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Abstract

This package o�ers the capability to conduct genome-wide inference for case-control

studies, including studies with censored phenotypes, using e�cient score statistics. This

document is intended to supplement the package and function documentation, to more

thoroughly address �ner statistical points encountered when applying this approach.

1 Introduction

Analysis of high-throughput genomic assay data on the basis of the score is asymptotically
equivalent to Wald or likelihood ratio tests, o�ers higher computational e�ciency, greater
stability, and more readily lends itself to the use of resampling methods. Though the esti-
mation of unknown nuisance parameters may induce variability on the score, the use of the
e�cient score accounts for this.

The RSNPset package provides a software implementation of e�cient score statistics in
genome-wide SNP set analysis of complex traits. This document provides an overview of the
package, its methods for statistical inference, some example usage, and an explanation of
the statistical assumptions of its arguments and options. By way of example, the SNP sets
discussed here use genes as the loci of interest, i.e. they are sets of SNPs relevant to speci�c
genes, but the approach is suitable for other genomic loci, including pathways and bands.

2 Score Calculations

We begin by establishing some notation. Let the number of patients be denoted by n (indexed
by i), and the number of SNPs be denoted m (indexed by j). The complete set of genotypes
for all patients forms the matrix G, where the genotype for SNP j in patient i is denoted by
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Gij. The vector of outcomes for all patients is denoted Y , where the outcome for patient i
is denoted by Yi. (Or, for right-censored endpoints, what is observed is (Yi,∆i), where Yi is
the event time and ∆i ∈ {0, 1} is the event indicator).

The marginal null hypothesis for SNP j (that the variant is not associated with the out-
come) is denoted by Hj. This hypothesis is tested using an e�cient score statistic whose
numerator is of the form

∑n
i=1 Uij, where Uij denotes the contribution of patient i to the

e�cient score~[2] statistic. Each of K SNP sets, Jk, are composed of mk SNPs, and the null
hypothesis for each SNP set is denoted by Hk = ∩jHj where j ∈ Jk. Table 1 shows the
speci�c equations for Uij for di�erent types of outcomes.

Outcome Score Uij

Yi ∈ {0, 1} Binomial (Gij − Ḡj)(Yi − Ȳ )
Yi ∈ R Gaussian (Gij − Ḡj)(Yi − Ȳ )( 1

n

∑n
l=1(Yl − Ȳ )2)−1

Yi ∈ (0,∞),∆i ∈ {0, 1} Cox ∆i(Gij − aj(i)b(i)−1)

Table 1: Summary of score calculations. Here Ȳ = 1
n

∑n
i=1 Yi and Ḡj = 1

n

∑n
i=1Gij. For the

Gaussian score, the calculation of the MLE estimator of the variance, 1
n

∑n
i=1(Yi − Ȳ )2, is

omitted. For the Cox score, aj(i) =
∑n

l=1 I[Yl ≥ Yi]Glj and b(i) =
∑n

l=1 I[Yl ≥ Yi].

To derive the e�cient score for the SNP set, we construct Uk,n, the n×mk matrix whose (i, j)
element is Uij. Then U•k,n = (

∑n
i=1 Ui1, . . . ,

∑n
i=1 Uimk

)T is the corresponding vector of the
mk marginal score statistics, and Σk,n = UT

k,nUk,n is the corresponding covariance matrix.
The e�cient score statistic for the SNP set hypothesis Hk then is Wk = UT

•k,nΣ
+
k,nU•k,n,

where Σ+
k,n is the Penrose-Moore inverse of Σ+

k,n.

Under suitable regularity conditions~[1], Wk converges in distribution to a chi-squared dis-
tribution with degrees of freedom ν = Rk ∈ {1, . . . ,mk} and centrality parameter δ, denoted
by χ2[ν, δ]. As Rk is an unknown parameter, under Hk we approximate the null distribution
of Wk by a χ2[rk, 0] distribution, where rk is the rank of Σk,n. Thus we are able to compute
the e�cient score and asymptotic p-value for each of the K SNP sets.

2.1 Notes on rspset()

Users should be aware that this function does not check to con�rm that the elements of
a SNP set are present in the matrix G before executing. No results are returned for SNP
sets for which no SNPs are present or which include any SNPs with missing values. If a
SNP set contains some column names that are not present in the argument G, the function
executes without objection and returns a test statistic based on the subset of columns that
are present. For this reason, the summary() function provides counts of the number of SNP
sets dropped from the analysis and the number of SNP sets de�ned to include SNPs that
are not present in the data, if any, (in addition to other execution information).
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2.2 Options for rspset()

The following options imply speci�c assumptions about the model or data. It is important
to con�rm that these assumptions are valid when executing the analysis.

v.permute - Under the assumption thatΣk,n for SNP set Jk is the same across permutations,
setting this value to FALSE saves processing time by not re-calculating the variance of
the permutation replicates.

ret.rank - Under the assumption that the rank of Σk,n for SNP set Jk is invariant under
permutation, setting this option to FALSE reduces the size of the returned object by
not returning ranks for the permutation replicates. Ranks are returned only for the
observed data.

pinv.check - The calculation of the e�cient score relies on the Penrose-Moore inverse of
the variance matrices. Setting this argument to TRUE returns several diagnostic mea-
sures of the accuracy of this inverse. Departure of these values from zero indicates
poor performance of the Penrose-Moore inverse. These diagnostics are returned as an
attribute that can be accessed via the summary() function.

3 Hypothesis Testing

At minimum, the rspset.pvalue() function returns asymptotic p-values and false discovery
rate (FDR) adjusted q-values for each SNP set. Setting the rspset() argument B > 0 allows
rspset.pvalue() to return permutation p-values (and FDR adjusted permutation q-values)
as well. By default, the rspset.pvalue() function uses the qvalue package to compute the
q-values, though the qfun argument can be used to provide a custom de�nition.

3.1 Notes on rspset.pvalue()

Several considerations need to be made in testing the association of a SNP set with the
outcome. Firstly, meaningful unadjusted permutation p-values require B > K/α (on the
order of 107 permutations for a genome-wide study) in order to account for false positives
due to multiple testing. Note that in the event that none of the permutation replicates
generates a more extreme result than the observed value, a permutation p-value of 1/B is
returned (instead of 0).

Second, by default rspset() and rspset.pvalue() operate in accordance with the assump-
tion that each Σk,n is invariant under permutation, in which case the degrees of freedom
of the chi-squared distribution for the statistics, Wk, are the same across permutations. If
that assumption is valid, then the observed and permutation statistics for a SNP set are
directly comparable. However, if the ranks of the Σk,n di�er across permutations, then the
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chi-squared distributions di�er in degrees of freedom, so the raw statistics are not compara-
ble. In this latter case, the arguments of rspset() should be set to return the ranks of the
permutation replicates (ret.rank = TRUE), and rspset.pvalue() should be run with the
pval.transform argument set to TRUE. When pval.transform = TRUE, instead of com-
paring the observed and permutation statistics, the permutation p-values are determined
by comparing observed asymptotic p-values to the asymptotic p-values of the permutation
replicates.

3.2 Options for rspset.pvalue()

pval.transform - As mentioned above, when this option is set to TRUE, the function uses
the ranks of the permutation replicates to get permutation replicate p-values (which are
identically distributed, and thus comparable) to determine the empirical permutation
p-values of the statistics.

qfun - The qvalue() function, which is used internally in this function, may fail when
used on a small number of replications or SNP sets. This argument is used to de�ne
a new q-value function, or to assign arguments for the qvalue() function. For example,
qfun = function(x){qvalue(x, robust = TRUE)$qvalue} can be used to avoid gen-
erating errors if the number of SNP sets is small.

4 An Example Analysis

In practice, analyses might include hundreds of patients and thousands of SNP sets, spanning
tens of thousands of SNPs. For the purposes of this demonstration, we simulate a more
manageable example. Users should also note than an important precursor to genome-wide
analyses is quality control of the genotypic data. As our data is simulated and complete, we
can omit this step and proceed with our analysis.

4.1 Simulating the Data

First, we generate a cohort of n patients and their outcome data, i.e., the traits we wish to
analyze: case-control status, LDL level, and survival time/survival status.

set.seed(123)

n <- 100

status <- rbinom(n, 1, 0.5)

table(status)

## status
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## 0 1

## 53 47

LDL <- rnorm(n, mean=115, sd=35)

quantile(LDL)

## 0% 25% 50% 75% 100%

## 34.17909 91.86624 113.23968 133.43291 191.55665

time <- rexp(n, 1/10)

event <- rbinom(n, 1, 0.9)

quantile(time)

## 0% 25% 50% 75% 100%

## 0.2417337 3.6029326 7.6329649 15.4336484 43.6591094

table(event)

## event

## 0 1

## 10 90

Next we simulate the genomic data. Here we are using allele counts, but the methodology is
also applicable to expression levels. For each SNP, we let the probability of having a mutant
allele be a random value selected from a uniform distribution across the interval (0.1, 0.9).

m <- 500

G <- matrix(as.double(rbinom(n*m, 2, runif(n*m,.1,.9))), n, m)

dim(G)

## [1] 100 500

We must label all of the SNPs so that they can be referenced by the SNP sets. The rows
correspond to the genotypes of each patient, and the columns are the allele counts for each
SNP.

rsIDs <- paste0("rs100",1:m)

colnames(G) <- rsIDs
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G[1:5,1:5]

## rs1001 rs1002 rs1003 rs1004 rs1005

## [1,] 2 1 0 2 0

## [2,] 0 0 2 1 2

## [3,] 1 0 1 2 0

## [4,] 2 2 1 2 2

## [5,] 1 0 0 0 1

Next we make the SNP sets. For our example we compose K = 10 sets of between three and
�fty SNPs at random, but we imagine them to represent groups of SNPs related to speci�c
genes (or perhaps some other genomic loci, such as bands or pathways).

K <- 10

genes <- paste0("XYZ",1:K)

geneSets <- lapply(sample(3:50, size=K, replace=TRUE), sample, x=rsIDs)

names(geneSets) <- genes

unlist(lapply(geneSets, length))

## XYZ1 XYZ2 XYZ3 XYZ4 XYZ5 XYZ6 XYZ7 XYZ8 XYZ9 XYZ10

## 45 23 3 9 36 18 19 8 32 14

For a systematic approach to generating gene-based SNP sets from real genomic data, see
the snplist~[3] package.

4.2 Conducting the Analysis

After installing its dependent packages, we load RSNPset. The fact that RSNPset utilizes the
doRNG package gives us the ability to set a seed so that our analyses are reproducible.

library(RSNPset)

set.seed(456)

We look �rst at our binary phenotype, case-control status. Again, a dramatically greater
number of permutations is generally required in order to attain meaningful results. We use
just a few here for the purposes of demonstration.
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ccres <- rsnpset(Y=status, G=G, snp.sets=geneSets, score="binomial", B=10, ret.rank=TRUE, v.permute=TRUE)

## Loading required package: foreach

## Loading required package: rngtools

## Loading required package: pkgmaker

## Loading required package: registry

The resulting object, ccres, is a list of B+1 data frames. Each data frame has one row
per (non-empty) SNP set and a column, W, containing the test statistics. The �rst data
frame contains the statistics for the observed data, while the remainder correspond to the
permutation results. Since we set ret.rank = TRUE, each data frame also contains a column
with the rank of the covariance matrix, Σk,n, i.e. the degrees of freedom for our chi-squared
test. The �rst data frame also contains a column, m, denoting the number of SNPs in each
SNP set.

ccres[["Observed"]]

## W rank m

## XYZ1 49.496824 45 45

## XYZ2 14.456745 23 23

## XYZ3 3.948585 3 3

## XYZ4 17.489361 9 9

## XYZ5 34.604769 36 36

## XYZ6 8.831058 18 18

## XYZ7 20.132735 19 19

## XYZ8 3.550083 8 8

## XYZ9 37.233857 32 32

## XYZ10 15.317483 14 14

The summary() function displays the execution parameters for the returned object.

summary(ccres)

## - Efficient score statistics based on 100 samples.

## - SNP sets range in size from 3 to 45.

## - 0 SNP sets were not included in the analysis

## - 0 SNP sets contained SNPs that were not included in the analysis.

## - 10 permutation replicates were computed.

## - ret.rank = TRUE : The ranks of the permutation variance matrices were returned.

## - v.permute = TRUE : Variance was recomputed for each permutation replicate.

## [1] NA
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We use rspset.pvalue() to check for evidence for rejecting our null hypotheses. Since we
have the ranks for the permutation replicates, we set pval.transform = TRUE to ensure the
results across permutations are comparable.

rsnpset.pvalue(ccres, pval.transform=TRUE)

## W rank m p pB PB Q QB

## XYZ1 49.496824 45 45 0.29845127 0.2 0.9 0.6443850 0.6666667

## XYZ2 14.456745 23 23 0.91304199 0.9 1.0 0.9635286 1.0000000

## XYZ3 3.948585 3 3 0.26706978 0.3 0.8 0.6443850 0.6666667

## XYZ4 17.489361 9 9 0.04158187 0.1 0.3 0.4158187 0.6666667

## XYZ5 34.604769 36 36 0.53493377 0.7 1.0 0.7641911 1.0000000

## XYZ6 8.831058 18 18 0.96352860 1.0 1.0 0.9635286 1.0000000

## XYZ7 20.132735 19 19 0.38663103 0.4 0.9 0.6443850 0.6666667

## XYZ8 3.550083 8 8 0.89526815 0.8 1.0 0.9635286 1.0000000

## XYZ9 37.233857 32 32 0.24071560 0.3 0.7 0.6443850 0.6666667

## XYZ10 15.317483 14 14 0.35680211 0.4 0.9 0.6443850 0.6666667

As explained above, setting pval.transform = TRUE means the function compares asymp-
totic p-values across permutations, instead of raw statistics, in computing the permutation
p-values (pB). Having computed these p-values, function also returns family-wise error ad-
justed p-values (PB), in addition to the asymptotic (p) and FDR adjusted p-values (Q and
QB). As expected, since the data are simulated, we �nd no signi�cant association between any
SNP sets and the outcome. (Recall that the asymptotic p-value for XYZ4 is not signi�cant
under multiple testing).

We move on to the continuous phenotype, LDL level. Here we revert to the default values
for the arguments ret.rank and v.permute. In practice, when used on a much larger set
of data, these changes o�er the potential for a signi�cant reduction in both the processing
time and the size of the returned object.

ldlres <- rsnpset(Y=LDL, G=G, snp.sets=geneSets, score="gaussian", B=10)

Since the default is ret.rank = FALSE, only the �rst data frame contains the column with
the ranks of the covariance matrices.

ldlres[["Observed"]]

## W rank m

## XYZ1 30.668778 45 45

## XYZ2 27.955484 23 23

## XYZ3 7.854819 3 3

8



## XYZ4 5.302372 9 9

## XYZ5 44.631803 36 36

## XYZ6 16.320559 18 18

## XYZ7 19.061289 19 19

## XYZ8 5.834179 8 8

## XYZ9 33.492914 32 32

## XYZ10 8.165996 14 14

ldlres[["Permutation.1"]]

## W

## XYZ1 43.641053

## XYZ2 24.583065

## XYZ3 9.144861

## XYZ4 21.242080

## XYZ5 31.218468

## XYZ6 21.755842

## XYZ7 17.627167

## XYZ8 6.083224

## XYZ9 25.883371

## XYZ10 13.402500

Here the statistics of the permutation replicates are assumed to have the same degrees of
freedom as the observed statistics.

rsnpset.pvalue(ldlres)

## W rank m p pB Q QB

## XYZ1 30.668778 45 45 0.9491987 1.0 0.9491987 1.00

## XYZ2 27.955484 23 23 0.2174697 0.1 0.7248990 0.25

## XYZ3 7.854819 3 3 0.0491094 0.1 0.4910940 0.25

## XYZ4 5.302372 9 9 0.8071934 0.8 0.9491987 1.00

## XYZ5 44.631803 36 36 0.1531673 0.1 0.7248990 0.25

## XYZ6 16.320559 18 18 0.5701863 0.4 0.9491987 0.80

## XYZ7 19.061289 19 19 0.4529107 0.6 0.9058215 1.00

## XYZ8 5.834179 8 8 0.6658001 0.8 0.9491987 1.00

## XYZ9 33.492914 32 32 0.3947629 0.1 0.9058215 0.25

## XYZ10 8.165996 14 14 0.8804998 0.9 0.9491987 1.00

Again, these permutation p-values (pBk) are computed under the assumption of identical
covariance matrices, so the observed and permutation statistics are directly comparable.

Lastly, we look at our right-censored (time to event) phenotype.
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tteres <- rsnpset(Y=time, delta=event, G=G, snp.sets=geneSets, score="cox", B=10, pinv.check=TRUE)

By setting pinv.check = TRUE, the returned object now includes an attribute giving �ve
diagnostic measures of the Penrose-Moore Inverse computed for each SNP set in all of the
permutation replicates and the observed data. These are accessed via the summary() func-
tion. The (B+1)×K × 5 data frame can be captured for examination.

pinv.diag <- summary(tteres)

## - Efficient score statistics based on 100 samples.

## - SNP sets range in size from 3 to 45.

## - 0 SNP sets were not included in the analysis

## - 0 SNP sets contained SNPs that were not included in the analysis.

## - 10 permutation replicates were computed.

## - ret.rank = FALSE : The ranks of the permutation variance matrices were not returned.

## - v.permute = TRUE : Variance was recomputed for each permutation replicate.

## - pinv.tol = 7.8e-08

pinv.diag[["Observed"]]

## d0 d1 d2 d3 d4

## 1 4.580336e-12 4.572343e-12 1.025352e-14 1.098930e-13 1.095877e-13

## 2 2.316369e-12 2.415845e-12 4.319461e-16 1.621750e-14 1.620579e-14

## 3 4.973799e-14 3.552714e-14 1.387779e-17 6.245005e-17 4.943962e-17

## 4 6.195933e-12 6.181722e-12 1.568190e-15 2.101097e-14 2.118965e-14

## 5 5.414336e-12 5.414336e-12 8.605963e-15 5.448211e-13 5.448558e-13

## 6 3.228617e-11 3.222711e-11 9.499292e-15 8.204375e-14 8.203854e-14

## 7 3.481659e-12 3.510081e-12 2.126771e-15 1.277234e-14 1.281397e-14

## 8 1.126210e-12 1.110667e-12 5.127463e-16 1.070888e-14 1.075095e-14

## 9 2.067679e-12 2.039258e-12 1.314920e-15 4.520516e-14 4.528669e-14

## 10 1.192912e-11 1.192024e-11 4.807786e-15 1.747422e-13 1.749087e-13

unlist(lapply(pinv.diag, max))

## Observed Permutation.1 Permutation.2 Permutation.3

## 3.228617e-11 4.040146e-11 1.968870e-11 2.260236e-11

## Permutation.4 Permutation.5 Permutation.6 Permutation.7

## 2.794565e-11 2.551026e-11 2.748379e-11 2.933120e-11

## Permutation.8 Permutation.9 Permutation.10

## 2.814460e-11 2.918599e-11 1.972289e-11
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The diagnostic measures are all close to zero, indicating the Penrose-Moore Inverses are
performing well, so we proceed to examining the p-values.

ttepvals <- rsnpset.pvalue(tteres)

ttepvals

## W rank m p pB Q QB

## XYZ1 55.944016 45 45 0.1270435 0.1 0.1631446 0.5767282

## XYZ2 16.004060 23 23 0.8550949 0.8 0.2282156 0.7177063

## XYZ3 3.619096 3 3 0.3056411 0.4 0.1631446 0.5767282

## XYZ4 12.586511 9 9 0.1822259 0.4 0.1631446 0.5767282

## XYZ5 33.905012 36 36 0.5685958 0.5 0.1921430 0.5767282

## XYZ6 22.151629 18 18 0.2253228 0.4 0.1631446 0.5767282

## XYZ7 16.139634 19 19 0.6479420 0.9 0.1921430 0.7266776

## XYZ8 7.782686 8 8 0.4549809 0.2 0.1921430 0.5767282

## XYZ9 35.530468 32 32 0.3054573 0.5 0.1631446 0.5767282

## XYZ10 11.595316 14 14 0.6387660 0.7 0.1921430 0.7064921

A summary() method is also available for the results of rspset.pvalue(), by default re-
turning the top ten most signi�cant SNP sets by asymptotic p-value. The verbose = TRUE

option gives additional information about the calculations.

summary(ttepvals, verbose=TRUE)

##

## - Permutation p-values (pB) come from comparison of

## test statistics across 10 replications.

## - Q-values based on 10 SNP sets.

## W rank m p pB Q QB

## XYZ1 55.944016 45 45 0.1270435 0.1 0.1631446 0.5767282

## XYZ4 12.586511 9 9 0.1822259 0.4 0.1631446 0.5767282

## XYZ6 22.151629 18 18 0.2253228 0.4 0.1631446 0.5767282

## XYZ9 35.530468 32 32 0.3054573 0.5 0.1631446 0.5767282

## XYZ3 3.619096 3 3 0.3056411 0.4 0.1631446 0.5767282

## XYZ8 7.782686 8 8 0.4549809 0.2 0.1921430 0.5767282

## XYZ5 33.905012 36 36 0.5685958 0.5 0.1921430 0.5767282

## XYZ10 11.595316 14 14 0.6387660 0.7 0.1921430 0.7064921

## XYZ7 16.139634 19 19 0.6479420 0.9 0.1921430 0.7266776

## XYZ2 16.004060 23 23 0.8550949 0.8 0.2282156 0.7177063

As a typical GWAS study may span thousands of SNPs and SNP sets, summary() allows for
the succinct listing of p-values for the most signi�cant results. The returned data frame can
be saved for future reference or reporting.

11



ttesum <- summary(ttepvals, sort="pB", nrows=5, dropcols=c("m","Q","QB"))

ttesum

## W rank p pB

## XYZ1 55.944016 45 0.1270435 0.1

## XYZ8 7.782686 8 0.4549809 0.2

## XYZ3 3.619096 3 0.3056411 0.4

## XYZ4 12.586511 9 0.1822259 0.4

## XYZ6 22.151629 18 0.2253228 0.4
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