
Comparing speed of packages for computing ROC curves

Toby Dylan Hocking

July 11, 2017

1 Introduction

The goal of this vignette is to compare how long it takes to compute the ROC curves and AUC using different R packages:
WeightedROC, ROCR, pROC, glmnet.

2 Data

The data set I will analyze is the spam data set discussed in the book “The Elements of Statistical Learning” by Hastie,
Tibshirani, and Friedman. The book is available to read for free as a downloadable PDF at

http://statweb.stanford.edu/~tibs/ElemStatLearn/

The data set is available in the R package ElemStatLearn:

> library(ElemStatLearn)

> data(spam)

> is.label <- names(spam) == "spam"

> X <- as.matrix(spam[,!is.label])

> y <- spam[,is.label]

> set.seed(1)

> train.i <- sample(nrow(spam), nrow(spam)/2)

> sets <-

+ list(train=list(features=X[train.i,], label=y[train.i]),

+ test=list(features=X[-train.i,], label=y[-train.i]))

> str(sets)

List of 2

$ train:List of 2

..$ features: num [1:2300, 1:57] 0 0 0 0 0 0 0 0 0 0.4 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2300] "1222" "1712" "2635" "4176" ...

..$: chr [1:57] "A.1" "A.2" "A.3" "A.4" ...

..$ label : Factor w/ 2 levels "email","spam": 2 2 1 1 2 1 1 1 1 2 ...

$ test :List of 2

..$ features: num [1:2301, 1:57] 0 0 0.06 0 0 0 0 0 0 0.05 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2301] "1" "7" "10" "12" ...

..$: chr [1:57] "A.1" "A.2" "A.3" "A.4" ...

..$ label : Factor w/ 2 levels "email","spam": 2 2 2 2 2 2 2 2 2 2 ...

I divided the data set into half train, half test. I will fit a model on the training set and see if it works on the test set.

3 Model fitting

Below, I fit an L1-regularized logistic regression model to the spam training set.

1

http://statweb.stanford.edu/~tibs/ElemStatLearn/

> library(glmnet)

> system.time({

+ fit <- cv.glmnet(sets$train$features, sets$train$label, family="binomial")

+ })

user system elapsed

16.572 0.012 16.640

On my Intel i7 2.8GHz CPU, it took about 10 seconds to fit the model.

4 Timing test ROC curve computation

ROC analysis is useful for evaluating binary classifiers. Below we compute the ROC curves using WeightedROC, pROC,
and ROCR.

> library(WeightedROC)

> library(ROCR)

> library(pROC)

> set <- sets$test

> guess <- predict(fit, set$features)

> if(require(microbenchmark)){

+ microbenchmark(WeightedROC={

+ wroc <- WeightedROC(guess, set$label)

+ }, ROCR={

+ pred <- prediction(guess, set$label)

+ perf <- performance(pred, "tpr", "fpr")

+ }, pROC={

+ proc <- roc(set$label, guess, algorithm=2)

+ })

+ }

Unit: milliseconds

expr min lq mean median uq max neval

WeightedROC 3.214201 3.430741 4.563544 3.924361 5.35343 13.49265 100

ROCR 6.835659 7.247196 9.522626 10.115177 11.20842 16.45128 100

pROC 27.939451 28.895652 39.996864 41.944814 49.70992 55.11324 100

cld

a

b

c

It is clear that WeightedROC is the fastest computation (on my computer, median 1.8 milliseconds), followed by ROCR
(7.2 milliseconds), and finally pROC (26.4 milliseconds). However, all of the ROC computations are much faster than the
model fitting (10 seconds). Below, we plot the ROC curves.

> perfDF <- function(p){

+ data.frame(FPR=p@x.values[[1]], TPR=p@y.values[[1]], package="ROCR")

+ }

> procDF <- function(p){

+ data.frame(FPR=1-p$specificities, TPR=p$sensitivities, package="pROC")

+ }

> roc.curves <-

+ rbind(data.frame(wroc[,c("FPR", "TPR")], package="WeightedROC"),

+ perfDF(perf), procDF(proc))

> library(ggplot2)

> rocPlot <- ggplot()+

+ geom_path(aes(FPR, TPR, color=package, linetype=package),

2

+ data=roc.curves, size=1)+

+ coord_equal()

> print(rocPlot)

>

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

package

WeightedROC

ROCR

pROC

5 Scaling

In this section I was interested in seeing if there are any differences between algorithms as the number of data points
changes.

> if(require(microbenchmark)){

+ stats.by.size.expr <- list()

+ ms.by.size <- list()

+ for(size in c(400, 800, 1200, 1500, 2000, 2300)){

+ indices <- seq(1, length(set$label), l=size)

+ y <- set$label[indices]

+ y.hat <- guess[indices]

+ this.size <- microbenchmark(WeightedROC={

+ wroc <- WeightedROC(y.hat, y)

+ }, ROCR={

3

+ pred <- prediction(y.hat, y)

+ perf <- performance(pred, "tpr", "fpr")

+ }, pROC.1={

+ proc <- roc(y, y.hat, algorithm=1)

+ }, pROC.2={

+ proc <- roc(y, y.hat, algorithm=2)

+ })

+ this.size$milliseconds <- this.size$time/1e6

+ ms.by.size[[paste(size)]] <- data.frame(size, this.size)

+ this.by.expr <- split(this.size, this.size$expr)

+ for(expr in names(this.by.expr)){

+ stats <- with(this.by.expr[[expr]], {

+ data.frame(median=median(milliseconds),

+ q25=quantile(milliseconds, 0.25),

+ q75=quantile(milliseconds, 0.75))

+ })

+ stats.by.size.expr[[paste(size, expr)]] <- data.frame(size, expr, stats)

+ }

+ }

+ ms <- do.call(rbind, ms.by.size)

+ algo.stats <- do.call(rbind, stats.by.size.expr)

+ timePlot <- ggplot()+

+ geom_ribbon(aes(size, ymin=q25, ymax=q75, fill=expr),

+ data=algo.stats, alpha=1/2)+

+ geom_line(aes(size, median, color=expr), data=algo.stats, size=2)+

+ geom_point(aes(size, milliseconds, color=expr), data=ms, pch=1)+

+ ylab("milliseconds")+

+ xlab("data set size")+

+ ggtitle("mean +/- 1 standard deviation")

+ print(timePlot)

+ }

4

●●
●●●●●●
●●
●●●

●
●
●
●
●●●

●●●●

●

●●●●
●

●●
●●
●●

●
●●
●

●

●●●
●
●

●●●
●

●●●
●
●
●
●●●●●●

●
●
●●●●●

●

●●

●
●
●●●●
●

●

●●●

●

●●●

●

●
●
●

●●
●
●
●●

●
●●
●
●●●●
●●

●●●

●●
●●●
●
●
●
●
●
●

●●
●
●●

●●●

●●

●●●●●●●
●

●●●●●

●
●
●

●●●

●

●

●●

●
●
●

●

●

●●●

●●●●●

●●●●●●●
●

●

●

●
●
●●●●●●
●●

●

●
●●

●●

●●
●●

●

●●●
●
●
●
●●
●
●●●

●

●●

●
●●●●

●

●●
●

●●●●
●
●
●
●

●

●
●
●
●●
●●●●
●
●
●●●●

●

●

●
●
●
●
●●●●●●
●●●

●
●●●
●

●●
●
●
●●

●

●
●●●

●

●●

●●
●
●●●●●●
●

●

●

●

●●

●

●

●
●●●
●●
●●●
●

●●●●
●

●

●●

●

●●●

●●
●
●●●●
●

●

●●●
●
●
●

●●●●●●●●●
●
●●

●●
●
●
●●●
●●

●●
●●●
●
●
●
●
●●

●●●●

●

●
●●
●
●●

●●

●●
●●
●
●
●●
●

●
●●
●

●●●

●●

●

●●

●●●

●●
●

●

●
●

●

●

●

●
●

●

●●●
●
●

●

●●●

●
●●●

●

●●●●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●●

●

●
●
●
●●●

●●

●

●
●●

●●

●

●●

●

●●

●
●●
●

●

●
●

●

●

●

●

●●●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●●
●●

●
●●●

●●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●
●

●●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●●

●●

●

●●
●

●

●

●

●

●
●

●●●

●●

●
●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●
●●●●
●

●

●

●●
●

●

●

●

●
●

●●●

●●

●
●

●

●

●

●

●

●●
●
●
●
●
●

●●

●
●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●
●
●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●●

●
●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●

●●

●

●●●
●
●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●●

●

●

●●

●●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●
●
●●

●

●

●
●

●

●●
●

●●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●●●

●●

●

●

●

●
●
●

●

●●

●

●

●

●●
●

●

●●

●●
●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●●●●

●●
●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●

●●
●

●●

●

●
●

●●●●●●

●

●

●●

●

●●●
●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●
●
●

●

●●●●

●

●
●●

●

●●

●

●

●
●●

●

●●
●

●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●●

●

●●
●

●

●●

●●

●

●
●
●

●

●●●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●
●
●
●

●●

●

●

●

●●
●●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●
●
●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●●
●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●●

●
●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●●

●●

●

●
●

●

●

●

●●

●●
●●●●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●●

●

●

●

●
●●
●
●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●
●

●

●
●●●

●

●
●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●
●

●●

●
●●

●●

●
●

●

●
●
●

●

●

●●

●●●

●
●

●●

●
●●
●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●
●●
●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●●

●
●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●●
●

●●

●
●

●

●●

●
●

●

●
●

●
●
●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●
●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●●

●

●

●

●●
●

●
●

●●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●●●

●

●

●
●●

●

●
●

●●

●●

●

●●

●
●

●

●

●

●

●●●

●●

●●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●
●

●
●

●

●●

●

●
●
●●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●●
●

●

●

●●
●

●●

●

●
●

●

●

●●
●
●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●●●
●

●
●

●

●●

●

●

●

●
●●●

●●

●

●●

●●

●

●●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●
●

●●
●

●●

●

●

●

●●

●●●
●
●

●

●

●
●●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●●

●

●

●
●●

●●

●●

●
●
●
●●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●
●●

●●

●

●

●●

●
●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●●●●
●

●

●
●●
●

●
●

●

●

●●

●

●

●

●

●

●

●●
●
●
●

●
●●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●●

●
●
●

●

●

●●

●

●●●●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●●●●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●●

●●

0

100

200

300

500 1000 1500 2000
data set size

m
ill

is
ec

on
ds

expr
●

●

●

●

WeightedROC

ROCR

pROC.1

pROC.2

mean +/− 1 standard deviation

The figure above shows that for the spam data, the data set size does not affect the speed ordering of the algorithms
for ROC curve computation. In all cases, WeightedROC is fastest, followed by ROCR, then pROC.2, then pROC.1. It
makes sense that pROC.2 is faster than pROC.1, since pROC.2 uses the cumsum function, but pROC.1 does not.

5

	Introduction
	Data
	Model fitting
	Timing test ROC curve computation
	Scaling

