The Rknots package

Federico Comoglio' and Maurizio Rinaldi?

! D-BSSE, ETH Zurich, Basel, Switzerland
2 DiISCAFF, University of Piemonte Orientale, Novara, Italy

federico.comoglio@bsse.ethz.ch

December 24, 2011

Abstract

From a topological point of view, polymers can be modeled as open polygonal paths that

upon closure generate topological objects called knots. Multi component knots are known
as links. The Rknots package contains functions for the topological analysis of knots and
links with a particular focus on biological polymers like proteins.
This vignette explains the use of the package and is divided in three main parts. The first
one deals with structure import, the second is focused on the methods that have been im-
plemented and the third one is a case study that illustrates how to use the general functions
presented in the previous two sections for the analysis of proteins. For a more formal ex-
position of the methods, especially of the HOMFLY polynomial computation, please refer
to [I]. Should you have any question or suggestion, feel free to email us.

Contents

[1 File import and input structure| 1
LI Datasets o 2
1.2 Example knots and links| oo 00000 4
1.3 reate objects of class Knot|. L. 4

[2__Structure reduction and invariant computation| 7
2.1 Structure reduction algorithms|o o000 7
-2 Computation of the invariants of knots and HDKS| v oo v v oo .. 11
2.3 Rknots and protein knot analysis, a dedicated pipeline| 13

[3__Session Infol 18

1 File import and input structure

The Rknots package deals with knots and links and therefore it expects the coordinates of NV
points in the three-dimensional space together with a set of integer separators as an input. It
is worth to give a clear description of these two attributes. N points in 3D can be naturally
represented by a N x 3 matrix, where each row is a point and the columns are the x,y,z

coordinates of that point. If the topological structure is a knot, then it will be entirely defined
by its points. However, if we are dealing with links, a collection of knots where each single
entity defines a component of the link, the coordinates matrix will not be sufficient. A vector
S of component separators (also ends) is then required to describe the boundaries between
components. Notice that there is an arbitrary and potentially dangerous choice on the separators
due to the duality points-edges. We defined each separator as the index of the edge that if not
removed would connect a component with the following and that can thus be regarded as a
‘phantom’ edge. For example, the Hopf link represented in figure [1]is defined by an 8 x 3 matrix
and separator S = 4. The 'phantom’ edge is indicated by the gray dashed line.

Figure 1: Polygonal Hopf link diagram. The component separator is S = 4.

1.1 Datasets

Rknots comes along with two datasets containing 250 knots having less than 11 crossings and
enumerated according to Rolfsen [2] and 130 links up to 4 components. The 3D coordinates of
knots are available as full representation or as minimal stickies representation and are stored
in the dataset Rolfsen.table. The 3D coordinates of links and their separators are stored in
the dataset link.table. Let’s have a look at both datasets, that can be accomplished with the
following commands:

> library("Rknots")
> data(Rolfsen.table)
> str(head(Rolfsen.table, 5))

List of 5
$ 3.1: num [1:48, 1:3] -5 -4.88 -4.39 -3.58 -2.54 ...

$ 4.1: num [1:70, 1:3] -6.43 -6.26 -5.89 -5.32 -4.56 ...

$ 5.1: num [1:70, 1:3] -5.58 -5.85 -5.75 -5.32 -4.66 ...

$ 5.2: num [1:82, 1:3] -1.191 -0.262 0.803 1.922 3.027 ...
$ 6.1: num [1:97, 1:3] -6.9 -6.46 -5.84 -5.05 -4.13 ...

Notice that each knot is an element of a list, and that a given knot can be accessed also by using
its name.

> head(names(Rolfsen.table))

[1] "3.1" "4.1" "5.1" "5.2" "6.1" "6.2"

For example, one can access the coordinates of the trefoil knot (knot 3;) using Rolfsen.table[’3.1°].
> str(Rolfsen.table['3.1'])

List of 1
$ 3.1: num [1:48, 1:3] -5 -4.88 -4.39 -3.58 -2.54 ...

The minimal stickies coordinates of knots are stored in the Rolfsen.table.ms list, which has
the same names of the full representation.

> str(head(Rolfsen.table.ms, 5))

List of
$ 3.1: num [1:7, 1:3] 0.301 -0.976 0.976 -0.3 -1.276 ...
$ 4.1: num [1:8, 1:3] -2.927 2.239 0.704 -0.907 -1.082 ...
$ 5.1: num [1:9, 1:3] -0.0962 -0.7682 0.7677 0.0969 -1.4284 ...
$ 5.2: num [1:9, 1:3] 1.4615 -1.4618 1.2112 0.0436 -0.9697 ...
$ 6.1: num [1:9, 1:3] 0.8499 0.8001 -0.0797 -1.5796 2.6384 ...

> head(names(Rolfsen.table.ms))
[1] ||3‘1|| ll4.1l| |I5‘1|I l|5.2l| |I6‘1|I l|6.2l|

Graphically, the difference between the full representation of a knot and the minimal stickies
representation is illustrated in figure [2] for the trefoil knot.

Links are stored in the link.table list. Each element of the list contains two slots, respectively
the coordinates and separators of the link.

> data(link.table)
> str(head(link.table, 5))

List of 5
$ 2.2.1:List of 2
..$ points3D: num [1:74, 1:3] -6.3 -5.77 -5.13 -4.4 -3.59 ...
..$ ends : num 37
$ 4.2.1:List of 2
..$ points3D: num [1:83, 1:3] -0.603 -1.426 -2.171 -2.802 -3.292 ...
..$ ends : num 40
$ 5.2.1:List of 2
..$ points3D: num [1:79, 1:3] 0.333 -0.598 -1.518 -2.4 -3.213 ...
..$ ends : num 39

Full representation Minimal stickies

& 1

Figure 2: Full and minimal stickies representation of the trefoil knot.

$ 6.2.1:List of 2
..$ points3D: num [1:102, 1:3] 2.131 1.328 0.447 -0.459 -1.338 ...
..$ ends : num 50
$ 6.2.2:List of 2
..$ points3D: num [1:98, 1:3] -6.57 -6.2 -5.67 -4.98 -4.14 ...
..$ ends : num 48

> head(names(link.table))

[1] "2.2.1" "4.2.1" "5.2.1" "6.2.1" "6.2.2" "6.2.3"

1.2 Example knots and links

For the first two sections of this vignette, we will deal with an example knot and link sampled
randomly from the above described datasets. To pick a structure it is sufficient to type

TRUE) #for a knot
FALSE) #for a link

> knot <- makeExampleKnot (k
> link <- makeExampleKnot (k

This will turn out to be very convenient in the forthcoming sections, where we can use these
structures to illustrate the core algorithms for structure reduction and polynomial invariants
computation.

1.3 Create objects of class Knot

The main class in Rknots is an S4 class called Knot. The class has two slots:

1. points3D: an N x 3 matrix containing the x, y, z coordinates of points of a polygonal knot
or link. Each row contains the 3D coordinates of a single point of the structure. This slot
is of type matrix.

2. ends: a vector of integers containing the separators of the link components. This slot is by
default set to numeric(0) for knots and is of type numeric.

A new object of class Knot can be created either using the generic constructor new or by means
of the class constructor newKnot. The following example shows how to setup an object in both
ways

> knot.cls <- new('Knot', points3D = knot)
> link.cls <- new('Knot', points3D = link$points3D, ends = link$ends)

> (knot.cls <- newKnot(points3D = knot))

An object of class 'Knot'
Slot points3D: 114 x 3 matrix
X y z
[1,] -3.621864 -7.859621 -2.811422
[2,] -4.646111 -7.423467 -2.425915
[3,] -5.546167 -6.849921 -1.935343
[4,] -6.327957 -6.169424 -1.388736
[5,] -7.004683 -5.402181 -0.820578
[6,] -7.585773 -4.559776 -0.254575
[7,] -8.073381 -3.646790 0.290954
[8,] -8.457810 -2.662413 0.797152
[9,] -8.714276 -1.603682 1.237616
[10,] -8.801561 -0.474100 1.570860

Slot ends:
> (link.cls <- newKnot(points3D = link$points3D, ends = link$ends))

An object of class 'Knot'
Slot points3D: 127 x 3 matrix
X v z

[1,] -9.162255 -1.509655 1.829496
[2,] -9.245968 -2.659378 1.805300
[3,] -9.113029 -3.803538 1.856751
[4,] -8.744250 -4.892910 1.956594
[5,] -8.136572 -5.871593 2.055047
[6,] -7.310295 -6.682295 2.092592
[7,] -6.311310 -7.268003 2.009992
[8,] -5.216097 -7.575875 1.761636
[9,] -4.130063 -7.568088 1.329447
[10,] -3.171682 -7.239913 0.731781

Slot ends: 49 100

If wished, the method print (e.g. print(link.cls)) allows to visualize the full output. To
access the two class slots one can make use of the accessors getCoordinates and getEnds or the
[operator. The use of @ is discouraged.

> head(getCoordinates(knot.cls), 5)

X y z
[1,] -3.621864 -7.859621 -2.811422

[2,] -4.646111 -7.423467 -2.425915
[3,] -5.546167 -6.849921 -1.935343
[4,] -6.327957 -6.169424 -1.388736
[5,]1 -7.004683 -5.402181 -0.820578

> getEnds (knot.cls)
numeric (0)
> head(link.cls['points3D'], 5)

X y z
[1,] -9.162255 -1.509655 1.829496
[2,] -9.245968 -2.659378 1.805300
[3,] -9.113029 -3.803538 1.856751
[4,] -8.744250 -4.892910 1.956594
[6,1 -8.136572 -5.871593 2.055047

> link.cls['ends']
[11 49 100

Accordingly, the content of the slots can be modified using the setters setCoordinates, setEnds
or via [<-. For example, let’s modify the object knot.cls by replacing its coordinates with some
randomly generated ones

> knot.bu <- knot.cls #save the original

> new.coordinates <- matrix(runif(60), ncol = 3)
> setCoordinates (knot.cls) <- new.coordinates

> knot.cls

An object of class 'Knot'
Slot points3D: 20 x 3 matrix

[,1] [,2] [,3]
[1,] 0.4089769 0.6405068 0.41372433
[2,] 0.8830174 0.9942698 0.36884545
[3,] 0.9404673 0.6557058 0.15244475
[4,] 0.0455565 0.7085305 0.13880606
[5,]1 0.5281055 0.5440660 0.23303410
[6,] 0.8924190 0.5941420 0.46596245
[7,] 0.5514350 0.2891597 0.26597264
[8,] 0.4566147 0.1471136 0.85782772
[9,] 0.9568333 0.9630242 0.04583117
[10,1 0.4533342 0.9022990 0.44220007
Slot ends:

> knot.cls <- knot.bu #back to the original

Let’s now try to modify the separators of the object link.cls

> link.bu <- link.cls #save the original
> setEnds(link.cls) <- c(10, 50, 90)
> getEnds(1link.cls)

[1] 10 50 90
> link.cls <- link.bu

Notice that it is not required to replace n separators with n new separators. Certainly this oper-
ation changes the link we are dealing with, but it is very useful when local operations on the link
are performed, giving rise to a different link (for example, by merging together two components).

Remarks Rknots has been developed to give users the most general purpose framework pos-
sible. Theoretically, there is no a priori limitation on the structure to be loaded, neither in
terms of points nor link components. Practically, this depends on the downstream analysis to
be performed. The coordinates of a structure to be loaded can be read in R with commands like
read.table, read.delim, read.csv, etc. See the relevant help pages for details.

2 Structure reduction and invariant computation

Usually, the endpoint of the topological analysis of a knotted structure is the computation of an
invariant, generally a polynomial and its computational cost is generally very high. Thus, a priori
crucial step is to reduce the structure to a simpler form by reducing the number of point subject
to the constraint of retaining all the topological information of the original structure. This is
accomplished by applying structure reduction algorithms of knots and links [3] 4], described in
the next section.

2.1 Structure reduction algorithms

Two structure reduction algorithms have been implemented in Rknots: the Alexander-Briggs
(AB) algorithm [4] based on the elementary deformation and the Minimal Structure Reduction
(MSR) algorithm [I] based on the generalized Reidemeister moves. The former is very efficient
whereas the latter, by working on the knot projection, contains intrinsically more information at
the price of being slower.

Let’s first examine how to apply these algorithms outside the context of the Knot class. To
reduce the knot we created, we can type

> knot.AB <- AlexanderBriggs(points3D = knot, ends = c())
> str(knot.AB)

List of 2
$ points3D: num [1:17, 1:3] -3.62 -8.07 -6 6.32 5.09 ...
$ ends : num(0)

> knot.msr <- msr(points3D = knot, ends = c())
> str(knot.msr)

List of 3
$ points3D: num [1:20, 1:3] -3.622 -6.782 2.587 7.076 0.714 ...
$ ends : NULL
$ M :num [1:19, 1:191 0000 0 0 0 0 O -1

Alexander-Briggs returns a list with the reduced structure, msr additionally returns the inter-
section matrix M, which contains the position and sign of the crossings in the structure. The
original structure and the two reduced ones can be visualized by plotting a knot diagram with
plotDiagram.

> plotDiagram(knot, ends = c(), lwd = 2, main = 'Original Structure')

Original Structure

/\

> par(mfrow=c(1,2))
> plotDiagram(knot.AB$points3D, knot.AB$ends, lwd = 2, main = 'Reduced with Alexander-Briggs')
> plotDiagram(knot.msr$points3D, knot.msr$ends, lwd = 2, main = 'Reduced with MSR')

Reduced with Alexander—Briggs Reduced with MSR

The same applies to the reduction of the link we created before, in its naive application just
requires to include the link separators by using

> link.AB <- AlexanderBriggs(points3D = link$points3D, ends = link$ends)
> str(link.AB)

List of 2
$ points3D: num [1:19, 1:3] -9.16 -6.31 2.25 4.3 -2.53 ...
$ ends : num [1:2] 6 13

> link.msr <- msr(points3D = link$points3D, ends = link$ends)
> str(link.msr)

List of 3

$ points3D: num [1:17, 1:3] -9.162 -1.974 4.102 -0.367 -5.506 ...
$ ends : num [1:2] 6 13

$ M :num [1:16, 1:161 0 0 0 0 0 0 0 0 0 O ...

> plotDiagram(link$points3D, link$ends, lwd = 2, main = 'Original Structure')

Original Structure

> par(mfrow=c(1,2))
> plotDiagram(link.AB$points3D, link.AB$ends, lwd = 2, main = 'Reduced with Alexander-Briggs')
> plotDiagram(link.msr$points3D, link.msr$ends, lwd = 2, main = 'Reduced with MSR')

Reduced with Alexander—Briggs Reduced with MSR

/\

A

Notice that msr can be used for achieving a partial reduction by controlling the number of
iterations n (default to 100).

An object of class Knot can be reduced by means of the reduceStructure method, that takes
a Knot object and the algorithm to be applied as an input and returns an object of class Knot
containing the reduced structure:

> knot.cls.AB <- reduceStructure (knot.cls, algorithm = 'AB')
> knot.cls.MSR <- reduceStructure(knot.cls, algorithm = 'MSR')
> link.cls.AB <- reduceStructure(link.cls, algorithm = 'AB')
> link.cls.MSR <- reduceStructure(link.cls, algorithm = 'MSR')
> link.cls.AB

An object of class 'Knot'
Slot points3D: 19 x 3 matrix
X y z
[1,] -9.162255 -1.509655 1.829496

[2,] -6.311310 -7.268003 2.009992
[3,] 2.249036 2.716286 -0.849297
[4,] 4.296789 9.491975 0.390813
[5,]1 -2.529795 6.531452 -0.926613
[6,] -9.162255 -1.509655 1.829496
[7,] -5.362280 3.025527 -1.999231
[8,] -6.574879 7.215227 -1.337988
[9,] -1.540334 8.744882 1.913969
[10,] 5.546724 4.548880 -2.562918

Slot ends: 6 13

The knot diagram can be drawn simply by using the method plot when the input is an Knot
object.

> par(mfrow = c(1, 2))

> plot(link.cls.AB, main = 'default') #default

> plot(link.cls.AB, lend = 2, 1lwd = 3, main = 'using par()') #thicker overcrossings.
> #see par() for additional options

10

default using par()

2.2 Computation of the invariants of knots and links

Rknots can be used to compute the following invariants, listed according to the structure given
as input.

e knots: Alexander, Jones and HOMFLY polynomials

e links: Jones and HOMFLY polynomials, the multivariable Alexander polynomial and the
linking number

In contrast to the previous section, we will only examine how to compute polynomial invariants
with an object of class Knot. We are currently working on the description on how the invariants
are internally computed using low-level functions. Feel free to send us an email for a preliminary
version.

Having an object of class Knot the desired invariant can be computed with the function com-
puteInvariant that internally discriminates between knots and links and returns the appropriate
polynomial as follows:

> (delta.k <- computelnvariant(knot.cls.AB, invariant = 'Alexander'))
[1] "19 - 11xt1 - 11/t1 + 2/t17°2 + 2*t172"

> jones.k <- computelnvariant(knot.cls.AB, invariant = 'Jones', skein.sign = -1)
> homfly.k <- computelInvariant(knot.cls.AB, invariant = 'HOMFLY', skein.sign = -1)

and analogously for the previously created link
> (delta.l <- computelnvariant(link.cls.AB, invariant = 'Alexander'))
[1] "t2*t3*x(-tl - t2 + t1*t2 - t1*xt2%t3 + t1*kt3*t272 + t2*t3*xt172)"

> jones.1l <- computeInvariant(link.cls.AB, invariant = 'Jones', skein.sign = -1)
> homfly.l <- computelInvariant(link.cls.AB, invariant = 'HOMFLY', skein.sign = -1)

The Jones and the HOMFLY polynomial of our sample knot and link are quite long and we
printed the Alexander polynomial for sake of illustration. However, Rknots contains utilities
to convert, when possible, a polynomial into another one. For example, we can convert the
HOMFLY polynomial to the Jones polynomial by using

11

> converted <-HOMFLY2Jones(homfly.k)
> identical(converted, jones.k)

[1]1 TRUE

For some applications, the linking number of a link is desired. The function 1inkingNumber in
Rknots computes the linking number of a polygonal link simply by

> (computelnvariant(link.cls.AB, invariant = 'LK'))
[1] -3

Before moving to the last session, let’s make use of what we have described so far by reproducing
a modern version of the very beginning of the original Rolfsen knot table.

> data(Rolfsen.table)

> text <- names(Rolfsen.table)[1 : 6]
> par(mfrow = c(3,2))

> for(i in 1 : 6) {

+ k <- Rolfsen.table[[i]]

+ k <- newKnot (k)

+ plot(k, 1lwd = 2, main = text[i],

+ sub = paste(computelnvariant(k, 'Alexander'),

+ computeInvariant (k, 'Jones'),

+ computeInvariant (k, 'HOMFLY'), sep = '\n'))
+ }

12

3.1 41

F

ST+t + 1 3-t1-1t1

t+ 13- 104 1-t- 1/t +1A(-2) + tA2
-1/1M + 2/172 + mA2/12 -1 +18-2) + "2 - m"2
5.1 5.2

e

1-t1- 141 + 118(-2) + 1112 -3+ 21 + 2111
th2 + M4 - thS + 116 - th7 t-th2 + 2*A3 - th4 + 115 - "6
-2/16 + 3/1"4 - mA2/I"6 + 4*m"2/I4 + mha/Ing -1/1%6 + 1M(-4) + IN-2) + mA2/IM4 + mA2/Ir2
6.1 6.2

&

5-21-2/t1 -3+ 3%1 + 3/t1 - 11172 - 1172
2-2%- 1/t +th(-2) + th2 - t"3 + th4 -1+ 2%+ 1/t - 2102 + 2573 - 2*tM4 + A5
IN(-4) - 11"2 + 12 - m*2 - m"2/1"2 2+ IN-4) - 2/1"2 + M2 + mA2/IM4 - 3*mA2/IN2 - mh4/IN2

2.3 Rknots and protein knot analysis, a dedicated pipeline

Rknots provides an optimized pipeline for detecting and characterizing knots in proteins and
more generally in biopolymers. Two example .pdb files are part of the package data and will be
partially used in the following case study.

1. the Rds3p protein (PDB identifier 2KOA), a member of the U2 snRNP essential for pre-
mRNA splicing, that has a left-handed trefoil knotted structure [5]

13

2. The first chain (A) of the E. Coli alkaline phosphatase (D153G mutant), as an example of
protein presenting a structural gap, potential source of false positives.

A protein can be loaded from the file system or fetched from the Protein Data Bank (citare PDB)
using the loadProtein function. This function returns a list of matrices, where each element
contains the 3D coordinates of a given protein chain. By default, loadProtein performs gap
finding for each chain backbone, with a parameter cutoff that allow a custom definition of a
gap. cutoff represents the maximum allowed euclidean distance between two consecutive alpha-
Carbon residues. If a distance is greater than cutoff, the chain is split in the corresponding
position. The resulting subchains inherit the label from the chain that have been split, with
an additional consecutive number for each of the subchain (e.g. if chain A is split into three
subchains, they will be labeled A;, Ao and As).

> #from the file system
> protein <- loadProtein(system.file("extdata/2k0Oa.pdb", package="Rknots"))

[1] "PDB has multiple END/ENDMDL records"
[1] "multi=FALSE: taking first record only"

HEADER METAL BINDING PROTEIN 31-JAN-08 2KOA
Summary of the distance vector
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.744 3.789 3.799 3.800 3.810 3.856
No gap found

> protein<- loadProtein('2KOA') #from the PDB

Note: Accessing online PDB file
[1] "PDB has multiple END/ENDMDL records"
[1] "multi=FALSE: taking first record only"

HEADER METAL BINDING PROTEIN 31-JAN-08 2KOA
Summary of the distance vector
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.744 3.789 3.799 3.800 3.810 3.856
No gap found

> str(protein)

List of 1
$ A: num [1:109, 1:3] -9.22 -9.93 -8.36 -11.83 -14.64 ...

loadProtein can be called with any additional parameter of the read.pdb function of bio3d.
See the relevant manual for details.

At this point, we may wish to visualize the 3D structure of the imported protein and the cor-
responding backbone model. For this purpose, we can use the function plot3D and exploit the
superb graphics of rgl [6]. Particularly, we can supply parameters for the functions lines3d and
spheres3d. Briefly, the code below will produce the desired plot. A snapshot is shown below.
First, we prepare a color palette for each residue that will be passed as a list to the low-level
function plotKnot3D. Its wrapper for an object of class Knot is simply plot3D (notice the capital
D) and requires the same parameters as plotKnot3D.

> ramp <- colorRamp(c('blue', 'white', 'red'))

> pal <- rgb(ramp(seq(0, 1, length = 109)), max = 255)

> plotKnot3D(protein$A, colors = list(pal),

+ lwd = 8, radius = .4, showNC = TRUE, text = TRUE)

14

The variable showNC labels the N-terminus and the C-terminus of the protein, whereas text add
to each point the corresponding residue number.

Although possible due to a fully customizable representation, to prepare high-quality figures for
publications we recommend to export the structure using write.pdb and load the result into
dedicated software for protein structure visualization.

To find knots in proteins, a single subunit has to be supplied and coerced to a Knot class
object. The available chains are simply the names of the list returned by loadProtein

> names (protein)
[1] IIAll
and the coercion can be simply achieved through:

> protein <- newKnot (protein$4)
> protein

An object of class 'Knot'
Slot points3D: 109 x 3 matrix
X y z
[1,]1 -9.225 -24.265 -3.881
[2,] -9.927 -20.804 -5.217
[3,] -8.363 -19.745 -8.522
[4,] -11.829 -18.718 -9.673
[5,] -14.645 -16.690 -8.082
[6,] -12.639 -15.926 -4.953
[7,] -10.105 -13.650 -6.562
[8,] -10.944 -10.485 -4.591
[9,] -9.794 -8.744 -7.783
[10,] -6.918 -7.069 -5.969

15

Slot ends:

After that, the structure has to be closed with the function closeAndProject, which also applies
a Principal Component Analysis on the closed structure mostly to lead to optimized graphical
representations and to minimize the possibility of numerical problems during the computation
of the HOMFLY polynomial.

> protein.cp <- closeAndProject(protein, w = 2)

where w controls the extension of the endpoints (we are using the default value in this example and
generally, any value greater than 1 will do). Let’s plot the two protein diagram for comparisons

> par(mfrow = c(1,2))
> plot(protein, main = 'original', lwd = 2)
> plot(protein.cp, main = 'closed & projected', lwd = 2)

original closed & projected

=)
LJ

Now, we can make use of what we already know for computing the polynomial invariants of this
protein:

> (delta.p <- computelnvariant(protein.cp, invariant = 'Alexander'))

[1] "-1 + t1 + 1/t1"

> (jones.p <- computelnvariant(protein.cp, invariant = 'Jones', skein.sign = -1

(11 "1/t - 1/t74 + 7 (-3)"
> (homfly.p <- computelnvariant(protein.cp, invariant = 'HOMFLY', skein.sign =
[1] "2*%172 + 172%m~2 - 174"

As expected, the Alexander polynomial only tells us that we are dealing with a trefoil knot, but
we can make use of the HOMFLY polynomial to establish the knot chirality. It turns out that
the Rds3p protein has a left-handed knot, that we can compare with the mirror image of the
polynomial of the right-handed trefoil knot in the Rolfsen knot table by means of another Rknots
utility:

16

))

-1))

> trefoil <- Rolfsen.table[[1]]
> trefoil <- newKnot (trefoil)
> (homfly.tr <- computelnvariant(trefoil, 'HOMFLY'))

[1] "-1/1"4 + 2/17°2 + m~2/1"2"

> (homfly.tl <- HOMFLY2mirror (homfly.tr))
[1] "2*%172 + 172%m"2 - 174"

> identical(homfly.p, homfly.tl)

[1] TRUE

Finally, notice that if a protein has more than one chain, to iterate over all the possible chains
we can make use of lapply, as follows. First let’s define two very simple functions. The first
one can be used for processing a single chain and its very simple code summarizes what we have
done so far, for example with the Rds3p protein above. The second function simply returns the
length of a given chain.

processChain <- function(protein, i) {
chain <- newKnot(protein[[i]])
chain <- closeAndProject(chain)
return(computelInvariant (chain, 'HOMFLY'))

V + + + + Vv

}
lengthChain <- function(protein, i) return(nrow(protein[[i]]))
Then, we will fetch from the PDB a protein having 2 chains (and we will perform gap finding)

and we will compute for example the HOMFLY polynomial of each of them. Finally, we will
merge the resulting list in a dataframe to obtain a handy report.

> protein <- loadProtein('1AJC', join.gaps = FALSE, cutoff = 7)

Note: Accessing online PDB file
HEADER NON SPECIFIC MONO-ESTERASE 18-JUL-95 1AJC
Loading chains:
#aminoacids
A 446
B 449
Summary of the distance vector
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.756 3.793 3.805 3.822 3.817 11.040
Chain split at position

404
Summary of the distance vector
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.741 3.793 3.805 3.806 3.817 3.864
No gap found

> str(protein)

17

List of 3
$ Al: num [1:404, 1:3] 66.9 68.4 67.3 67.4 63.9 ...
$ A2: num [1:42, 1:3] 67.8 67.3 66.5 69.4 70.4 ...
$ B : num [1:449, 1:3] 73.6 74.6 71.9 71.3 73.8 ...

chains <- names (protein)
polynomials <- lapply(1: length(chains) ,
function(i) {
ifelse(lengthChain(protein, i) > 6, processChain(protein, i), 1) })
cbind(chains, polynomials)

vV + + Vv VvV

chains polynomials

[1,] "A1v "-1/174 + 2/17°2 + m"2/1°2"
[2,] IIA2II II1I|
[3’] IIBII I|1l|

As we can see, the first chain of this protein has been split and resulted in a two unknotted
subchains. The second chain instead bears a right-handed trefoil knot. As a final remark, notice
that if we would have ignored the gap finding, we would have not found a knot in the first chain.

> protein <- loadProtein('1AJC', join.gaps = TRUE)

Note: Accessing online PDB file

HEADER NON SPECIFIC MONO-ESTERASE 18-JUL-95 1AJC
Loading chains:

#aminoacids
A 446
B 449

> str(protein)

List of 2
$ A: num [1:446, 1:3] 66.9 68.4 67.3 67.4 63.9 ...
$ B: num [1:449, 1:3] 73.6 74.6 71.9 71.3 73.8 ...

chains <- names (protein)
polynomials <- lapply(1: length(chains) ,
function(i) {
ifelse(lengthChain(protein, i) > 6, processChain(protein, i), 1) })
cbind(chains, polynomials)

vV + + Vv VvV

chains polynomials
[1,] IIAII |I1l|
[2’] IIBII |I1l|
3 Session Info

> sessionInfo()

R version 2.14.0 (2011-10-31)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

18

locale:
[1] en_US/en_US/en_US/C/en_US/en_US

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] bio3d_1.1-3 Rknots_1.2 rSymPy_0.2-1.1 rJython_0.0-2 rjson_0.2.6
[6] rJava_0.9-3 rgl _0.92.798

loaded via a namespace (and not attached):
[1] tools_2.14.0

References

[1] Comoglio F., Rinaldi M., A Topological Framework for the Computation of the HOMFLY
Polynomial and Its Application to Proteins. PLoS ONE, 6(4), e18693

[2] The Rolfsen Knot Table on Knot Atlas, http://www.math.toronto.edu/ drorbn/KAtlas/
Knots

[3] Reidemeister K. (1926), Abh Math Sem Univ Hamburg 5: 24-32.
[4] Alexander J.W. and Briggs G.B. (1926) On types of knotted curves. Ann of Math, 28, 562-586.

[5] van Roon A.M., Loening N.M., Obayashi E., Yang J.C., Newman A.J., Hernandez H., Nagai
K. and Neuhaus D., (2008) Solution structure of the U2 snRNP protein Rds3p reveals a knotted
zinc-finger motif, Proc Natl Acad Sci USA, 105, 9621-9626.

[6] Adler D., Murdoch D., rgl: 3D visualization device system (OpenGL). R package version
0.92.798

19

http://www.math.toronto.edu/~drorbn/KAtlas/Knots
http://www.math.toronto.edu/~drorbn/KAtlas/Knots

	File import and input structure
	Datasets
	Example knots and links
	Create objects of class Knot

	Structure reduction and invariant computation
	Structure reduction algorithms
	Computation of the invariants of knots and links
	Rknots and protein knot analysis, a dedicated pipeline

	Session Info

