samples that seem to have converged to
the target distributions (convergence can never be determined with MCMC, but some
instances of non-convergence can be observed). Once it is believed that convergence
has occurred, use a non-adaptive algorithm, such as CHARM, DRM, HARM, HMC,
HMCDA, IM, MWG, NUTS, RWM, Slice, SMWG, THMC, or USMWG. The final
samples should again be checked for signs of non-convergence. If satisfactory, then the
non-adaptive algorithm should have estimated the logarithm of the marginal likelihood
(LML). This is most easily checked with the is.proper function, which considers the
joint posterior distribution to be proper if it can verify that the LML is finite.

• The desirable number of final, thinned samples for inference depends on the required
precision of the inferential goal. A good, general goal is to end up with 1,000 thinned
samples (Gelman et˜al. 2004, p. 295), where the ESS is at least 100 (and more is
desirable). See the ESS function for more information.

• Disagreement exists in MCMC literature as to whether to update one, long chain (Geyer
1992, 2011), or multiple, long chains with different, randomized initial values (Gel-
man and Rubin 1992). Multiple chains are enabled with an extension function called
LaplacesDemon.hpc, which uses parallel processing. The Gelman.Diagnostic function
may be used to compare multiple chains. Samples from multiple chains may be put
together with the Combine function.

Statisticat 23

• After MCMC seems to have converged, consider updating the model again, this time
with Population Monte Carlo (PMC). PMC may improve the model fit obtained with
MCMC, and should reduce the variance of the marginal posterior distributions, which
is desirable for predictive modeling.

10. Independence and Observability

Laplace’s Demon was designed with independence and observability in mind. By indepen-
dence, it is meant that a goal was to minimize dependence on other software. Laplace’s Demon
requires only base R, and the parallel package bundled with it. The variety of packages makes
R extremely attractive. However, depending on multiple packages can be problematic when
different packages have functions with the same name, or when a change is made in one
package, but other packages do not keep pace, and the user is dependent on packages being
in sync. By avoiding dependencies on packages that are not in or accompanying base R,
Laplace’s Demon is attempting to be consistent and dependable for the user.

For example, common MCMC diagnostics and probability distributions (such as Dirichlet,
multivariate normal, Wishart, and many others, as well as truncated forms of distributions)
in Bayesian inference have been included in LaplacesDemon so the user does not have to load
numerous R packages, except of course for exotic distributions that have not been included.

By observability, it is meant that Laplace’s Demon is written entirely in R. Certain functions
could be sped up in another language, but this may prevent some R users from understanding
the code. Laplace’s Demon is intended to be open and accessible. If a user desires speed and is
familiar with a faster language, then the user is encouraged to program the model specification
function in the faster language. See the documentation for the Model.Spec.Time function for
more information. Moreover, it is demonstrated in section 14 that Laplace’s Demon is often
significantly faster than other MCMC software programmed in faster languages, and users
are encouraged to time comparisons, especially with large samples.

Observability also enables users to investigate or customize functions in Laplace’s Demon. To
access any function, simply enter the function name and press enter. For example, to print
the code for LaplacesDemon to the R console, simply enter:

> LaplacesDemon

To access undocumented, internal-only functions, use the ::: operator, such as:

> LaplacesDemon:::RWM

Laplace’s Demon seeks to provide a complete, Bayesian environment within R. Independence
from other software facilitates dependability, and its open code makes it easier for a user to
investigate and customize.

11. High Performance Computing

24 LaplacesDemon

High performance computing (HPC) is a broad term that can mean many different things.
The LaplacesDemon package may expand into other HPC areas in the future. For the moment,
HPC refers to parallel processing.

In the context of MCMC, there are two approaches to parallelization that are avilable in
LaplacesDemon: parallel sets of independent chains and parallel sets of interactive chains.

11.1. Parallel Sets of Independent Chains

The LaplacesDemon function is extended with the LaplacesDemon.hpc function to the par-
allel processing of multiple chains on different central processing units (CPUs). This requires
a minimum of two additional arguments: Chains to specify the number of parallel chains,
and CPUs to specify the number of CPUs. The LaplacesDemon.hpc function allows the par-
allelization of most MCMC algorithms in the LaplacesDemon function.

An example of using LaplacesDemon.hpc is to simultaneously update three independent
chains as an aid to checking MCMC convergence, as Gelman recommends (Gelman and Rubin
1992). Aside from aiding convergence, another benefit of parallelization is that more posterior
samples are updated in the same time-frame as a non-parallel implementation. A multicore
computer, such as a quad-core, will yield more posterior samples (which is valuable only if it
converges, because it does not process more iterations), but a large computer cluster will yield
many orders more. If multiple CPUs are available, then it only makes sense to use them...all.

It is important to note that Status messages do not appear during parallel processing with
LaplacesDemon.hpc. Once submitted, the user must wait until it finishes without knowing
its status. This is because the LaplacesDemon.hpc function sends the information associated
with each chain as well as the LaplacesDemon function to each CPU. The LaplacesDemon

function may very well return status messages, but the LaplacesDemon.hpc function is un-
aware.

After updating a model with LaplacesDemon.hpc, the plot function may be applied so that
multiple chains may be viewed simultaneously, and this is helpful when comparing samplers
for a specific model. If this looks good, then the Gelman.Diagnostic function may be applied
to assess convergence. Otherwise, the as.initial.values function may be used to extract
the latest values from the chains and use these to begin the next update. Once results seem
acceptable, the Combine function may be used to combine the posterior samples of multiple
chains into one demonoid object, from which the remaining facilities of the LaplacesDemon
package are available.

11.2. Parallel Sets of Interactive Chains

Parallel sets of independent chains should each run as efficiently as a traditional single set of
chains. However, independent chains cannot benefit from the fact that there are other chains,
while each chain is running. They are independent of each other.

In contrast, parallel sets of interactive chains are able to learn from each other through
interaction. In the LaplacesDemon package, some of these algorithms are called with the
LaplacesDemon function, and some with the LaplacesDemon.hpc function.

The Interchain Adaptive (INCA) algorithm (Craiu, Rosenthal, and Yang 2009; Solonen, Ol-
linaho, Laine, Haario, Tamminen, and Jarvinen 2012) performs Adaptive Metropolis (AM)
with parallel chains that share the adaptive component, and this sharing speeds convergence.

Statisticat 25

Whenever the chains are specified to adapt, adaptation is performed by pooling the histori-
cal covariance matrix across all parallel chains, and then returns the combined source to all
chains. Network communication time slows the adaptation, but once returned to each CPU,
chains iterate at their usual speed. This algorithm must be used with the LaplacesDemon.hpc
function, and there is not an un-parallelized form of it. For more information, see 12.4.17.

The Affine-Invariant Ensemble Sampler (AIES) of (Goodman and Weare 2010) must be used
with the LaplacesDemon function, and is available in either a parallelized or un-parallelized
form. A large, even number of parallel chains (or walkers) are grouped into two batches,
and each iteration, each chain moves in relation to a randomly selected chain (walker) in
the other batch. Since these interactive chains interact each iteration, computer network
communication is frequent, and this communication may be much slower than processing
with one CPU. However, in a large-scale computing environment and when a Model function
is not trivial to evaluate, this form of parallelization can result in very early convergence.

11.3. Parallelization Details

Parallelization is enabled by the parallel package that comes with base R. Parallelization is
accomplished with socket-transport functions derived from the snow package, which is an
acronym for a Simple Network of Workstations. Parallelization is cross-platform, works on
multicore computers or computer clusters, and supports up to 126 parallel chains as slaves or
workers11.

Aside from LaplacesDemon.hpc, there are several functions in the package that can benefit
from HPC, so stay tuned.

12. Details

The LaplacesDemon package uses three broad types of numerical approximation algorithms:
Importance Sampling (IS), Laplace Approximation, and Markov chain Monte Carlo (MCMC).
Approximate Bayesian Computation (ABC) may be estimated within each. These numerical
approximation algorithms are introduced below.

12.1. Approximate Bayesian Computation

Approximate Bayesian Computation (ABC), also called likelihood-free estimation, is a family
of numerical approximation techniques in Bayesian inference. ABC is especially useful when
evaluation of the likelihood, p(y|Θ) is computationally prohibitive, or when suitable likeli-
hoods are unavailable. As such, ABC algorithms estimate likelihood-free approximations.
ABC is usually faster than a similar likelihood-based numerical approximation technique,
because the likelihood is not evaluated directly, but replaced with an approximation that is
usually easier to calculate. The approximation of a likelihood is usually estimated with a
measure of distance between the observed sample, y, and its replicate given the model, yrep,
or with summary statistics of the observed and replicated samples. See the accompanying
vignette entitled “Examples” for an example.

11Larger-scale methods of parallelization are being researched. One consideration is to include MPI in the
current framework, and other frameworks are also being researched.

26 LaplacesDemon

12.2. Importance Sampling

Importance Sampling (IS) is a method of estimating a distribution with samples from a
different distribution, called the importance distribution. Importance weights are assigned to
each sample. The main difficulty with IS is in the selection of the importance distribution.
IS dates back at least to the 1950s, including iterative IS. IS is the basis of a wide variety
of algorithms, some of which involve the combination of IS and Markov chain Monte Carlo
(MCMC). There are also many variations of IS, including adaptive IS, and parametric and
nonparametric self-normalized IS (SNIS). Some popular algorithms, or families of algorithms,
that include IS are Particle Filtering, Population Monte Carlo (PMC), and Sequential Monte
Carlo (SMC).

Population Monte Carlo

Population Monte Carlo (PMC) uses adaptive IS, and the proposal or importance distribu-
tion is a multivariate Gaussian (Cappe, Guillin, Marin, and Robert 2004), or a mixture of
multivariate Gaussian distributions (Cappe, Douc, Guillin, Marin, and Robert 2008; Wraith,
Kilbinger, Benabed, Cappé, Cardoso, Fort, Prunet, and Robert 2009). LaplacesDemon uses
the version presented in the appendix of Wraith et˜al. (2009). At each iteration, the impor-
tance distribution of N samples and M mixture components is adapted.

Compared with Markov chain Monte Carlo (MCMC), very few iterations are required, con-
vergence and ergodicity are not problems, posterior samples are independent, and PMC lends
itself well to parallelization (which is not yet implemented here). However, PMC requires
much more prior information about the model (better initial values and proposal covariance
matrix) than MCMC, and becomes harder to apply as the number of variables increases.

Amazingly, PMC may improve the model fit obtained with MCMC, and should reduce the
variance of the marginal posterior distributions. This reduction in variance is desirable for
predictive modeling. Therefore, it is recommended that a model is attempted to be updated
with PMC after the model seems to have converged with MCMC.

12.3. Laplace Approximation

The Laplace Approximation or Laplace Method is a family of asymptotic techniques used to
approximate integrals. Laplace’s method seems to accurately approximate unimodal posterior
moments and marginal posterior distributions in many cases. Since it is not applicable in all
cases, it is recommended here that Laplace Approximation is used cautiously in its own right,
or preferably, it is used before MCMC.

After introducing the Laplace Approximation (Laplace 1774, p. 366–367), a proof was pub-
lished later (Laplace 1814) as part of a mathematical system of inductive reasoning based on
probability. Laplace used this method to approximate posterior moments.

Since its introduction, the Laplace Approximation has been applied successfully in many
disciplines. In the 1980s, the Laplace Approximation experienced renewed interest, espe-
cially in statistics, and some improvements in its implementation were introduced (Tierney
and Kadane 1986; Tierney, Kass, and Kadane 1989). Only since the 1980s has the Laplace
Approximation been seriously considered by statisticians in practical applications.

There are many variations of Laplace Approximation, with an effort toward replacing Markov
chain Monte Carlo (MCMC) algorithms as the dominant form of numerical approximation in

Statisticat 27

Bayesian inference. The run-time of Laplace Approximation is a little longer than Maximum
Likelihood Estimation (MLE), and much shorter than MCMC (Azevedo-Filho and Shachter
1994).

The speed of Laplace Approximation depends on the optimization algorithm selected, and
typically involves many evaluations of the objective function per iteration (where the AMM
MCMC algorithm evaluates once per iteration), making many MCMC algorithms faster per
iteration. The attractiveness of Laplace Approximation is that it typically improves the ob-
jective function better than MCMC and PMC when the parameters are in low-probability
regions. Laplace Approximation is also typically faster because it is seeking point-estimates,
rather than attempting to represent the target distribution with enough simulation draws.
Laplace Approximation extends MLE, but shares similar limitations, such as its asymptotic
nature with respect to sample size. Bernardo and Smith (2000) note that Laplace Approxi-
mation is an attractive numerical approximation algorithm, and will continue to develop.

Laplace Approximation requires an approximation of the Hessian matrix of second derivatives.
As model dimension grows (as there are more parameters), the Hessian matrix becomes more
difficult to approximate well. For this reason, large-dimensional models (certainly with more
than 1,000 parameters) are more sensibly approached with an MCMC algorithm that does
not require a proposal covariance matrix.

LaplaceApproximation seeks a global maximum of the logarithm of the unnormalized joint
posterior density. The approach differs by Method. The LaplacesDemon function uses the
LaplaceApproximation algorithm to optimize initial values, estimate covariance, and save
time for the user.

Most optimization algorithms assume that the logarithm of the unnormalized joint posterior
density is defined and differentiable12. Some methods calculate an approximate gradient for
each initial value as the difference in the logarithm of the unnormalized joint posterior density
due to a slight increase versus decrease in the parameter.

Adaptive Gradient Ascent

With adaptive gradient ascent, the direction and distance for each parameter is proposed based
on an approximate truncated graident and an adaptive step size. The step size parameter,
which is often plural and called rate parameters in other literature, is adapted each iteration
with the univariate version of the Robbins-Monro stochastic approximation in Garthwaite,
Fan, and Sisson (2010). The step size shrinks when a proposal is rejected and expands when
a proposal is accepted.

Gradient ascent is criticized for sometimes being relatively slow when close to the maximum,
and its asymptotic rate of convergence is inferior to other methods. However, compared to
other popular optimization algorithms such as Newton-Raphson, an advantage of the gradi-
ent ascent is that it works in infinite dimensions, requiring only sufficient computer memory.
Although Newton-Raphson converges in fewer iterations, calculating the inverse of the neg-
ative Hessian matrix of second-derivatives is more computationally expensive and subject to
singularities. Therefore, gradient ascent takes longer to converge, but is more generalizable.

12When the joint posterior is not differentiable, and should be, it has probably encountered an area of flat
density. It is recommended that WIPs are used for regularization. For more information on WIPs, see the
accompanying vignette entitled “Bayesian Inference”.

28 LaplacesDemon

Hit-And-Run

This version of the Hit-And-Run (HAR) algorithm makes multivariate proposals and uses an
adpative length parameter. The length parameter is adapted each iteration with the univariate
version of the Robbins-Monro stochastic approximation in Garthwaite et˜al. (2010). The
length shrinks when a proposal is rejected and expands when a proposal is accepted. This
is the same algorithm as the HARM or Hit-And-Run Metropolis MCMC algorithm with
adaptive length, except that a Metropolis step is not used.

Limited-Memory BFGS

The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is a quasi-Newton
optimization algorithm that compactly approximates the Hessian matrix. Rather than stor-
ing the dense Hessian matrix, L-BFGS stores only a few vectors that represent the approx-
imation. This algorithm is better suited for large-scale models than the BFGS algorithm.
This is the default algorithm (method="LBFGS") for LaplaceApproximation, which calls
method="L-BFGS-B" in the optim function of base R.

Nelder-Mead

The Nelder-Mead algorithm (Nelder and Mead 1965) is a derivative-free, direct search method
that is known to become inefficient in large-dimensional problems. As the dimension increases,
the search direction becomes increasingly orthogonal to the steepest ascent (usually descent)
direction. However, in smaller dimensions it is a popular algorithm.

Resilient Backpropagation

“Rprop” stands for resilient backpropagation. In Rprop, the approximate gradient is taken for
each parameter in each iteration, and its sign is compared to the approximate gradient in the
previous iteration. A weight element in a weight vector is associated with each approximate
gradient. A weight element is multiplied by 1.2 when the sign does not change, or by 0.5 if
the sign changes. The weight vector is the step size, and is constrained to the interval [0.001,
50], and initial weights are 0.0125. This is the resilient backpropagation algorithm, which is
often denoted as the “Rprop-” algorithm of Riedmiller (1994).

Self-Organizing Migration Algorithm

The Self-Organizing Migration Algorithm (SOMA) of Zelinka (2004), as used here, moves
a population of ten particles or individuals in the direction of the best particle, the leader.
The leader does not move in each iteration, and a line-search is used for each non-leader,
up to three times the difference in parameter values between each non-leader and leader.
This algorithm is derivative-free and often considered in the family of evolution algorithms.
Numerous model evaluations are performed per non-leader per iteration.

Afterward

After LaplaceApproximation finishes, due either to early convergence or completing the
number of specified iterations, it approximates the Hessian matrix of second derivatives, and
attempts to calculate the covariance matrix by taking the inverse of the negative of this

Statisticat 29

matrix. If successful, then this covariance matrix may be passed to LaplacesDemon or PMC,
and the diagonal of this matrix is the variance of the parameters. If unsuccessful, then a
scaled identity matrix is returned, and each parameter’s variance will be 1.

12.4. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are also called samplers. There are a large
number of MCMC algorithms, too many to review here. Popular families (which are often non-
distinct) include Gibbs sampling, Metropolis-Hastings, Random-Walk Metropolis (RWM),
slice sampling, and many others, including hybrid algorithms such as Hamiltonian Monte
Carlo, Metropolis-within-Gibbs (Tierney 1994), and algorithms for specific methods, such
as Updating Adaptive Metropolis-within-Gibbs for state-space models (SSMs). RWM was
developed first (Metropolis, Rosenbluth, M.N., and Teller 1953), and Metropolis-Hastings
was a generalization of RWM (Hastings 1970). All MCMC algorithms are known as special
cases of the Metropolis-Hastings algorithm. Regardless of the algorithm, the goal in Bayesian
inference is to maximize the unnormalized joint posterior distribution and collect samples
of the target distributions, which are marginal posterior distributions, later to be used for
inference.

While designing Laplace’s Demon, the primary goal in numerical approximation was gener-
alization. The most generalizable MCMC algorithm is the Metropolis-Hastings (MH) gener-
alization of the RWM algorithm. The MH algorithm extended RWM to include asymmetric
proposal distributions. Having no need of asymmetric proposals, Laplace’s Demon uses varia-
tions of the original RWM algorithm, which use symmetric proposal distributions, specifically
Gaussian proposals (and sometimes others, such as in the RAM algorithm of Vihola (2011)).
For years, the main disadvantage of the RWM and MH algorithms was that the proposal
variance (see below) had to be tuned manually, and therefore other MCMC algorithms have
become popular because they do not need to be tuned.

Gibbs sampling became popular for Bayesian inference, though it requires conditional sam-
pling of conjugate distributions, so it is precluded from non-conjugate sampling in its purest
form. Gibbs sampling also suffers under high correlations (Gilks and Roberts 1996). Due to
these limitations, Gibbs sampling is less generalizable than RWM, though RWM and other al-
gorithms are not immune to problems with correlation. The original slice sampling algorithm
of Neal (1997) is a special case of Gibbs sampling that samples a distribution by sampling
uniformly from the region under the plot of its density function, and is more appropriate with
bounded distributions that cannot approach infinity, though the improved slice sampler of
Neal (2003) is available here (see 12.4.24).

There are valid ways to tune the RWM algorithm as it updates. This is known by many
names, including adaptive Metropolis and adaptive MCMC, among others. A brief discussion
follows of MCMC algorithms in LaplacesDemon.

Block Updating

Usually, there is more than one target distribution, in which case it must be determined
whether it is best to sample from target distributions individually, in groups, or all at once.
Block updating refers to splitting a multivariate vector into groups called blocks, so each block
may be treated differently. A block may contain one or more variables.

Parameters are usually grouped into blocks when they are highly correlated. The PosteriorChecks

30 LaplacesDemon

function can be used on the output of previous runs to find highly correlated parameters.

Advantages of block updating are that a different MCMC algorithm may be used for each
block (or variable, for that matter), creating a more specialized approach, the acceptance of
a newly proposed state is likely to be higher than sampling from all target distributions at
once in high dimensions, and large proposal covariance matrices can be reduced in size, which
is most helpful again in high dimensions.

Disadvantages of block updating are that correlations probably exist between variables be-
tween blocks, and each block is updated while holding the other blocks constant, ignoring these
correlations of variables between blocks. Without simultaneously taking everything into ac-
count, the algorithm may converge slowly or never arrive at the proper solution. However,
there are instances when it may be best when everything is not taken into account at once,
such as in state-space models. Also, as the number of blocks increases, more computation
is required, which slows the algorithm. In general, block updating allows a more specialized
approach at the expense of accuracy, generalization, and speed. Block updating is offered in
the Adaptive-Mixture Metropolis (AMM) algorithm.

Random-Walk Metropolis

In MCMC algorithms, each iterative estimate of a parameter is part of a changing state.
The succession of states or iterations constitutes a Markov chain when the current state is
influenced only by the previous state. In random-walk Metropolis (RWM), a proposed future
estimate, called a proposal13 or candidate, of the joint posterior density is calculated, and
a ratio of the proposed to the current joint posterior density, called α, is compared to a
random number drawn uniformly from the interval (0,1). In practice, the logarithm of the
unnormalized joint posterior density is used, so log(α) is the proposal density minus the
current density. The proposed state is accepted, replacing the current state with probability
1 when the proposed state is an improvement over the current state, and may still be accepted
if the logarithm of a random draw from a uniform distribution is less than log(α). Otherwise,
the proposed state is rejected, and the current state is repeated so that another proposal may
be estimated at the next iteration. By comparing log(α) to the log of a random number when
log(α) is not an improvement, random-walk behavior is included in the algorithm, and it is
possible for the algorithm to backtrack while it explores.

Random-walk behavior is desirable because it allows the algorithm to explore, and hopefully
avoid getting trapped in undesirable regions. On the other hand, random-walk behavior is
undesirable because it takes longer to converge to the target distribution while the algorithm
explores. The algorithm generally progresses in the right direction, but may periodically
wander away. Such exploration may uncover multimodal target distributions, which other
algorithms may fail to recognize, and then converge incorrectly. With enough iterations,
RWM is guaranteed theoretically to converge to the correct target distribution, regardless
of the starting point of each parameter, provided the proposal variance for each proposal
of a target distribution is sensible. Nonetheless, multimodal target distributions are often
problematic.

13Laplace’s Demon allows the user to constrain proposals in the Model function. Laplace’s Demon generates
a proposal vector, which is passed to the Model function in the parm vector. In the Model function, the user
may constrain the proposal to prevent the sampler from exploring certain areas of the state space by altering
the proposed values and placing them back into the parm vector, which will be passed back to Laplace’s Demon.
For more information, see the interval function.

Statisticat 31

Multiple parameters usually exist, and therefore correlations may occur between the pa-
rameters. Many MCMC algorithms in Laplace’s Demon attempt to estimate multivariate
proposals, thereby taking correlations into account through a covariance matrix. If a failure
is experienced in attempting to estimate multivariate proposals in the Adaptive Metropolis
(AM) of Haario, Saksman, and Tamminen (2001) here, or if the acceptance rate is less than
5%, then Laplace’s Demon temporarily resorts to componentwise proposals by updating one
randomly-selected parameter, and will continue to attempt to return to multivariate proposals
at each iteration.

Throughout the RWM algorithm, the proposal covariance or variance remains fixed. The
user may enter a vector of proposal variances or a proposal covariance matrix, and if neither
is supplied, then Laplace’s Demon estimates both before it begins, based on the number of
variables.

The acceptance or rejection of each proposal should be observed at the completion of the
RWM algorithm as the acceptance rate, which is the number of acceptances divided by the
total number of iterations. If the acceptance rate is too high, then the proposal variance or
covariance is too small. In this case, the algorithm will take longer than necessary to find the
target distribution and the samples will be highly autocorrelated. If the acceptance rate is too
low, then the proposal variance or covariance is too large, and the algorithm is ineffective at
exploration. In the worst case scenario, no proposals are accepted and the algorithm fails to
move. Under theoretical conditions, the optimal acceptance rate for a sole, independent and
identically distributed (IID), Gaussian, marginal posterior distribution is 0.44 or 44%. The
optimal acceptance rate for an infinite number of distributions that are IID and Gaussian is
0.234 or 23.4%.

Markov Chain Properties

This tutorial introduces only briefly the basics of Markov chain properties. A Markov chain
is Markovian when the current iteration depends only on the previous iteration. Many (but
not all) adaptive algorithms are merely chains but not Markov chains when the adaptation
is based on the history of the chains, not just the previous iteration. A Markov chain is said
to be aperiodic when it is not repeating a cycle. A Markov chain is considered irreducible
when it is possible to go from any state to any other state, though not necessarily in one
iteration. A Markov chain is said to be recurrent if it will eventually return to a given state
with probability 1, and it is positive recurrent if the expected return time is finite, and null
recurrent otherwise. The ergodic theorem states that a Markov chain is ergodic when it is
aperiodic, irreducible, and positive recurrent.

The non-Markovian chains of an adaptive algorithm that adapt based on the history of the
chains should have two conditions: containment and diminishing adaptation. Containment
is difficult to implement and is not currently programmed into Laplace’s Demon. The con-
dition of diminishing adaptation is fulfilled when the amount of adaptation diminishes with
the length of the chain. Diminishing adaptation can be achieved when the proposal vari-
ances become smaller or by decreasing the probability of performing adaptations with more
iterations (Roberts and Rosenthal 2007). Trace-plots of the output of the LaplacesDemon

function automatically include plots of the absolute differences in proposal variance with each
adaptation for adaptive algorithms, and the Consort function will try to suggest a different
adaptive algorithm when these absolute differences are not trending downward.

32 LaplacesDemon

The remaining MCMC algorithms in the LaplacesDemon package are now presented alpha-
betically.

Adaptive Hamiltonian Monte Carlo

This is an adaptive form of Hamiltonian Monte Carlo (HMC) called Adaptive Hamiltonian
Monte Carlo (AHMC). For more information on HMC, see section 12.4.13. In AHMC, an ad-
ditional algorithm specification is included called Periodicity, which specifies how often the
algorithm adapts, and it can only begin to adapt after the tenth iteration. Of the remaining
algorithm specifications, the vector epsilon (ε) is adapted, and L (L) is not. When adapting,
and considering K parameters, AHMC multiplies εk by 0.8 when a proposal for parameter k
has not been accepted in the last 10 iterations, or multiplies it by 1.2 when a proposal has
been accepted at least 8 of the last 10 iterations, as suggested by Neal (2011).

As with HMC, the Demonic Suggestion section of the output of Consort treats AHMC
differently when L > 1 than most other algorithms by potentially suggesting a new value
for L to achieve independent samples, without altering the latest specification of the user
for Iterations and Thinning. The suggested value of L may be close to correct or wildly
incorrect, so bear in mind that it is not an adaptive parameter here.

As with HMC, the AHMC algorithm is slower than many other algorithms, but often produces
chains with good mixing. An alternative to AHMC that should perform better is HMCDA,
presented below. AHMC is more consistent with respect to time per iteration, because L
remains constant, than HMCDA and NUTS, which may have some iterations that are much
slower than others. If AHMC is used for adaptation, then the final, non-adaptive algorithm
should be HMC.

Adaptive Metropolis

The Adaptive Metropolis (AM) algorithm of Haario et˜al. (2001) adapts based on the observed
covariance matrix from the history of the chains14. Laplace’s Demon uses a variation of the
Adaptive Metropolis (AM) algorithm of Haario et˜al. (2001).

Given the number of dimensions (K) or parameters, the optimal scale of the proposal vari-
ance, also called the jumping kernel, has been reported as 2.42/K15 based on the asymp-
totic limit of infinite-dimensional Gaussian target distributions that are independent and
identically-distributed (Gelman, Roberts, and Gilks 1996b). In applied settings, each prob-
lem is different, so the amount of correlation varies between variables, target distributions
may be non-Gaussian, the target distributions may be non-IID, and the scale should be opti-
mized. Laplace’s Demon uses a scale that is accurate to more decimals: 2.3812042/K. There
are algorithms in statistical literature that attempt to optimize this scale, such as the RAM

algorithm.

Haario et˜al. (2001) tested their algorithm with up to 200 dimensions or parameters. It
has been tested in Laplace’s Demon with as many as 2,600 parameters, so it is capable of
large-scale Bayesian inference. To effectively finish adapting, AM must solve the proposal
covariance matrix, and this can be slow in high dimensions.

14Haario et˜al. (2001) assert that the chains remain ergodic in the limit as the amount of change in the
adaptations should decrease to zero as the chains approach the target distributions, now referred to as the
diminishing adaptation condition of Roberts and Rosenthal (2007).

15The optimal proposal standard deviation in this case is approximately 2.4/
√
K.

Statisticat 33

The version of AM in Laplace’s Demon should be capable of more dimensions than the AM
algorithm as it was presented, because when Laplace’s Demon experiences an error in multi-
variate AM, or when the acceptance rate is less than 5%, it defaults to random-scan compo-
nentwise adaptive proposals (Haario, Saksman, and Tamminen 2005). Although componen-
twise adaptive proposals should take more iterations to converge, the algorithm is limited in
dimension only by the random-access memory (RAM) of the computer.

In both the multivariate and componentwise cases, the AM algorithm begins with a fixed pro-
posal variance or covariance that is either estimated internally or supplied by the user. Next,
the algorithm begins, and it does not adapt until the iteration is reached that is specified by
the user in the Adaptive argument of the algorithm specification list. Then, the algorithm
will adapt with every n iterations according to the Periodicity argument, also in the algo-
rithm specification list. Therefore, the user has control over when the AM algorithm begins
to adapt, and how often it adapts. The value of the Adaptive argument in Laplace’s Demon
is chosen subjectively by the user according to their confidence in the accuracy of the initial
proposal covariance or variance. The value of the Periodicity argument is chosen by the
user according to their patience: when the value is 1, the algorithm will adapt continuously,
which will be slower to calculate. The AM algorithm adapts the proposal covariance or vari-
ance according to the observed covariance or variance in the entire history of all parameter
chains, as well as the scale factor.

As recommended by Haario et˜al. (2001), there are two tricks that may be used to assist
the AM algorithm in the beginning. Although Laplace’s Demon does not use the suggested
“greedy start” method (and will instead use Laplace Approximation when sample size per-
mits), it uses the second suggested trick of shrinking the proposal as long as the acceptance
rate is less than 5%, and there have been at least five acceptances. Haario et˜al. (2001) sug-
gest loosely that if “it has not moved enough during some number of iterations, the proposal
could be shrunk by a constant factor”. For each iteration that the acceptance rate is less
than 5% and that the AM algorithm is used but the current iteration is prior to adaptation,
Laplace’s Demon multiplies the proposal covariance or variance by (1 - 1/Iterations). Over
pre-adaptive time, this encourages a smaller proposal covariance or variance to increase the
acceptance rate so that when adaptation begins, the observed covariance or variance of the
chains will not be constant, and then shrinkage will cease and adaptation will take it from
there.

The AM algorithm performs very well in practice, though each adaptation is time-consuming
after numerous iterations. The Adaptive-Mixture Metropolis (AMM) of Roberts and Rosen-
thal (2009) and Robust Adaptive Metropolis (Vihola 2011) are extensions of the AM algo-
rithm.

Adaptive Metropolis-within-Gibbs

The Adaptive Metropolis-within-Gibbs (AMWG) algorithm is presented in (Roberts and
Rosenthal 2009; Rosenthal 2007). It is an adaptive version of Metropolis-within-Gibbs (MWG).
For more information on MWG, see section 12.4.18.

In AMWG, the standard deviation of the proposal of each parameter is manipulated to opti-
mize the associated acceptance rate toward 0.44. This is much simpler than other adaptive
methods that adapt based on sample covariance in large dimensions. Large covariance matri-
ces require a large number of elements to adapt, which takes exponentially longer to adapt as

34 LaplacesDemon

the dimension increases. Regardless of dimension, the AMWG optimizes each parameter to
a univariate acceptance rate, and a sample covariance matrix does not need to be estimated
for adaptation, which consumes time and memory. The order of the parameters for updat-
ing is randomized each iteration (random-scan AMWG), as opposed to sequential updating
(deterministic-scan AMWG).

Compared to other adaptive algorithms with multivariate proposals, a disadvantage is the
time to complete each iteration increases as a function of parameters and model complexity, as
noted in MWG. For example, in a 100-parameter model, AMWG completes its first iteration as
the AMM algorithm completes its 100th. However, to adapt accurately, the AMM algorithm
must correctly estimate 5,050 elements of a sample covariance matrix, while AMWG must
correctly estimate only 100 proposal standard deviations. Roberts and Rosenthal (2009) have
shown an example model with 500 parameters that had a burn-in of around 25,000 iterations.

The advantages of AMWG over AMM are that AMWG does not require a burn-in period
before it can begin to adapt, and that AMWG does not need to estimate a covariance matrix to
adapt properly. The disadvantages of AMWG compared to AMM are that correlation can be
problematic since it is not taken into account with a proposal covariance matrix, and AMWG
solves the model function once per parameter per iteration, which can be unacceptably slow
with large or complicated models. The advantage of AMWG over RAM is that AMWG
does not need to estimate a covariance matrix to adapt properly. The disadvantages of
AMWG compared to RAM are AMWG is less likely to handle multimodal or heavy-tailed
targets, and AMWG solves the model function once per parameter per iteration, which can
be unacceptably slow with large or complicated models. If AMWG is used for adaptation,
then the final, non-adaptive algorithm should be MWG.

Adaptive-Mixture Metropolis

The Adaptive-Mixture Metropolis (AMM) algorithm is an extension by Roberts and Rosen-
thal (2009) of the AM algorithm of Haario et˜al. (2001). AMM differs from the AM algorithm
in two respects. First, AMM updates a scatter matrix based on the cumulative current pa-
rameters and the cumulative associated outer-products, and these are used to generate a
multivariate normal proposal. This is more efficient with large numbers of parameters adapt-
ing over many iterations, especially with frequent adaptations, and results in a much faster
algorithm. The second (and main) difference, is that the proposal is a mixture. The two mix-
ture components are adaptive multivariate and static/symmetric univariate proposals. The
mixture is determined at each iteration with a mixture weight. The mixture weight must be in
the interval (0,1], and it defaults to 0.05, as in Roberts and Rosenthal (2009). A higher value
of the mixture weight is associated with more static/symmetric univariate proposals, and a
lower weight is associated with more adaptive multivariate proposals. The algorithm will be
unable to include the multivariate mixture component until it has accumulated some history,
and models with more parameters will take longer to be able to use adaptive multivariate
proposals.

An additional algorithm specification, B, allows the user to organize parameters into blocks.
B accepts a list, in which each component is a block and accepts a vector that consists of
numbers that point to the associated parameters in parm.names. B defaults to NULL, in
which case blocking does not occur. When blocking does occur, the proposal covariance
matrix may be either NULL or a list in which each component is the covariance matrix for a

Statisticat 35

block. As more blocks are added, the algorithm becomes closer to AMWG.

The advantages of AMM over AMWG are that it takes correlation into account (when
B=NULL) as it adapts, and is much faster to update each iteration. The disadvantages
are that AMWG does not require a burn-in period before it can begin to adapt, and more
information must be learned in the covariance matrix to adapt properly (see section 12.4.6
for more). Disadvantages of AMM compared to RAM are that RAM does not require a
burn-in period before it can begin to adapt, RAM is more likely to better handle multimodal
or heavy-tailed targets, and RAM also adapts to the shape of the target distributions and
coerces the acceptance rate. If AMM is used for adaptation, then the final, non-adaptive
algorithm should be RWM (though block functionality is not currently built for RWM).

Affine-Invariant Ensemble Sampler

The Affine-Invariant Ensemble Sampler (AIES) of Goodman and Weare (2010) uses a com-
plmentary ensemble of at least 2J walkers for J parameters. Each walker receives J initial
values, and initial values must differ for each walker. At each iteration, AIES makes a multi-
variate proposal for each walker, given a scaled difference in position by parameter between
the current walker and another randomly-selected walker.

Algorithm specifications include Nc as the number of walkers, Z as a Nc × J matrix of initial
values, β as a scale parameter, CPUs as the number of central processing units (CPUs),
Packages as a vector of package names, and Dyn.lib as a vector of shared libraries. The
recommended number of walkers is at least 2J . If separate sets of initial values are not
supplied in Z, since Z defaults to NULL, then the GIV function is used to generate initial values.
The original article referred to the scale parameter as α, though it has been renamed here
to β to avoid a conflict with the acceptance probability α in the Metropolis step. The β
parameter may be manipulated to affect the desired acceptance rate, though in practice, the
acceptance rate may potentially be better affected by increasing the number of walkers. It is
recommended to specify CPUs=1 and leave the remaining arguments to NULL, unless needed.

This version returns the samples from one walker, and the other walkers assist the main
walker. A disadvantage of this approach is that all samples from all walkers are not returned.
An advantage of this approach is that if a particular walker is an outlier, then it does not
affect the main walker, unless of course it is the main walker! Multiple sets of samples are best
returned in a list, such as with parallel chains in the LaplacesDemon.hpc function, though it
is not applicable in LaplacesDemon.

AIES has been parallelized by Foreman-Mackey, Hogg, Lang, and Goodman (2012), and this
style of parallelization is available here as well. The user is cautioned to prefer CPUs=1, because
parallelizing may result in a slower algorithm due to communication between the master and
slave CPUs each iteration. This communication is costly, and is best overcome with a large
number of CPUs available, and when the Model function is slow to evaluate in comparison to
network communication time.

Both the parallelized (CPUs > 1) and un-parallelized (CPUs=1) versions should be called
from LaplacesDemon, not LaplacesDemon.hpc. When parallelized, the number of walkers
must be an even number (odd numbers are not permitted), and the walkers are split into
two equal-sized batches. Each iteration, each walker moves in relation to a randomly-selected
walker in the other batch. This retains detailed balance.

AIES is attractive for offering affine-invariance, and therefore being generally robust to badly

36 LaplacesDemon

scaled posteriors, such as with highly correlated parameters. It is also attractive for mak-
ing a multivariate proposal without a proposal covariance matrix. However, since at least
2J walkers are recommended, the number of model evaluations per iteration exceeds most
componentwise algorithms by at least twice, making AIES a slow algorithm per iteration,
and computation scales poorly with model dimension. Large-scale computing environments
may overcome this limitation with parallelization, but parallelization is probably not very
helpful (and may be detrimental) in small-scale computing environments when evaluating the
model function is not slow in comparison with network communication time. AIES is not an
adaptive algorithm, and is therefore suitable as a final algorithm.

Componentwise Hit-And-Run Metropolis

The Hit-And-Run algorithm is a variation of RWM that has been around as long as Gibbs
sampling. Hit-And-Run randomly samples a direction on the unit sphere as it Gilks and
Roberts (1996), and a proposal is made for each parameter in its randomly-selected direction
for a uniformly-distributed distance. This version of Hit-And-Run, called Componentwise Hit-
And-Run Metropolis (CHARM), includes componentwise proposals and a Metropolis step for
rejection. Introduced by Turchin (1971) along with Gibbs sampling, and popularized by Smith
(1984), Hit-And-Run was given its name later due to its ability to run across the state-space
and arrive at a distant “hit-point”. It is related to other algorithms with interesting names,
such as Hide-And-Seek and Shake-And-Bake.

As a componentwise algorithm, the model is evaluated after a proposal is made for each
parameter, which results in an algorithm that takes more time per iteration. However, as with
the MWG family, the time to complete each iteration grows with the number of parameters. It
is recommended to begin a large dimensional model with HARM (especially its adaptive form),
as it should have a high acceptance rate when far from the target. The componentwise form
may have a higher acceptance rate, but may or may not produce approximately independent
samples faster per minute.

The traditional, non-adaptive version of CHARM may be run by including Specs=NULL.
However, an optional Robbins-Monro stochastic approximation of Garthwaite et˜al. (2010)
may be applied to the proposal distance. To use this, specify the target acceptance rate, such
as Specs=list(alpha.star=0.44). This novel version is called Componentwise Hit-And-
Run Adaptive Metropolis (CHARAM), though the term CHARAM is not used explicitly
within the LaplacesDemon package.

Compared to other algorithms with multivariate proposals, a disadvantage is the time to
complete each iteration increases as a function of parameters and model complexity. For
example, in a 100-parameter model, CHARM completes its first iteration as HARM completes
its 100th.

CHARM enjoys many of the advantages of HARM, such as having no tuning parameters (un-
less the adaptive form is used), traversing complex spaces with bounded sets in one iteration,
not being adaptive (unless specified as adaptive), handling high correlations well, and having
the potential to work well with multimodal distributions. When non-adaptive, CHARM may
be used as a final algorithm.

Delayed Rejection Metropolis

The Delayed Rejection Metropolis (DRM or DR) algorithm is a RWM with one, small twist.

Statisticat 37

Whenever a proposal is rejected, the DRM algorithm will try one or more alternate pro-
posals, and correct for the probability of this conditional acceptance. By delaying rejection,
autocorrelation in the chains may be decreased, and the algorithm is encouraged to move.
Currently, Laplace’s Demon will attempt one alternate proposal when using the DRAM (see
section 12.4.11) or DRM algorithm. The additional calculations may slow each iteration of
the algorithm in which the first set of proposals is rejected, but it may also converge faster.
For more information on DRM, see Mira (2001).

DRM may be considered to be an adaptive MCMC algorithm, because it adapts the proposal
based on a rejection. However, DRM does not violate the Markov property, because the
proposal is based on the current state. For the purposes of Laplace’s Demon, DRM is not
considered to be an adaptive MCMC algorithm, because it is not adapting to the target
distribution by considering previous states in the Markov chain, but merely makes more
attempts from the current state. Considered as a non-adaptive algorithm, it is acceptable to
conclude model updates with this algorithm, rather than following up with RWM.

Laplace’s Demon also temporarily shrinks the proposal covariance arbitrarily by 50% for
delayed rejection. A smaller proposal covariance is more likely to be accepted, and the goal
of delayed rejection is to increase acceptance. In the long-term, a proposal covariance that is
too small is undesirable, and so it is only used in this case to assist acceptance.

Each problem is different, and this can be a useful algorithm. In general, however, it is more
likely that other algorithms are used.

Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm is merely the combination
of both DRM (or DR) and AM (Haario, Laine, Mira, and Saksman 2006). DRAM has been
demonstrated as robust in extreme situations where DRM or AM fail separately. Haario et˜al.
(2006) present an example involving ordinary differential equations in which least squares
could not find a stable solution, and DRAM did well.

The DRAM algorithm is useful to assist the AM algorithm when the acceptance rate is
low. As an alternative, the Adaptive-Mixture Metropolis (AMM) is an extension of the AM
algorithm that includes a mixture of proposals, and one mixture component has a small
proposal standard deviation to assist in overcoming initially low acceptance rates. If DRAM
is used for adaptation, then the final, non-adaptive algorithm should be RWM.

Differential Evolution Markov Chain

The original Differential Evolution Markov Chain (DEMC) (Ter˜Braak 2006), referred to in
the literature as DE-MC, included a Metropolis step on a genetic algorithm called Differential
Evolution with multiple chains (per parameter), in which the chains learn from each other. It
could be considered as parallel adaptive direction sampling (ADS) with the Gibbs sampling
step replaced by a Metropolis step, or as a non-parametric form of random-walk Metropolis
(RWM). However, for a model with J parameters, the original DEMC required at least 2J
chains, and often required as much as 20J chains. Hence, from 2J to 20J model evaluations
were required per iteration, whereas a typical multivariate sampler such as AMM requires one
evaluation, or a componentwise sampler such as AMWG or CHARM requires J evaluations
per iteration.

38 LaplacesDemon

The version included here was presented in Ter˜Braak and Vrugt (2008), and the required
number of chains is drastically reduced by adapting based on historical, thinned samples (the
parallel direction move), and periodically using a snooker move instead. In the article, three
chains were used to update as many as 50-100 parameters. Larger models may require blocks
(as suggested in the article, and blocking is not included here), or more chains (see below).In
testing, here, a few 200-dimensional models have been solved with 5-10 chains.

DEMC has four algorithm specifications: Nc is the number of chains (at least 3), Z is a
T × J matrix or T × J × Nc array of T thinned samples for J parameters and Nc chains,
gamma is a scale parameter, and w is the probability of a snooker move for each iteration.
When gamma=NULL, the scale parameter defaults to the recommended 2.381204/

√
2J , though

for snooker moves, it is 2.381204/
√

2 regardless of the algorithm specification. The default,
recommended probability of a snooker move is w = 0.1.

The parallel direction move consists of a multivariate proposal for each chain in which two
randomly selected previous iterations from two randomly selected other chains are differenced
and scaled, and a small jitter, U ∼ (−0.001, 0.001)J , is added. The snooker move differences
these with another randomly selected (current) chain in the current iteration, and with a fixed
scale. Another variation is to use snooker with past chain time-periods. The snooker move
facilitates mode-jumping behavior for multimodal posteriors.

For the first update, Z is usually NULL. Internally, LaplacesDemon populates Z with GIV, and
it is strongly recommended that PGF is specified by the user. As the sampler iterates, Z is
used for adaptation, and elements of Z are replaced with thinned samples. A short, first
run is recommended to obtain thinned samples, such as in Fit$Posterior1. For consecutive
updates, this posterior matrix is used as Z.

In this implementation, samples are returned of the main chain, for which Initial.Values

are specified. Samples for other chains (associated with PCIV) are not returned, but are used
to assist the main chain. The authors note that too many chains can be problematic when
an outlier chain exists. Here, samples of other chains are not returned, outlier or not. If an
outlier chain exists, it simply does not help the main chain much and wastes computational
resources, but does not negatively affect the main chain.

An attractive property is that DEMC does not require a proposal covariance matrix, but
adapts instead based on past (thinned) samples. In the output of LaplacesDemon, the thinned
samples are also stored in CovarDHis, though they are thinned samples, not the history of the
diagonal of the covariance matrix. This is done so the absolute differences can be observed for
diminishing adaptation. Another attractive property is that the chains may be parallelized,
such as across CPUs, in the future, though the current version is not parallelized.

DEMC has been considered to perform like a version of Metropolis-within-Gibbs that updates
by chain, rather than by component. DEMC may be one form of a compromise between a
one-evaluation multivariate proposal and J componentwise proposals. Since it is adaptive,
DEMC is not recommended as a final algorithm.

Hamiltonian Monte Carlo

Introduced under the name of hybrid Monte Carlo (Duane, Kennedy, Pendleton, and Roweth
1987), the name Hamiltonian Monte Carlo (HMC) surpasses it in popularity in statistics
literature. HMC introduces auxiliary momentum variables with independent, Gaussian pro-
posals. Momentum variables receive alternate updates, from simple updates to Metropolis

Statisticat 39

updates. Metropolis updates result in the proposal of a new state by computing a trajectory
according to Hamiltonian dynamics, from physics. Hamiltonian dynamics is discretized with
the leapfrog method. In this way, distant jumps can be proposed and random-walk behavior
avoided.

HMC has two algorithm specifications: a vector of the step size of the leapfrog steps, epsilon
(ε), that is equal in length to the number of parameters, and the number of leapfrog steps, L
(L). When L = 1, HMC reduces to Langevin Monte Carlo (LMC), also called the Metropolis-
Adjusted Langevin Algorithm (MALA), introduced by Rossky, Doll, and Friedman (1978).
These tuning parameters must be adjusted until the acceptance rate is appropriate. The
optimal acceptance rate of HMC is 65%, and Laplace’s Demon is appeased when it is within
the interval [60%, 70%], or in the case of LMC or MALA, in the interval [50%, 65%], where
57.4% is optimal. Tuning ε and L, however, is very difficult. The trajectory length, εL must
also be considered. The ε vector is output in the list component CovarDHis, though it is not
the diagonal of a covariance matrix.

Suggestions for tuning ε and L are found in Neal (2011). When ε is too large, the algorithm
becomes unstable and suffers from a low acceptance rate. When ε is too small, the algorithm
takes too many small steps and is inefficient. When L is too large, trajectory lengths (εL)
result in double-back behavior and become computationally self-defeating. When L is too
small, more random-walk behavior occurs and mixing becomes slower.

If a user is new to tuning HMC algorithms, then good advice may be to leave L = 1 and
begin with small values for ε, say 0.1 or smaller. It is easy to experience problems when
inexperienced, but HMC is a rewarding algorithm once proficiency is acquired. As can be
expected, the adaptive extensions (AHMC, HMCDA, and NUTS), will also be easier, since ε
is adapted and does not require tuning (and in the case of NUTS, L does not require tuning).

Partial derivatives are required, and hence the parameters must be differentiable16 everywhere
the algorithm explores. Partial derivatives are approximated with the partial function.
This is computationally intensive, and computational expense increases with the number of
parameters. For K parameters and L leapfrog steps, there are L + 2KL evaluations of the
model specification function per iteration. In practice, starting any of the algorithms in the
HMC family (AHMC, HMC, HMCDA, or THMC) in a region that is distant from density
will result in failure due to differentiation, unless manipulated with priors.

The Demonic Suggestion section of the output of Consort treats HMC (when L > 1) differ-
ently than most other algorithms. For example, after updating a model with HMC, Laplace’s
Demon will not suggest a different number of iterations and thinning, but instead may sug-
gest a new value of L after taking autocorrelation in the chains into account. As L increases,
the speed per iteration decreases due to more calculations, and a higher value of L is not
necessarily desirable. Laplace’s Demon attempts suggestions in an effort to give independent
samples consistent with the latest specification of the user for iterations.

Since HMC requires the approximation of partial derivatives, it is slower per iteration than
most algorithms, and much slower in higher dimensions. Tuned well, HMC is an excellent
algorithm, but tuning can be very difficult. The AHMC algorithm (described above) and
HMCDA (below) are adaptive versions of HMC in which ε is adapted based on recent history

16When the joint posterior is not differentiable, and should be, it has probably encountered an area of flat
density. It is recommended that WIPs are used for regularization. For more information on WIPs, see the
accompanying vignette entitled “Bayesian Inference”.

40 LaplacesDemon

of acceptance and rejection. The NUTS algorithm (below) is a fully adaptive version that
does not require tuning of ε or L.

Hamiltonian Monte Carlo with Dual-Averaging

The Hamiltonian Monte Carlo with Dual-Averaging (HMCDA) algorithm is an extension to
HMC that adapts the scalar step-size parameter, ε, according to dual-averaging. This is
algorithm #5 in Hoffman and Gelman (2012), with the addition of an optional constraint,
Lmax. For more information on HMC, see section 12.4.13.

HMCDA has five algorithm specifications: the number of adaptive iterations A, the target
acceptance rate delta or δ (and 0.65 is recommended), a scalar step-size epsilon or ε, a
maximum number of leapfrog steps Lmax, and the trajectory length lambda or λ. When
epsilon=NULL, a reasonable initial value is found. The trajectory length is scalar λ = εL,
where L is the unspecified number of leapfrog steps that is determined from ε and λ. The
Consort function requires the acceptance rate to be within 5% of δ.

Each iteration i ≤ A, HMCDA adapts ε and coerces the target acceptance rate δ. The number
of leapfrog steps, L, is printed with each Status message. In LaplacesDemon, all thinned
samples are returned, including adaptive samples. This allows the user to examine adaptation.
To obtain strictly non-adaptive samples after a previous update that included adaptation,
simply update again with A=0 and the last value of ε. epsilon=NULL is recommended.

As with HMC, the HMCDA algorithm is slower than many other algorithms, but often pro-
duces chains with good mixing. HMCDA should outperform AHMC, and iterates faster as
well, unless L becomes large. When mixing is inadequate, consider switching to the NUTS
algorithm. When parameters are highly correlated, another algorithm should be preferred in
which correlation is taken into account, such as AMM, or in which the algorithm is generally
invariant to correlation, such as twalk.

Hit-And-Run Metropolis

The Hit-And-Run algorithm is a variation of RWM that has been around at least as long
as Gibbs sampling. Hit-And-Run randomly samples a direction on the unit sphere as in
Gilks and Roberts (1996), and a proposal is made for each parameter in its randomly-selected
direction for a uniformly-distributed distance. This version of Hit-And-Run, called Hit-And-
Run Metropolis (HARM), includes multivariate proposals and a Metropolis step for rejection.
Introduced by Turchin (1971) along with Gibbs sampling, and popularized by Smith (1984),
Hit-And-Run was given its name later due to its ability to run across the state-space and
arrive at a distant “hit-point”. It is related to other algorithms with interesting names, such
as Hide-And-Seek and Shake-And-Bake.

HARM is the fastest MCMC algorithm per iteration in this package, because it is very simple.
For example, HARM does not use a proposal covariance matrix, and there are no tuning
parameters, with one optional exception discussed below. The proposal is multivariate in the
sense that all parameters are proposed at once, though from univariate draws. HARM often
mixes better than the Gibbs sampler (Gilks and Roberts 1996), especially with correlated
parameters (Chen and Schmeiser 1992).

The traditional, non-adaptive version of HARM may be run by including Specs=NULL. How-
ever, an optional Robbins-Monro stochastic approximation of Garthwaite et˜al. (2010) may

Statisticat 41

be applied to the proposal distance. To use this, specify the target acceptance rate, such
as Specs=list(alpha.star=0.234). This novel version is called Hit-And-Run Adaptive
Metropolis (HARAM), though the term HARAM is not used explicitly within the Laplaces-
Demon package. Using adaptive distance has allowed HARM (HARAM) to estimate a model
with more than 2,500 dimensions.

The acceptance rate seems to be higher when HARM is far from the target, and tends to get
lower as HARM approaches the target. When the acceptance rate is low, the adaptive version
is recommended.

Adaptive HAR (without the Metropolis step) with a multivariate proposal is available in the
LaplaceApproximation function.

The HARM algorithm is able to traverse complex spaces with bounded sets in one iteration.
As such, HARM may work well with multimodal posteriors due to potentially good mode-
switching behavior. However, HARM may have difficulty sampling regions of high probability
that are spike-shaped or near constraints, and this difficulty is likely to be more problematic
in high dimensions. When HARM is non-adaptive, it may be used as a final algorithm.

Independence Metropolis

Proposed by Hastings (1970) and popularized by Tierney (1994), the Independence Metropolis
(IM) algorithm (also called the independence sampler) is an algorithm in which the proposal
distribution does not depend on the previous state or iteration. The proposal distribution
must be a good approximation of the target distribution for the IM algorithm to peform well,
and the proposal distribution should have slightly heavier tails than the target distribution.
IM is used most often to obtain additional posterior samples given an algorithm that has
already converged.

The usual approach to IM is to update the model with Laplace Approximation, and then
supply the posterior mode and covariance to the IM algorithm. The posterior mode vector
of Laplace Approximation becomes the mu argument in the algorithm specifications for IM.
The covariance matrix from Laplace Approximation is expanded by multiplying it by 1.1 so
that it has heavier tails. Each iteration, IM draws from a multivariate normal distribution as
the proposal distribution. Alternatively, posterior means and covariances may be used from
other algorithms, such as other MCMC algorithms.

Since IM is non-adaptive and uses a proposal distribution that remains fixed for all iterations,
it may be used as a final algorithm.

Interchain Adaptation

The Interchain Adaptation (INCA) algorithm of Craiu et˜al. (2009) is an extension of the
Adaptive Metropolis (AM) algorithm of Haario et˜al. (2001). Craiu et˜al. (2009) refer to
INCA as inter-chain adaptation and inter-chain adaptive MCMC. INCA uses parallel chains
that are independent, except that they share the adaptive component, and this sharing speeds
convergence. Since parallel chains are a defining feature of INCA, this algorithm works only
with LaplacesDemon.hpc, not LaplacesDemon.

As with the AM algorithm, the proposal covariance matrix is set equal to the historical (or
sample) covariance matrix. Ample pre-adaptive iterations are recommended (Craiu et˜al.
2009), and initial values should be dispersed to aid in discovering multimodal marginal poste-

42 LaplacesDemon

rior distributions. After adaptation begins, INCA combines the historical covariance matrices
from all parallel chains during each adaptation. Each chain learns from experience as in AM,
and in INCA, each chain also learns from the other parallel chains.

Solonen et˜al. (2012) found a dramatic reduction in the number of iterations to convergence
when INCA used 10 parallel chains, compared against a single-chain AM algorithm. Similar
improvements have been noted in the LaplacesDemon package, though more time is required
per iteration.

The Gelman.Diagnostic is recommended by Craiu et˜al. (2009) to determine when the par-
allel chains have stopped sharing different information about the target distributions. The
exchange of information between chains decreases as the number of iterations increases.

This implementation of INCA uses a server function that is built into LaplacesDemon.hpc.
If the connection to this server fails, then the user must kill the process and then close all
open connections with the closeAllConnections function.

Since INCA is an adaptive algorithm, the final algorithm should be RWM.

Metropolis-within-Gibbs

Metropolis-within-Gibbs (MWG) was proposed as a hybrid algorithm that combines Metropolis-
Hastings and Gibbs sampling, and was suggested in Tierney (1994). The idea was to substitute
a Metropolis step when Gibbs sampling fails. However, Gibbs sampling is not included in this
version or most versions, making it an algorithm with a misleading name. Without Gibbs
sampling, the more honest name would be componentwise random-walk Metropolis, but the
more common name is MWG.

Also referred to as Metropolis within Gibbs or Metropolis-in-Gibbs, MWG is a componentwise
algorithm in which the model specification function is evaluated a number of times equal to the
number of parameters, per iteration. The order of the parameters for updating is randomized
each iteration (random-scan MWG), as opposed to sequential updating (deterministic-scan
MWG). MWG often uses blocks, but in LaplacesDemon, all blocks have dimension 1, meaning
that each parameter is updated in turn. If parameters were grouped into blocks, then they
would undesirably share a proposal standard deviation. MWG runs most efficiently when the
acceptance rate of each parameter is 0.44, which is the optimal acceptance rate of a target
distribution that is univariate and Gaussian.

The advantage of MWG over RWM is that it is more efficient with information per iteration,
so convergence is faster in iterations. The disadvantages of MWG are that covariance is
not included in proposals, and it is more time-consuming due to the evaluation of the model
specification function for each parameter per iteration. As the number of parameters increases,
and especially as model complexity increases, the run-time per iteration decreases. Since fewer
iterations are completed in a given time-interval, the possible amount of thinning is also at a
disadvantage.

No-U-Turn Sampler

The No-U-Turn Sampler (NUTS) is an extension of HMC that adapts both the scalar step-
size ε and scalar number of leapfrog steps L. This is algorithm #6 in Hoffman and Gelman
(2012). For more information on HMC, see section 12.4.13.

NUTS has three algorithm specifications: the number of adaptive iterations A, the target

Statisticat 43

acceptance rate delta or δ (and 0.6 is recommended), and a scalar step-size epsilon or ε.
When epsilon=NULL, a reasonable initial value is found. The Consort function requires the
acceptance rate to be within 5% of δ.

Each iteration i ≤ A, NUTS adapts both ε and L, and coerces the target acceptance rate δ.
L continues to change after adaptation ends, but is not an adaptive parameter in the sense of
destroying ergodicity. The adaptive samples are discarded and only the thinned non-adaptive
samples are returned.

If NUTS begins (or begins again) with a value of ε that is too small, then early iterations
may take a very long time, since L may be very large before a u-turn is found. epsilon=NULL
is recommended. It is also recommended, in complex models, to set Status=1. The time
per iteration varies greatly by iteration as NUTS searches for L. If NUTS seems to hang at
an iteration, then most likely L is becoming large, and the search for it is becoming time-
consuming. It may be recommended to cancel the update and try HMCDA, which will print
L to the screen with each Status message. Though these are different algorithms, this may
help the user decide whether or not to try a different algorithm. The AHMC algorithm will
not perform as well, but offers consistent time per iteration.

The main advantage of NUTS over other MCMC algorithms is that NUTS is the algorithm
most likely to produce approximately independent samples, in the sense of low autocorrelation.
Due to computational complexity, NUTS is slower per iteration than HMC, and the HMC
family is among the slowest. Despite this, NUTS often produces chains with excellent mixing,
and should outperform other adaptive versions of HMC, such as AHMC and HMCDA. Per
iteration, NUTS should generally perform better than any other MCMC algortihm. Per
minute, however, is another story.

In complex and high-dimensional models, NUTS may produce approximately independent
samples much more slowly in minutes than other MCMC algorithms, such as HARM. This is
because calculating partial derivatives, and the search each iteration for L, are both compu-
tationally intensive.

Reversible-Jump

Reversible-jump Markov chain Monte Carlo (RJMCMC) was introduced by Green (1995)
as an extension to MCMC in which the dimension of the model is uncertain and to be
estimated. Reversible-jump belongs to a family of trans-dimensional algorithms, and it has
many applications, including variable selection, model selection, mixture component selection,
and more. The RJ algorithm, here, is one of the simplest possible implementations and is
intended for variable selection and Bayesian Model Averaging (BMA).

The Componentwise Hit-And-Run Metropolis (CHARM) algorithm (see section 12.4.9) was
selected, here, to be extended with reversible-jump. CHARM was selected because it does not
have tuning parameters, it is not adaptive (which simplifies things with RJ), and it performs
well. Even though it is a componentwise algorithm, it does not evaluate all potential predictors
each iteration, but only those that are included. This novel combination is Reversible-Jump
(RJ) with Componentwise Hit-And-Run Metropolis (CHARM). The optimal acceptance rate,
and a good suggested acceptance rate range, are unknowns, so the Consort function will be
little help making suggestions here.

RJ proceeds by making two proposals during each iteration. First, a within-model move
is proposed. This means that the model dimension does not change, and the algorithm

44 LaplacesDemon

proceeds like a traditional CHARM algorithm. Next, a between-models move is proposed,
where a selectable parameter is sampled, and its status in the model is changed. If this
selected parameter is in the current model, then RJ proposes a model that excludes it. If this
selected parameter is not in the current model, then RJ proposes a model that includes it.
RJ also includes a user-specified binomial prior distribution for the expected size of the model
(the number of included, selectable parameters), as well as user-specified prior probabilities
for the inclusion of each of the selectable parameters.

Behind the scenes, RJ keeps track of the most recent non-zero value for each selectable
parameter. If a parameter is currently excluded, then its value is currently set to zero. When
this parameter is proposed to be included, the most recent non-zero value is used as the basis
of the proposal, rather than zero. In this way, an excluded parameter does not have to travel
back toward its previously included density, which may be far from zero. However, if RJ
begins updating after a previous run had ended, then it will not begin again with this most
recent non-zero value. Please keep this in mind with this implementation of RJ.

There are five specifications in RJ. bin.n is the scalar size parameter of the binomial prior
distribution for model size, and is the maximum size that RJ will explore. bin.p is the
scalar probability parameter of the binomial prior distribution for model size, and the mean
or median expected model size is bin.n × bin.p. parm.p is a vector of parameter-inclusion
probabilities that must be equal in length to the number of initial values. selectable is
a vector of indicators (0 or 1) that indicate whether or not a parameter is selectable by
reversible-jump. When an element is zero, it is always in the model. Finally, the selected

vector contains indicators of whether or not each parameter is in the model when RJ begins
to update. All of these specifications must receive an argument with exactly that name (such
as bin.n=bin.n, for the Consort function to recognize it, with the exception of the selected

specification.

RJ provides a sampler-based alternative to variable selection, compared with the Bayesian
Adaptive Lasso (BAL) or Stochastic Search Variable Selection (SSVS), as two of many other
approaches. Examples of BAL and SSVS are in the Examples vignette. Advantages of RJ
are that it is easier for the user to apply to a given model than writing the variable-selection
code into the model, and RJ requires fewer parameters, because variable-inclusion is handled
by the specialized sampler, rather than the model specification function. A disdvantage of
RJ is that other methods allow the user to freely change to other MCMC algorithms, if the
current algorithm is unsatisfactory.

Robust Adaptive Metropolis

The AM and AMM algorithms adapt the scale of the proposal distribution to attain a the-
oretical acceptance rate. However, these algorithms are unable to adapt to the shape of the
target distribution. The Robust Adaptive Metropolis (RAM) algorithm estimates the shape
of the target distribution and simultaneously coerces the acceptance rate (Vihola 2011). If
the acceptance probability, α, is less (or greater) than an acceptance rate target, α∗, then the
proposal distribution is shrunk (or expanded). Matrix S is computed as a rank one Cholesky
update. Therefore, the algorithm is computationally efficient up to a relatively high dimen-
sion. The AM and AMM algorithms require a burn-in period prior to adaptation, so that
these algorithms can adapt to the sample covariance. The RAM algorithm does not require a
burn-in period prior to adaptation. The RAM algorithm allows the user the option of using

Statisticat 45

the traditional normally-distributed proposals, or t-distributed proposals for heavier-tailed
target densities. Unlike AM and AMM, RAM can cope with targets having arbitrarily heavy
tails, and handles multimodal targets better than AM. The user is still assumed to know and
specify the target acceptance rate.

This version of RAM does not force positive-definiteness of the variance-covariance matrix,
and adapts only when it is positive-definite. Alternative versions exist elsewhere that force
positive-definiteness, but in testing here, it seems better to allow it to adapt only when it is
positive-definite without coercion.

RAM is slow when Periodicity=1 (where it performs best), and does not seem to perform
well when Periodicity is ≥ 100. A general recommendation is Periodicity=10.

In testing the RAM algorithm, it has not been observed to obtain its acceptance rate goal
and some wild fluctuations have been observed in the proposal variance after many iterations
in some cases. In some models it does well, nonetheless it cannot be recommended as a first
choice for a generalized algorithm.

The advantages of RAM over AMM are that RAM does not require a burn-in period before
it can begin to adapt, RAM is more likely to better handle multimodal or heavy-tailed tar-
gets, RAM also adapts to the shape of the target distributions, and attempts to coerce the
acceptance rate. The advantages of RAM over AMWG are that RAM takes correlations into
account, and is much faster to update each iteration. The disadvantage of RAM compared to
AMWG is that more information must be learned in the covariance matrix to adapt properly
(see section 12.4.6 for more), and frequent adaptation may be desirable, but slow. If RAM is
used for adaptation, then the final, non-adaptive algorithm should be RWM.

Sequential Adaptive Metropolis-within-Gibbs

The Sequential Adaptive Metropolis-within-Gibbs (SAMWG) algorithm is for state-space
models (SSMs), including dynamic linear models (DLMs). It is identical to the AMWG algo-
rithm, except with regard to the order of updating parameters (and here, sequential does not
refer to deterministic-scan). Parameters are grouped into two blocks: static and dynamic. At
each iteration, static parameters are updated first, followed by dynamic parameters, which
are updated sequentially through the time-periods of the model. The order of the static pa-
rameters is randomly selected at each iteration, and if there are multiple dynamic parameters
for each time-period, then the order of the dynamic parameters is also randomly selected.
The argument Dyn receives a T × K matrix of T time-periods and K dynamic parameters.
The SAMWG algorithm is adapted from Geweke and Tanizaki (2001) for LaplacesDemon.
The SAMWG is a single-site update algorithm that is more efficient in terms of iterations,
though convergence can be slow with high intercorrelations in the state vector (Fearnhead
2011). If SAMWG is used for adaptation, then the final, non-adaptive algorithm should be
SMWG.

Sequential Metropolis-within-Gibbs

The Sequential Metropolis-within-Gibbs (SMWG) algorithm is the non-adaptive version of
the SAMWG algorithm, and is used for final sampling of state-space models (SSMs).

Slice Sampling

46 LaplacesDemon

Slice sampling was introduced in Neal (1997) and improved in Neal (2003). In slice sampling,
a distribution is sampled by sampling uniformly from the region under the plot of its density
function. Here, slice sampling uses two phases as follows. First, an interval is created for the
slice, and second, rejection sampling is performed within this interval.

The Slice algorithm implemented here is componentwise and based on figures 3 and 5 in Neal
(2003), in which the slice is replaced with an interval I that contains most of the slice. For
each parameter, an interval I is created and expanded by the “stepping out” procedure with
step size w until the interval is larger than the slice, and the number of steps m may be
limited by the user. The original slice sampler is inappropriate for the unbounded interval
(-∞, ∞), and this improved version allows this unbounded interval by replacing the slice
with the created interval I. This algorithm adaptively changes the scale, though it is not an
adaptive algorithm in the sense that it retains the Markov property.

This form of Slice has two algorithm specifications: m and w. The number of steps m to
increase interval I defaults to∞, and may otherwise be an integer. If a scalar is entered, then
it will be applied to all parameters, or a vector may be entered so that each parameter may
be specified. The step size w defaults to 1 and may otherwise be in the interval (0, ∞). As
with m, w may be a scalar or vector.

The lower and upper bounds of interval I default to (−∞, ∞), and adjust automatically to
constrained parameters. Once the interval is constructed, a proposal is drawn randomly from
within the interval until the proposal is accepted, and the interval is otherwise shrunk. The
acceptance rate of this Slice algorithm is 1, though multiple model evalutations occur per
iteration.

This componentwise Slice algorithm has been noted to be more efficient than Metropolis
updates, may be easier to implement than Gibbs sampling, and is attractive for routine and
automated use (Neal 2003). As a componentwise algorithm, it is slower per iteration than
algorithms that use multivariate proposals. Since Slice is not an adaptive algorithm, it is
acceptable as a final algorithm.

Tempered Hamiltonian Monte Carlo

The Tempered Hamiltonian Monte Carlo (THMC) algorithm is an extension of the HMC
algorithm to include another algorithm specification: Temperature. The Temperature must
be positive. When greater than 1, the algorithm should explore more diffuse distributions,
and may be helpful with multimodal distributions.

There are a variety of ways to include tempering in HMC, and this algorithm, named here
as THMC, uses “tempered trajectory”, as described by Neal (2011). When L > 1 and during
the first half of the leapfrog steps, the momentum is increased (heated) by multiplying it by√
T , where T is Temperature, each leapfrog step. In the last half of the leapfrog steps, the

momentum decreases (is cooled down) by dividing it by
√
T . The momentum is largest in the

middle of the leapfrog steps, where mode-switching behavior becomes most likely to occur.
This preserves the trajectory, εL.

As with HMC, THMC is a difficult algorithm to tune. Since THMC is non-adaptive, it is
sufficient as a final algorithm.

t-walk

Statisticat 47

The t-walk (twalk) algorithm of Christen and Fox (2010) is a general-purpose algorithm that
requires no tuning, is scale-invariant, is technically non-adaptive (but self-adjusting), and can
sample from target distributions with arbitrary scale and correlation structures. A random
subset of one of two vectors is moved around the state-space to influence one of two chains,
per iteration.

In this implementation, the user specifies initial values for two chains, Initial.Values (as
per usual) and SIV, which stands for secondary initial values. The secondary vector of initial
values may be left to its default, NULL, in which case it is generated with the GIV func-
tion, which performs best when PGF is specified. SIV should be similar to, but unique from,
Initial.Values. The secondary initial values are used for a second chain, which is merely
used here to help the first chain, and its results are not reported.

The authors have provided the t-walk algorithm in R code as well as other languages. It is
called the “t-walk” for “traverse” or “thoughtful” walk, as opposed to RWM. Where adaptive
algorithms are designed to adapt to the scale and correlation structure of target distributions,
the t-walk is invariant to this structure. The step-size and direction continuously “adjust”
to the local structure. Since it is technically non-adaptive, it may also be used as a final
algorithm. The t-walk uses one of four proposal distributions or ‘moves’ per iteration, with
the following probabilities: traverse (p=0.4918), walk (p=0.4918), hop (p=0.0082), and blow
(p=0.0082).

The t-walk has four specification arguments, three of which are tuning parameters. The
authors recommend using the default values. The first specification argument is SIV, and was
explained previously. The n1 specification argument affects the size of the subset of each set
of points to adjust, and relates to the number of parameters. For example, if n1 = 4 and a
model has J = 100 parameters, then there is a p(0.04) = 4/100 probability that a point is
moved that affects each parameter, though this affects only one of two chains per iteration.
Put another way, there is a 4% chance that each parameter changes each iteration, and a 50%
chance each iteration that the observed chain is selected. The traverse specification argument,
at, affects the traverse move, which helps when some parameters are highly correlated, and the
correlation structure may change through the state-space. The traverse move is associated
with an acceptance rate that decreases as the number of parameters increases, and is the
reason that n1 is used to select a subset of parameters each iteration. Finally, the walk
specification argument, aw, affects the walk move. The authors recommend keeping these
specification arguments in n1 ∈ [2, 20], at ∈ [2, 10], and aw ∈ [0.3, 2]. The hop and blow
moves do not have specifications, but help with multimodality, ensure irreducibility, and
prevent the two chains from collapsing together. The hop move is centered on the primary
chain, and the blow move is centered on the secondary chain.

Testing in LaplacesDemon with the default specifications suggests the t-walk is very promising,
but due to the subset of proposals, it is important to note that the reported acceptance rate
indicates the proportion of iterations in which moves were accepted, but that only a subset
of parameters changed, and only one chain is selected each iteration. Therefore, a user
who updates a high-dimensional model should find that parameter values change much less
frequently, and this requires more iterations.

The main advantage of t-walk, like the HARM and MWG families, over multivariate adaptive
algorithms such as AMM and RAM is that t-walk does not adapt to a proposal covariance
matrix, which can be limiting in random-access memory (RAM) and other respects in large

48 LaplacesDemon

dimensions, making t-walk suitable for high-dimensional exploration. Other advantages are
that t-walk is invariant to all but the most extreme correlation structures, does not need to
burn-in before adapting since it technically is non-adaptive (though it ‘adjusts’ continuously),
and continuous adjustment is an advantage, so Periodicity does not need to be specified.
The advantage of t-walk over componentwise algorithms such as the MWG family, is that the
model specification does not have to be evaluated a number of times equal to the number
of parameters in each iteration, allowing the t-walk algorithm to iterate significantly faster
in high dimension. The disadvantage of t-walk, compared to these algorithms, is that more
iterations are required because only a subset of parameters can change at each iteration
(though it still updates twice the number of parameters per iteration, on average, than the
MWG family).

The t-walk algorithm seems best suited for high-dimensional problems, especially initial ex-
ploration. With enough iterations and thinning, the t-walk has produced excellent results in
testing, and it has been subjected to an extreme test here on a model with 8,000 parame-
ters. Due to limitations in computer memory (RAM), the model was updated several times
for 30,000 iterations, and the thinned results were appended together. Convergence was not
pursued.

Updating Sequential Adaptive Metropolis-within-Gibbs

The Updating Sequential Adaptive Metropolis-within-Gibbs (USAMWG) is for state-space
models (SSMs), including dynamic linear models (DLMs). After a model is fit with SAMWG
and SMWG, and information is later obtained regarding the first future state predicted by
the model, the USAMWG algorithm may be applied to update the model given the new
information. In SSM terminology, updating is filtering and predicting. The Begin argument
tells the sampler to begin updating at a specified time-period. This is more efficient than
re-estimating the entire model each time new information is obtained.

Updating Sequential Metropolis-within-Gibbs

The Updating Sequential Metropolis-within-Gibbs (USMWG) algorithm is the non-adaptive
version of the USAMWG algorithm, and is used for final sampling when updating state-space
models (SSMs).

Sampler Selection

The optimal sampler differs for each problem, and it is recommended that the Juxtapose

function is used to help select the least inefficient MCMC algorithm. Nonetheless, some
general observations here may be helpful to a user attempting to select the most appropriate
sampler for a given model. Suggestions in this section have been reached by attempting to
compare all samplers on most models in the accompanying“Examples”vignette. Comparisons
consisted of

• diminishing adaptation, if applicable

• how many iterations it took the sampler to seem to converge

• how many minutes it took the sampler to seem to converge

Statisticat 49

• how quickly the sampler improved in the beginning

• Juxtapose results based on integrated autocorrelation time (IAT)

• mixing of the chains

• whether or not the sampler arrived at the correct solution

When the user is ready to select a general-purpose sampler, the best place to begin is with
the HARM algorithm. This is not to say that HARM is the best sampler and everything else
pales by comparison. Instead, HARM is a great sampler with which to start in the general
case, and for beginners. HARM does not have any specifications, making it one of the easiest
samplers to use. Since HARM is non-adaptive, it does not need to be followed up with a
non-adaptive algorithm, pre-adaptive burn-in is not required, and diminishing adaptation is
not a concern. Unlike several adaptive algorithms, HARM does not have to learn a proposal
covariance matrix (and neither do the HMC or MWG families). Other nice properties are
that HARM is the fastest algorithm per iteration, it performs well when started far from
the target, HARM does well with correlated parameters, and it has good potential with
multimodal parameters.

In models with small dimensions, arbitrarily less than a couple hundred, and in general
cases, the AMM algorithm is a good general recommendation. In all tests to date, AMM
is an improvement over AM and DRAM. The reason that AMM is less applicable in larger
dimensions, say with thousands of parameters, is because it must solve the proposal covariance
matrix, and the number of roughly half of its elements increases faster than the number of
parameters. Blocking may be used to reduce the size of the proposal covariance matrix into
numerous, smaller matrices. In models with small dimensions, AMM converges faster in
minutes than other algorithms, though it requires more iterations than the AMWG family,
and less than HARM or t-walk. NUTS performs excellently in all tests to date, but the
updating time increases significantly with the number of parameters as L increases.

In models with large dimensions, from hundreds to thousands, the contenders are CHARM,
AMM with extensive blocking, the AMWG family, Slice, and t-walk. HARM still performs
well, but the acceptance rate approaches zero (which may still be advantageous, depending
on the amount of thinning). Componentwise algorithms such as CHARM and AMWG often
have faster improvement and convergence in iterations, though this comes at the cost of
time per iteration. HARM and the t-walk algorithm iterate much faster, but the acceptance
rate suffers for both algorithms, and in t-walk, only a subset of parameters is considered.
Consequently, many chains do not move for numerous iterations, and more iterations and
thinning are required. CHARM and HARM may be the best place to start.

In models with highly-correlated parameters, algorithms with multivariate proposals such as
AMM or RAM are probably best, though CHARM, HARM, and t-walk also perform well.
The AMWG family does not explicitly take correlated parameters into account, but tries to
use a random-scan ordering of parameters to improve. In models with small dimensions, as
above, AMM is recommended. In models with large dimensions, CHARM and HARM are
recommended.

State-space models (SSMs), or dynamic linear models (DLMs), are a special consideration.
The LaplacesDemon package has algorithms in the AMWG family specifically for SSMs,
such as SAMWG, SMWG, USAMWG, and USMWG. Recommendations vary with model

50 LaplacesDemon

dimension and the correlation of parameters. If correlation is not problematic, then SAMWG
is recommended. If correlation is problematic, then AMM is recommended for models with
small dimensions, and CHARM or HARM is recommended for models with large dimensions.

Models with multimodal marginal posterior distributions are potentially troublesome for any
numerical approximation algorithm, though MCMC may be better suited in general. Rec-
ommended strategies include using the CHARM or HARM algorithms, or parallel17 INCA
chains, or RAM chains specified with the t-distribution. If the dimension is too large for a
proposal covariance matrix to be practical, then replace the INCA or RAM algorithm with
parallel t-walk chains. Another alternative algorithm is THMC, though tuning is difficult.
Parallel chains increase the chances that different chains may settle on different modes, and
it is hoped that t-distributed proposals assist a chain in mode-switching behavior, rather
than becoming confined only to one mode. Although parallel chains may be helpful in find-
ing multiple modes, when the chains are combined with the Combine function for inference,
each mode probably is not represented in a proportion correct for the distribution. For this
reason, single-chain CHARM or HARM is recommended first. Consider updating the model
with PMC, with multiple mixture components, after MCMC is finished. Unlike MCMC with
parallel chains, the proportion of each mode will be correctly represented with PMC.

Regardless of the model or algorithm, parallel chains are recommended in general, provided
the user has multiple CPUs and enough random-access memory (RAM). However, it is best
to begin with a single chain, until the user is confident in the model specification. Parallel
chains produce more posterior samples upon convergence than single chains in roughly the
same amount of time, and may facilitate the discovery of multimodal marginal posterior
distributions that would otherwise have been overlooked.

The Demonic Suggestion section of output from the Consort function also attempts to help
the user to select a sampler. There are exceptions to each of these suggestions above. In some
cases, a particular algorithm will fail to update for a given example. Hopefully this section
assists the user in selecting a sampler.

Afterward

Once the model is updated with the LaplacesDemon function, the BMK.Diagnostic function
is applied to 10 batches of the thinned samples to assess stationarity (or lack of trend). When
all parameters are estimated as stationary beyond a given iteration, the previous iterations
are suggested to be considered as burn-in and discarded.

The importance of Monte Carlo Standard Error (MCSE) is debated (Gelman et˜al. 2004;
Jones, Haran, Caffo, and Neath 2006). It is included in posterior summaries of LaplacesDemon,
and is one of five main criteria as a stopping rule to appease Laplace’s Demon. MCSE has been
shown to be a better stopping rule than MCMC diagnostics (Jones et˜al. 2006). Laplace’s
Demon provides a MCSE function that allows three methods of estimation: sample variance,
batch means (Jones et˜al. 2006), and Geyer’s method (Geyer 1992).

The user is encouraged to explore MCMC diagnostics (also called convergence diagnostics).
The LaplacesDemon package offers the BMK.Diagnostic, a Cumulative Sample Function
(CSF), Effective Sample Size (ESS), Gelman.Diagnostic, Geweke.Diagnostic, Integrated
Autocorrelation Time (IAT), the Kolmogorov-Smirnov test (KS.Diagnostic), Monte Carlo

17Parallel chains are enabled with the LaplacesDemon.hpc function.

Statisticat 51

Standard Error (MCSE), and both the plot and PosteriorChecks functions include multiple
diagnostics.

13. Software Comparisons

To the best of my knowledge, no other software currently provides a complete Bayesian
environment. However, there is now a wide variety of software to perform MCMC for Bayesian
inference. Perhaps the most common is BUGS (Gilks, Thomas, and Spiegelhalter 1994), which
is an acronym for Bayesian Using Gibbs Sampling (Lunn, Spiegelhalter, Thomas, and Best
2009). BUGS has several versions. A popular variant is JAGS, which is an acronym for Just
Another Gibbs Sampler (Plummer 2003). Stan is a recent addition (Stan Development Team
2012). The only other comparisons made here are with some R packages (AMCMC, mcmc,
MCMCpack), and SAS. Many other R packages use MCMC, but are not intended as general-
purpose MCMC software. Hopefully, there are not any general-purpose MCMC packages in
R have been overlooked here.

WinBUGS has been the most common version of BUGS, though it is no longer developed.
BUGS is an intelligent MCMC engine that is capable of numerous MCMC algorithms, but
prefers Gibbs sampling. According to its user manual (Spiegelhalter et˜al. 2003), WinBUGS
1.4 uses Gibbs sampling with full conditionals that are continuous, conjugate, and standard.
For full conditionals that are log-concave and non-standard, derivative-free Adaptive Rejection
Sampling (ARS) is used. Slice sampling is selected for non-log-concave densities on a restricted
range, and tunes itself adaptively for 500 iterations. Seemingly as a last resort, an adaptive
MCMC algorithm is used for non-conjugate, continuous, full conditionals with an unrestricted
range. The standard deviation of the Gaussian proposal distribution is tuned over the first
4,000 iterations to obtain an acceptance rate between 20% and 40%. Samples from the
tuning phases of both Slice sampling and adaptive MCMC are ignored in the calculation of
all summary statistics, although they appear in trace-plots.

The current version of BUGS, OpenBUGS, allows the user to specify an MCMC algorithm
from a long list for each parameter (Lunn et˜al. 2009). This is a step forward, overcoming
what is perceived here as an over-reliance on Gibbs sampling18. However, if the user does not
customize the selection of the MCMC sampler, then Gibbs sampling will be selected for full
conditionals that are continuous, conjugate, and standard, just as with WinBUGS.

Based on years of almost daily experience with WinBUGS and JAGS, which are excellent
software packages for Bayesian inference, Gibbs sampling is selected too often in these auto-
matic, MCMC engines. An advantage of Gibbs sampling is that the proposals are accepted
with probability 1, so convergence “may” be faster (or it may not, when considering algorith-
mic efficiency, such as in the Juxtapose function), whereas the RWM algorithm backtracks
due to its random-walk behavior. Unfortunately, Gibbs sampling is not as generalizable, be-
cause it can function only when certain conjugate distributional forms are known a priori
(Gilks and Roberts 1996). Moreover, Gibbs sampling was avoided for Laplace’s Demon be-
cause it doesn’t perform well with correlated variables or parameters, which usually exist,
and I have been bitten by that bug many times19.

18To quote Geyer (2011), “many naive users still have a preference for Gibbs updates that is entirely unwar-
ranted. If I had a nickel for every time someone had asked for help with slowly converging MCMC and the
answer had been to stop using Gibbs, I would be rich”.

19This does not imply that algorithms in Laplace’s Demon are immune to correlation, but that most handle

52 LaplacesDemon

The BUGS and JAGS families of MCMC software are excellent. BUGS is capable of several
things that Laplace’s Demon is not. BUGS allows the user to specify the model graphically
as a directed acyclic graph (DAG) in Doodle BUGS. Many journal articles and textbooks in
several fields have been published that use BUGS, and many include example code20.

Advantages of LaplacesDemon over JAGS and WinBUGS (not much experience with Open-
BUGS) are: Bayes factors, the Bayesian Bootstrap, comparison of algorithmic inefficiency,
confidence in results (correlations are less problematic than in Gibbs), disjoint HPD intervals,
elicitation, enivornment is part of R for data manipulation and posterior analysis, examples
in documentation are more plentiful, faster with large data sets (when model specification
avoids loops), Importance (Variable and Parameter), Juxtapose to compare MCMC samplers,
Laplace Approximation, likelihood-free estimation, log-posterior is available, LPL intervals,
marginal likelihood calculated automatically, modes (functions for multimodality), model
specification gives the user complete control on how everything is calculated (including the
log-likelihood, posterior, etc., and “tricks” do not have to be used), more MCMC algorithms,
parallelization of MCMC, Population Monte Carlo (PMC), posterior predictive checks and
discrepancy statistics, predict function for posterior predictive checks or scoring new data
sets, RAM (random-access memory) estimation, suggested code is provided at the end of each
run, trap errors do not exist or occur, validation of holdouts with BPIC, and weights can be
applied easily (such as weighting records in the likelihood).

The MCMC algorithms in Laplace’s Demon are generalizable, and generally robust to cor-
relation between variables or parameters. With larger data sets, there is no comparison:
Laplace’s Demon will deliver a converged model long before BUGS or JAGS. When corre-
lations are high, almost any algorithm in Laplace’s Demon will perform much better than
Gibbs sampling.

Stan (Stan Development Team 2012) emphasizes the No-U-Turn Sampler (NUTS), is pro-
grammed in C++, and is a promising addition to Bayesian software. The model specification
function in Stan loops through records, as with BUGS and JAGS. This allows a fast perfor-
mance on smaller data sets, and larger data sets are very time-consuming.

At the time this article was written, the AMCMC package in R is unavailable on CRAN, but
may be downloaded from the author’s website21. This download is best suited for a Linux,
Mac, or UNIX operating system, because it requires the gcc C compiler, which is unavailable
in Windows. It performs adaptive Metropolis-within-Gibbs (Roberts and Rosenthal 2009;
Rosenthal 2007), and uses C language, which results in significantly faster sampling, but only
when the model specification function is also programmed in C. This algorithm is included
in LaplacesDemon, where it is referred to as AMWG, for Adaptive Metropolis-within-Gibbs.
The algorithm is excellent, except it is associated with long run-times per iteration for large
and complex models.

Also in R, the mcmc package (Geyer 2012) offers RWM with multivariate Gaussian proposals
and allows batching, as well as a simulated tempering algorithm, but it does not have any
adaptive algorithms.

The MCMCpack package (Martin, Quinn, and Park 2012) in R takes a canned-function
approach to MCMC, which is convenient if the user needs the specific form provided, but is

it better.
20The first published journal article to use LaplacesDemon is Gallo, Miller, and Fender (2012).
21AMCMC is available from J. S. Rosenthal’s website at http://www.probability.ca/amcmc/

http://www.probability.ca/amcmc/

Statisticat 53

otherwise not generalizable. Each canned function has a MCMC algorithm that is specialized
to it, though details seem not to be documented, so the user does not know exactly how the
model is updated. General-purpose RWM is included, but adaptive algorithms are not. It
also offers the option of Laplace Approximation to optimize initial values.

In SAS 9.2 (SAS Institute Inc. 2008), an experimental procedure called PROC MCMC has been
introduced. It is undeniably a rip-off of BUGS (including its syntax), though OpenBUGS is
much more powerful, tested, and generalizable. Since SAS is proprietary, the user cannot see
or manipulate the source code, and should expect much more from it than OpenBUGS or any
open-source software, given the preposterous price.

14. Large Data Sets and Speed

An advantage of Laplace’s Demon compared to other MCMC software is that the model is
specified in a way that takes advantage of R’s vectorization. BUGS, JAGS, and Stan, for
example, require models to be specified so that each record of data is processed one by one
inside a ‘for loop’, which significantly slows updating with larger data sets. In contrast,
Laplace’s Demon avoids ‘for loops’ and apply functions wherever possible22. For example, a
data set of 100,000 rows and 16 columns (the dependent variable, a column vector of 1’s for
the intercept, and 14 predictors) was updated 1,000 times with the twalk algorithm. This took
0.43 minutes with Laplace’s Demon, according to a simple, linear regression23. It was nowhere
near convergence, but updating the same model with the same data for 1,000 iterations took
13.49 minutes in JAGS 3.2.0.

However, the speed with which an iteration is estimated is not a good, overall criterion of
performance. For applied purposes, Laplace’s Demon asserts that the best performance is
measured in MCMC algorithmic inefficiency with the Juxtapose function, using integrated
autocorrelation time (IAT). To use this for this comparison, however, would require updating
both models to convergence, and so run-time is reported instead.

For example, a Gibbs sampling algorithm with uncorrelated target distributions should con-
verge in far fewer iterations than an algorithm based on random-walk behavior, such as many
(but not all) algorithms in Laplace’s Demon. Depending on circumstances, Laplace’s Demon
should handle larger data sets better, and it may estimate each iteration faster, but it may
also take more iterations to converge24.

A lower-level language can be much faster for MCMC, but only when the model specification
function is vectorized, which is currently not the case, citing examples such as BUGS, JAGS,

22However, when ‘for loops’ or apply functions must be used, Laplace’s Demon is typically slower than
BUGS.

23These updates were performed on a 2010 System76 Pangolin Performance laptop with 64-bit Debian Linux
and 8GB RAM.

24To continue this example, JAGS may be guessed to take 20,000 iterations or 4.5 hours, and LaplacesDemon

may take 400,000 iterations or 1.5 hours, and also have less autocorrelation in the chains due to more thinning.
One of the slower adaptive algorithms in Laplace’s Demon is AMWG, which updated in 6.44 minutes, and
should finish around 50,000 iterations or 5.37 hours. As sample size increases and when for loops are controlled,
Laplace’s Demon doesn’t just outperform, but embarrasses the looping-style model specification approach of
BUGS and its derivatives to the point of absurdity. Increase data size to a million records, and Laplace’s
Demon completes 1,000 iterations in 4.09 minutes, while JAGS is estimated to take over 10 days! This is what
is meant by absurdity. So much for C or lower-level languages in that style of programming model specification
functions!

54 LaplacesDemon

SAS, and Stan. That style of software is fast only with small sample sizes. Computationally,
the future of MCMC algorithms should be in vectorizing model specifications in lower-level
languages. And here’s the trick: software developers must make it feasible for an ordinary
user to specify a model with vast flexibility when unfamiliar with the lower-level language.
Until that day arrives, Laplace’s Demon currently leads the way in general-purpose Bayesian
inference for users not specialized in vectorization with lower-level languages.

15. Bayesian-Inference.com

Many additional things may be found at http://www.bayesian-inference.com.

• A Bayesian forum is available at http://www.bayesian-inference.com/forum to dis-
cuss all things Bayesian, including LaplacesDemon.

• Bayesian information is being compiled under http://www.bayesian-inference.com/
bayesian.

• Bayesian news is aggregated daily as“The Bayesian Bulletin”: http://www.bayesian-inference.
com/newsbayesian.

• Consulting services are available here: http://www.bayesian-inference.com/consulting.

• Merchandise may be found at http://www.bayesian-inference.com/merchandise,
such as LaplacesDemon t-shirts, coffee mugs, and more.

• LaplacesDemon screencasts are available at http://www.bayesian-inference.com/

softwarescreencasts.

• Opinion polls for Bayesian inference and LaplacesDemon are here: http://www.bayesian-inference.
com/polls.

• Technical support services are available at http://www.bayesian-inference.com/support.

• And, the home of LaplacesDemon is http://www.bayesian-inference.com/software.

16. Conclusion

The LaplacesDemon package is a significant contribution toward Bayesian inference in R. In
turn, contributions toward the development of Laplace’s Demon are welcome. Please send an
email to software@bayesian-inference.com with constructive criticism, reports of software
bugs, or offers to contribute to Laplace’s Demon.

References

Ando T (2007). “Bayesian Predictive Information Criterion for the Evaluation of Hierarchical
Bayesian and Empirical Bayes Models.” Biometrika, 94(2), 443–458.

http://www.bayesian-inference.com
http://www.bayesian-inference.com/forum
http://www.bayesian-inference.com/bayesian
http://www.bayesian-inference.com/bayesian
http://www.bayesian-inference.com/newsbayesian
http://www.bayesian-inference.com/newsbayesian
http://www.bayesian-inference.com/consulting
http://www.bayesian-inference.com/merchandise
http://www.bayesian-inference.com/softwarescreencasts
http://www.bayesian-inference.com/softwarescreencasts
http://www.bayesian-inference.com/polls
http://www.bayesian-inference.com/polls
http://www.bayesian-inference.com/support
http://www.bayesian-inference.com/software
mailto:software@bayesian-inference.com

Statisticat 55

Azevedo-Filho A, Shachter R (1994). “Laplace’s Method Approximations for Probabilistic
Inference in Belief Networks with Continuous Variables.” In R˜Mantaras, D˜Poole (eds.),
Uncertainty in Artificial Intelligence, pp. 28–36. Morgan Kauffman, San Francisco, CA.

Bayes T, Price R (1763). “An Essay Towards Solving a Problem in the Doctrine of Chances.
By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, MA.
and F.R.S.” Philosophical Transactions of the Royal Society of London, 53, 370–418.

Bernardo J, Smith A (2000). Bayesian Theory. John Wiley & Sons, West Sussex, England.

Cappe O, Douc R, Guillin A, Marin J, Robert C (2008). “Adaptive Importance Sampling in
General Mixture Classes.” Statistics and Computing, 18, 587–600.

Cappe O, Guillin A, Marin J, Robert C (2004). “Population Monte Carlo.” Journal of
Computational and Graphical Statistics, 13, 907–929.

Chen M, Schmeiser B (1992). “Performance of the Gibbs, Hit-And-Run and Metropolis
Samplers.” Journal of Computational and Graphical Statistics, 2, 251–272.

Christen J, Fox C (2010). “A General Purpose Sampling Algorithm for Continuous Distribu-
tions (the t-walk).” Bayesian Analysis, 5(2), 263–282.

Craiu R, Rosenthal J, Yang C (2009). “Learn From Thy Neighbor: Parallel-Chain and Re-
gional Adaptive MCMC.” Journal of the American Statistical Association, 104(488), 1454–
1466.

Crawley M (2007). The R Book. John Wiley & Sons Ltd, West Sussex, England.

Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987). “Hybrid Monte Carlo.” Physics
Letters, B(195), 216–222.

Fearnhead P (2011). “MCMC for State-Space Models.” In S˜Brooks, A˜Gelman, G˜Jones,
M˜Xiao-Li (eds.), Handbook of Markov Chain Monte Carlo, pp. 513–530. Chapman & Hall,
Boca Raton, FL.

Foreman-Mackey D, Hogg D, Lang D, Goodman J (2012). “emcee: The MCMC Hammer.”
Upcoming in Publications of the Astronomical Society of the Pacific, http://arxiv.org/
abs/1202.3665.

Gallo E, Miller B, Fender R (2012). “Assessing luminosity correlations via cluster analysis:
Evidence for dual tracks in the radio/X-ray domain of black hole X-ray binaries.” Monthly
Notices of the Royal Astronomical Society, 423, 590–599.

Garthwaite P, Fan Y, Sisson S (2010). “Adaptive Optimal Scaling of Metropolis-Hastings
Algorithms Using the Robbins-Monro Process.”

Gelfand A (1996). “Model Determination Using Sampling Based Methods.” In W˜Gilks,
S˜Richardson, D˜Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 145–
161. Chapman & Hall, Boca Raton, FL.

Gelman A (2008). “Scaling Regression Inputs by Dividing by Two Standard Deviations.”
Statistics in Medicine, 27, 2865–2873.

http://arxiv.org/abs/1202.3665
http://arxiv.org/abs/1202.3665

56 LaplacesDemon

Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman
& Hall, Boca Raton, FL.

Gelman A, Meng X, Stern H (1996a). “Posterior Predictive Assessment of Model Fitness via
Realized Discrepancies.” Statistica Sinica, 6, 773–807.

Gelman A, Roberts G, Gilks W (1996b). “Efficient Metropolis Jumping Rules.” Bayesian
Statistics, 5, 599–608.

Gelman A, Rubin D (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472.

Geweke J, Tanizaki H (2001). “Bayesian Estimation of State-Space Models Using the
Metropolis-Hastings Algorithm within Gibbs Sampling.” Computational Statistics and Data
Analysis, 37, 151–170.

Geyer C (1992). “Practical Markov Chain Monte Carlo (with Discussion).” Statistical Science,
7(4), 473–511.

Geyer C (2011). “Introduction to Markov Chain Monte Carlo.” In S˜Brooks, A˜Gelman,
G˜Jones, M˜Xiao-Li (eds.), Handbook of Markov Chain Monte Carlo, pp. 3–48. Chapman
& Hall, Boca Raton, FL.

Geyer C (2012). mcmc: Markov Chain Monte Carlo. R package version 0.9-1, URL http:

//cran.r-project.org/web/packages/mcmc/index.html.

Gilks W, Roberts G (1996). “Strategies for Improving MCMC.” In W˜Gilks, S˜Richardson,
D˜Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 89–114. Chapman &
Hall, Boca Raton, FL.

Gilks W, Thomas A, Spiegelhalter D (1994). “A Language and Program for Complex Bayesian
Modelling.” The Statistician, 43(1), 169–177.

Goodman J, Weare J (2010). “Ensemble Samplers with Affine Invariance.” Communications
in Applied Mathematics and Computational Science, 5(1), 65–80.

Green P (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82, 711–732.

Haario H, Laine M, Mira A, Saksman E (2006). “DRAM: Efficient Adaptive MCMC.” Sta-
tistical Computing, 16, 339–354.

Haario H, Saksman E, Tamminen J (2001). “An Adaptive Metropolis Algorithm.” Bernoulli,
7(2), 223–242.

Haario H, Saksman E, Tamminen J (2005). “Componentwise Adaptation for High Dimensional
MCMC.” Computational Statistics, 20(2), 265–274.

Hastings W (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their Appli-
cations.” Biometrika, 57(1), 97–109.

Hoffman M, Gelman A (2012). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, pp. 1–30.

http://cran.r-project.org/web/packages/mcmc/index.html
http://cran.r-project.org/web/packages/mcmc/index.html

Statisticat 57

Irony T, Singpurwalla N (1997). “Noninformative Priors Do Not Exist: a Discussion with
Jose M. Bernardo.” Journal of Statistical Inference and Planning, 65, 159–189.

Jones G, Haran M, Caffo B, Neath R (2006). “Fixed-Width Output Analysis for Markov
chain Monte Carlo.” Journal of the American Statistical Association, 100(1), 1537–1547.

Laplace P (1774). “Memoire sur la Probabilite des Causes par les Evenements.” l’Academie
Royale des Sciences, 6, 621–656. English translation by S.M. Stigler in 1986 as “Memoir
on the Probability of the Causes of Events” in Statistical Science, 1(3), 359–378.

Laplace P (1812). Theorie Analytique des Probabilites. Courcier, Paris. Reprinted as“Oeuvres
Completes de Laplace”, 7, 1878–1912. Paris: Gauthier-Villars.

Laplace P (1814). “Essai Philosophique sur les Probabilites.” English translation in Truscott,
F.W. and Emory, F.L. (2007) from (1902) as “A Philosophical Essay on Probabilities”.
ISBN 1602063281, translated from the French 6th ed. (1840).

Laud P, Ibrahim J (1995). “Predictive Model Selection.” Journal of the Royal Statistical
Society, B 57, 247–262.

Lunn D, Spiegelhalter D, Thomas A, Best N (2009). “The BUGS Project: Evolution, Critique,
and Future Directions.” Statistics in Medicine, 28, 3049–3067.

Martin A, Quinn K, Park J (2012). MCMCpack: Markov chain Monte Carlo (MCMC)
Package. R package version 1.2-4, URL http://cran.r-project.org/web/packages/

MCMCpack/index.html.

Metropolis N, Rosenbluth A, MN R, Teller E (1953). “Equation of State Calculations by Fast
Computing Machines.” Journal of Chemical Physics, 21, 1087–1092.

Mira A (2001). “On Metropolis-Hastings Algorithms with Delayed Rejection.” Metron,
LIX(3–4), 231–241.

Neal R (1997). “Markov Chain Monte Carlo Methods Based on Slicing the Density Function.”
Technical Report, University of Toronto.

Neal R (2003). “Slice Sampling (with Discussion).” Annals of Statistics, 31(3), 705–767.

Neal R (2011). “MCMC for Using Hamiltonian Dynamics.” In S˜Brooks, A˜Gelman, G˜Jones,
M˜Xiao-Li (eds.), Handbook of Markov Chain Monte Carlo, pp. 113–162. Chapman & Hall,
Boca Raton, FL.

Nelder J, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer
Journal, 7(4), 308–313.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using
Gibbs Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statis-
tical Computing (DSC 2003). March 20-22, Vienna, Austria. ISBN 1609–395X.

R Development Core Team (2012). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

http://cran.r-project.org/web/packages/MCMCpack/index.html
http://cran.r-project.org/web/packages/MCMCpack/index.html
http://www.R-project.org

58 LaplacesDemon

Riedmiller M (1994). “Advanced Supervised Learning in Multi-Layer Perceptrons - From
Backpropagation to Adaptive Learning Algorithms.” Computer Standards and Interfaces,
16, 265–278.

Roberts G, Rosenthal J (2001). “Optimal Scaling for Various Metropolis-Hastings Algo-
rithms.” Statistical Science, 16, 351–367.

Roberts G, Rosenthal J (2007). “Coupling and Ergodicity of Adaptive Markov Chain Monte
Carlo Algorithms.” Journal of Applied Probability, 44, 458–475.

Roberts G, Rosenthal J (2009). “Examples of Adaptive MCMC.” Computational Statistics
and Data Analysis, 18, 349–367.

Rosenthal J (2007). “AMCMC: An R Interface for Adaptive MCMC.” Computational Statis-
tics and Data Analysis, 51, 5467–5470.

Rossky P, Doll J, Friedman H (1978). “Brownian Dynamics as Smart Monte Carlo Discrete
Approximations.” Journal of Chemical Physics, 69, 4628–4633.

SAS Institute Inc (2008). SAS/STAT 9.2 User’s Guide. Cary, NC: SAS Institute Inc.

Smith R (1984). “Efficient Monte Carlo Procedures for Generating Points Uniformly Dis-
tributed Over Bounded Region.” Operations Research, 32, 1296–1308.

Solonen A, Ollinaho P, Laine M, Haario H, Tamminen J, Jarvinen H (2012). “Efficient MCMC
for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection.”
Bayesian Analysis, 7(2), 1–22.

Spiegelhalter D, Thomas A, Best N, Lunn D (2003). WinBUGS User Manual, Version 1.4.
MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and
Public Health, Imperial College School of Medicine, UK.

Stan Development Team (2012). “Stan: A C++ Library for Probability and Sampling.”
http://mc-stan.org.

Statisticat LLC (2013). LaplacesDemon: Complete Environment for Bayesian Infer-
ence. R package version 13.03.04, URL http://cran.r-project.org/web/packages/

LaplacesDemon/index.html.

Ter˜Braak C (2006). “A Markov Chain Monte Carlo Version of the Genetic Algorithm Dif-
ferential Evolution: Easy Bayesian Computing for Real Parameter Spaces.” Statistics and
Computing, 16, 239–249.

Ter˜Braak C, Vrugt J (2008). “Differential Evolution Markov Chain with Snooker Updater
and Fewer Chains.” Statistics and Computing, 18(4), 435–446.

Tierney L (1994). “Markov Chains for Exploring Posterior Distributions.” The Annals of
Statistics, 22(4), 1701–1762. With discussion and a rejoinder by the author.

Tierney L, Kadane J (1986). “Accurate Approximations for Posterior Moments and Marginal
Densities.” Journal of the American Statistical Association, 81(393), 82–86.

http://mc-stan.org
http://cran.r-project.org/web/packages/LaplacesDemon/index.html
http://cran.r-project.org/web/packages/LaplacesDemon/index.html

Statisticat 59

Tierney L, Kass R, Kadane J (1989). “Fully Exponential Laplace Approximations to Ex-
pectations and Variances of Nonpositive Functions.” Journal of the American Statistical
Association, 84(407), 710–716.

Turchin V (1971). “On the Computation of Multidimensional Integrals by the Monte Carlo
Method.” Theory of Probablility and its Applications, 16(4), 720–724.

Vihola M (2011). “Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate.”
In Forthcoming (ed.), Statistics and Computing, pp. 1–12. Springer, Netherlands.

Wraith D, Kilbinger M, Benabed K, Cappé O, Cardoso J, Fort G, Prunet S, Robert C (2009).
“Estimation of Cosmological Parameters Using Adaptive Importance Sampling.” Physical
Review D, 80(2), 023507.

Zelinka I (2004). “SOMA - Self Organizing Migrating Algorithm.” In G˜Onwubolu, B˜Babu
(eds.), New Optimization Techniques in Engineering. Springer, Berlin, Germany.

Affiliation:

Statisticat, LLC
Farmington, CT
E-mail: software@bayesian-inference.com
URL: http://www.bayesian-inference.com/software

mailto:software@bayesian-inference.com
http://www.bayesian-inference.com/software

	Installation
	Data
	Specifying a Model
	Initial Values
	Laplace's Demon
	Warnings

	Summarizing Output
	Plotting Output
	Posterior Predictive Checks
	General Suggestions
	Independence and Observability
	High Performance Computing
	Parallel Sets of Independent Chains
	Parallel Sets of Interactive Chains
	Parallelization Details

	Details
	Approximate Bayesian Computation
	Importance Sampling
	Population Monte Carlo

	Laplace Approximation
	Adaptive Gradient Ascent
	Hit-And-Run
	Limited-Memory BFGS
	Nelder-Mead
	Resilient Backpropagation
	Self-Organizing Migration Algorithm
	Afterward

	Markov Chain Monte Carlo
	Block Updating
	Random-Walk Metropolis
	Markov Chain Properties
	Adaptive Hamiltonian Monte Carlo
	Adaptive Metropolis
	Adaptive Metropolis-within-Gibbs
	Adaptive-Mixture Metropolis
	Affine-Invariant Ensemble Sampler
	Componentwise Hit-And-Run Metropolis
	Delayed Rejection Metropolis
	Delayed Rejection Adaptive Metropolis
	Differential Evolution Markov Chain
	Hamiltonian Monte Carlo
	Hamiltonian Monte Carlo with Dual-Averaging
	Hit-And-Run Metropolis
	Independence Metropolis
	Interchain Adaptation
	Metropolis-within-Gibbs
	No-U-Turn Sampler
	Reversible-Jump
	Robust Adaptive Metropolis
	Sequential Adaptive Metropolis-within-Gibbs
	Sequential Metropolis-within-Gibbs
	Slice Sampling
	Tempered Hamiltonian Monte Carlo
	t-walk
	Updating Sequential Adaptive Metropolis-within-Gibbs
	Updating Sequential Metropolis-within-Gibbs
	Sampler Selection
	Afterward

	Software Comparisons
	Large Data Sets and Speed
	Bayesian-Inference.com
	Conclusion

