bbl: Boltzmann Bayes Learner for
High-Dimensional Inference with Discrete
Predictors in R

Jun Woo Jinhua Wang

University of Minnesota, Minneapolis University of Minnesota, Minneapolis

Abstract

Non-regression-based inferences, such as discriminant analysis, can account for the
effect of predictor distributions that may be significant in big data modeling. We de-
scribe bbl, an R package for Boltzmann Bayes learning, which enables a comprehensive
supervised learning of the association between a large number of categorical predictors
and multi-level response variables. Its basic underlying statistical model is a collection of
(fully visible) Boltzmann machines inferred for each distinct response level. The algorithm
reduces to the naive Bayes learner when interaction is ignored. We illustrate example use
cases for various scenarios, ranging from modeling of a relatively small set of factors with
heterogeneous levels to those with hundreds or more predictors with uniform levels such
as image or genomic data. We show how bbl explicitly quantifies the extra power provided
by interactions via higher predictive performance of the model. In comparison to deep
learning-based methods such as restricted Boltzmann machines, bbl-trained models can
be interpreted directly via their bias and interaction parameters.

Keywords: Supervised learning, Boltzmann machine, naive Bayes, discriminant analysis, R.

1. Introduction

Many supervised learning tasks involve modeling discrete response variables y using predictors
x that can occupy categorical factor levels (Hastie, Tibshirani, and Friedman 2009). Ideally,
it would be best to model the joint distribution P(x,y) via maximum likelihood,

A

0= argénax In P(x,y|0©)], (1)

to find parameters ©. Regression-based methods use P(x,y) = P(y|x)P(x) ~ P(y|x). Their
advantages include the wealth of information provided for significance of fit coefficients from
rigorous formal results. An alternative is to use P(x,y) = P(x|y)P(y) and fit P(x|y). Since
y is low-dimensional, this approach could capture extra information not accessible from re-
gression when there are many covarying predictors. To make predictions for y using P(x|y),
one uses the Bayes’ formula. Examples include linear and quadratic discriminant analyses
(Hastie et al. 2009, pp. 106-119) for continuous x. For discrete x, naive Bayes is the simplest
approach, where the covariance among x is ignored via

P(xly) =[] P(aily) (2)

2 bbl: Boltzmann Bayes Learner in R

with x = (21, , Zm).

In this paper, we focus on supervised learners taking into account the high-dimensional nature
of P(x|y) beyond the naive Bayes-level description given by Eq. (2). Namely, a suitable
parametrization is provided by the Boltzmann machine (Ackley, Hinton, and Sejnowski 1985),
which for the simple binary predictor x; = 0, 1,

1
P(xly) = - exp (Z Wi+ J;%xj) , 3)
Y i

1<j

where Z, is the normalization constant, or partition function. Equation (3) is the Gibbs

distribution for Ising-type models in statistical mechanics (Chandler 1987). The two sets

of parameters hz(y) and Ji(jy) each represent single variable and two-point interaction effects,

respectively. When the latter vanishes, the model leads to the naive Bayes classifier. Although
exact inference of Eq. (3) from data is in general not possible, recent developments led to many
accurate and practically usable approximation schemes (Hyvérinen 2006; Morcos, Pagnani,
Lunt, Bertolino, Marks, Sander, Zecchina, Onuchic, Hwa, and Weigt 2011; Nguyen, Zecchina,
and Berg 2017; Nguyen and Wood 2016; Nguyen and Wood 2016), making its use in supervised
learning a viable alternative to regression methods. Two approximation methods available
for use are pseudo-likelihood inference (Besag 1975) and mean field theory (Chandler 1987;
Nguyen et al. 2017).

A recently described package BoltzMM can fit the (‘fully visible’) Boltzmann machine given
by Eq. (3) to data using pseudo-likelihood inference (Jones, Nguyen, and Bagnall 2019b;
Jones, Bagnall, and Nguyen 2019a). In contrast, classifiers based on this class of models
remain largely unexplored. Supervised learners using statistical models of the type (3) usually
take the form of the restricted Boltzmann machines instead (Hinton 2012), where (visible)
predictors are augmented by hidden units and interactions are zero except between visible
and hidden units. The main drawback of such layered Boltzmann machine learners, as is
common in all deep learning algorithms, is th(e)difﬁculty in interpreting trained models. In
y

contrast, with the fully visible architecture, J;;” in Eq. (3), if inferred with sufficient power

while avoiding overfitting, has direct interpretation of interaction between two variables.

We refer to such learning/prediction algorithms using a generalized version of Eq. (3) as
Boltzmann Bayes (BB) inference. An implementation specific to genomic single-nucleotide
polymorphism (SNP) data (two response groups, e.g., case and control, and uniform three-
level predictors, i.e., allele counts of z; = 0,1,2) has been reported previously (Woo, Yu,
Kumar, Gold, and Reifman 2016). However, this C++ software was geared specifically toward
genome-wide association studies and is not suitable for use in more general settings. We
introduce an R package bbl (Boltzmann Bayes Learner), which uses both R and C++ for
usability and performance, allowing the user to train and test statistical models in a variety
of different usage settings.

2. Model and algorithm

For completeness and for reference to software features described in Sec. 3, we summarize
in this section key relevant formulas (Woo et al. 2016) used by bbl, generalized such that
predictors each can have varying number of factor levels.

Jun Woo, Jinhua Wang

1. Model description

The discrete response y; for an instance k takes factor values y among K > 2 groups; e.g.
y = case, control; k = 1,--- ,n denotes sample (or configuration) index. We also introduce
frequency wyg, each of which is integral number of times each configuration was observed in
data, such that), wi = ns is the total sample size. If data takes the form of one entry per
obserbation, wi = 1 and n = ns. The use of frequency wy can lead to more efficient learning
when the number of predictors is relatively small.

We use symbol y for a particular factor value and generic response variables interchangeably.
The overall likelihood is

L:ZwklnP(xk,yk) :ZZwklnP(xk,y) EZLy, (4)
k Y

Y key

where the second summation is over all k for which y, = y. The inference is first performed
for each group y separately, maximizing L, given by

Ly =Y wi [P(xMy) +In P(y)| = 3" win P(xMy) + nypy, (5)
key key
where p, = P(y) is the marginal distribution of y and n, = Y, wy, is the size of group y.

In parametrizing the first term in Eq. (5), we assume that predictor variables take discrete
factor levels, each with distinct effect on responses, e.g., z; = a, t, g, ¢ for DNA sequence
data. The group-specific predictor distribution can then be written as

1
P(x|y) = - eXP th('y) Z J,‘Z,ZL‘J . (6)
y

A 1<j

The number of parameters (d.f.) per group y in 0, = {hz(»y (z), Jl(jy) (x,2')} is

df. =) (Li— 1)+ (Li—1)(L; — 1), (7)

A 1<j

where L; is the total number of levels in factor x;, which contributes one less parameters to
d.f. because one of the factors can be taken as reference with the rest measured against it.
Internally, bbl orders factors, assigns codes a; = 0,--- , L; —1, and set hgy)(ai) = Ji(]y) (a;,aj) =
0 whenever a; = 0 or a;j = 0. We refer to hl(-y) () and Ji(jy) (x,2') as bias and interaction
parameters, respectively.

In the special case where predictor levels are binary (z; = 0, 1), one may use the spin variables
si = 2x; — 1 = %1, as in the package BoltzMM (Jones et al. 2019b). Its distribution (Jones
et al. 2019a)

1

P(s) x exp (25T Ms + st> (8)
is then related to Eq. (3) by
hi 1
bi = 5+12Jij’ (9a)
JFi

1

M;; = ZJZ-], (9b)

4 bbl: Boltzmann Bayes Learner in R

where parameter superscripts were omitted because response group is not present.

2.2. Pseudo-likelihood inference

One option for fitting Eq. (6) to data is pseudo-likelihood maximization (Besag 1975):

L, —nypy = Zwk In P(x*|y) ~ Z Wy ZlnP]y,xf\i) = ZLiy, (10)

key key

where the effective univariate distribution is conditional to all other predictor values:

and

Relyrap) = S
i\ LY, Ti\i) = —(5 7 >
' N Zy ()

Li-1
7(y) o
(1) E:e oD =1 4 3 e (el
a=1

}_lgy)(x]x]\l = +Z (x,x;).
J#i

Including Lo penalizers (Ap,), Liy in Eq. (10) becomes

zy = Zwk [y Z; ‘x]\z) In ZZ?J j\Z } Zh Z

key

with first derivatives

]xx

OLiy/ny) 1 k W)
VN fz (r) — — ka¢(3?|y,$ Z) — Aph; (x),
o (z) ny ,gy "
OLiy/ny Ay)
— . = fl (,2") — — w1 (x (:(:|y,x ;) —
8JZ-(JZ-”) (x,2)] Ty % A
where
A 1
fP@) = =Y wll =a),
Y key
[P = = (k=)1k =)
Ty key

(15a)

(15b)

(16a)

(16b)

are the first and second moments of predictor values and 1(z) is the indicator function.
In bbl, Egs. (15) are solved in C++ functions using the quasi-Newton optimization function
gsl_multimin_fdfminimizer_vector_bfgs2 in GNU Scientific Library (https://www.gnu.
org/software/gsl). By default, A\, = 0 and only interaction parameters are penalized. As
can be seen from the third equality of Eq. (10), the pseudo-likelihood inference decouples
into individual predictors, and the inference for each ¢ in bbl is performed sequentially. The

resulting interaction parameters, however, do not satisfy the required symmetry,

Jij(z,2") = Jj(2, x).

(17)

Jun Woo, Jinhua Wang

After pseudo-likelihood inference, therefore, the interaction parameters are symmetrized as
follows:

Jij (w, .CI?/) — % [Jij (.%’, .1‘/) + in(:r’, x)} . (18)

In bbl, the input data are filtered such that predictors with only one factor level (no variation
in observed data) are removed. Nevertheless, in cross-validation of the processed data, sub-
divisions into training and validation sets may lead to instances where factor levels observed
for a given predictor within x; in Eq. (15) are only a subset of those in the whole data. It is
thus possible that optimization based on Egs. (15) is ill-defined when any of the predictors
are constant. In such cases, we augment the training data by an extra instance, in which
constant predictors take other factor levels.

2.3. Mean field inference

The other option for predictor distribution inference is mean field approximation. In data-
driven inference, the interaction parameters are approximated as (Nguyen et al. 2017)

JPa,a') = =[] (@), (19)

i.e., negative inverse of the covariance matrix,
CS!) (.CC, .I'/) = fij(x,l',) — fz(x)f](l'/) (20)

Equation (19) can be interpreted as treating discrete x as if it were multivariate normal:

Eq. (6) would then be the counterpart of the multivariate normal p.d.f. with —Ji(]y) (z,2")
corresponding to the precision matrix. In real data where n ~ d.f. or less, the matrix inversion
is often ill-behaved. It is regularized by interpolation of C(¥) between non-interacting (naive
Bayes) (e = 0) and fully interacting limits (e = 1):

Tr C®)

T

Cw g = (1— 0T 4 e, 1)

where | is the identity matrix of the same dimension as C¥). The parameter € serves as a
good handle for probing the relative importance of interaction effects.

The bias parameters are given in mean field by an analog of Eq. (13),

W (2) = ZZJ” (w,2') fP ("), (22)
j#i

and

B (@) = [f7 @)/ £ 0)] (23)

where fi(y) (0) is the frequency of (reference) factor z; for which the parameters are zero
(a; = 0). Equation (22) relates the effective bias for predictor z; (the first term on the right)
as the sum of univariate bias (left-hand side) and combined mean effects of interactions with
other variables (the second term on the right) (Chandler 1987). The effective bias is related
to frequency via Eq. (23) because

efzgw (z)

~ ~ 7 (@)
@) = —— =V (24)
1y

6 bbl: Boltzmann Bayes Learner in R

where the fact that]—%(y) (0) = 0 was used in the second equality.
As in pseudo-likelihood maximization, mean field inference also may encounter non-varying
predictors during cross-validation. To apply the same inference scheme using Egs. (20), (22)

and (23) to such cases, the single-variable frequency fi(y) (z) and covariance fij‘y (x,2) are
computed using data augmented by a prior count of 1 uniformly distributed among all L;
factor levels for each predictor.

2.4. Naive Bayes

When interaction is ignored (Ji(jy) = 0), the model can be solved analytically. From Eqs. (22)
and (23),
W (@) = [fP(@)/ £ (0)] (25)
and (Woo et al. 2016)
L, nylnpy—ZwklnP Fly) —nny (). (26)
key

The likelihood ratio statistic for each predictor, where the null hypothesis is hl(y) (x) = hi(z)
with h;(z) the “pooled” inference parameters (same values for all response groups), is then

qz-zzn z[(2)In £ (@) = filn fi(@)] (27)
The statistic ¢; ~ x? with d.f. = (K — 1)(L; — 1).

2.5. Classification

For prediction, we combine predictor distributions for all response groups via Bayes formula:

P(xly)py, 1 _ 1

P(ylx) = = =
(wo) Xy Ply)py 14 Xy Py)y /P(xly)py 1+ e 67 2%)
where
P(x|y)py
Fy(x) =1 .
yix) =t [zm P<x|y'>py/] 29)

For binary response coded as y = 0,1, Eq. (29) reduces to
Fi(x) = InP(x|ly=1)—InP(x|y =0)+ In(pi/po)

Zop
B zz: [hgl)(%) a hEO) (3«"@')} * ; [Ji(jl)(xzyiﬁj) - Ji(jo) (zvi,xj)} +In Z(l)p(l)' (30)

Therefore, if JZ-(;-J) (z,2") = 0 (naive Bayes), Eq. (28) takes the form of the logistic regression
formula. However, the actual naive Bayes parameter values differ from logistic regression fit.
No expression for P(y|x) simpler than Eq. (28) exists for data with more than two groups.

In pseudo-likelihood maximization inference, Z, can be approximated by

InZ, = Z Z In {Z [6h’(y)($)+zj# Jii (m,xf)/2:| }) (31)

ykEy i

Jun Woo, Jinhua Wang

or with the same expression without the factor of 1/2 in the interaction term in the exponent
(default). This quantity can be conveniently computed during the optimization process. With
the mean field option, the following expression is used:

InZ, = —In f¥)(0) - % SN T) filx) £ (). (32)
i#] x,x!

For a test data set for which the actual group identity y; of data instances are known, the
prediction score (accuracy) may be defined as

s= 501 [i0) =] (33)
k

where
J(x) = arg max P(y|x). (34)
y

If response is binary, the score defined by Eq. (33) is sensitive to marginal distributions of the
two groups via Eq. (30). The area under curve (AUC) of receiver operating characteristic is
a more robust performance measure independent of probability cutoff. In bbl, the prediction
score given by Egs. (33) and (34) is used in general with the option to use AUC for binary
response using R package pROC (Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, and
MAijller 2011).

3. Software Usage and Tests

3.1. Logistic regression

To motivate the use of bbl and highlight differences, we first consider the use of logistic
regression using glm. We use the base R data Titanic as an example:

R> titanic <- as.data.frame(Titanic)
R> titanic

Class Sex Age Survived Freq
1 1st Male Child No 0
2 2nd Male Child No 0
3 3rd Male Child No 35
4 Crew Male Child No 0
5 1st Female Child No 0
6 2nd Female Child No 0
7 3rd Female Child No 17
8 Crew Female Child No 0
9 1st Male Adult No 118
10 2nd Male Adult No 154
11 3rd Male Adult No 387
12 Crew Male Adult No 670
13 1st Female Adult No 4

8 bbl: Boltzmann Bayes Learner in R

14 2nd Female Adult No 13
15 3rd Female Adult No 89
16 Crew Female Adult No 3
17 1st Male Child Yes 5
18 2nd Male Child Yes 11
19 3rd Male Child Yes 13
20 Crew Male Child Yes

21 1st Female Child Yes 1
22 2nd Female Child Yes 13
23 3rd Female Child Yes 14
24 Crew Female Child Yes 0
25 1st Male Adult Yes 57
26 2nd Male Adult Yes 14
27 3rd Male Adult Yes 75
28 Crew Male Adult Yes 192
29 1st Female Adult Yes 140
30 2nd Female Adult Yes 80
31 3rd Female Adult Yes 76
32 Crew Female Adult Yes 20

R> freq <- titanic$Freq
R> titanic <- titanic[,1:4]

Input data can either be of the form above with unique combinations of predictors in each
row along with frequency or raw data (one observation per row) we generate using the utility
function freq2raw:

R> library(bbl)

R> titanic_raw <- freq2raw(data=titanic, freq=freq)
R> head(titanic_raw)

Class Sex Age Survived

1 3rd Male Child No
2 3rd Male Child No
3 3rd Male Child No
4 3rd Male Child No
5 3rd Male Child No
6 3rd Male Child No

R> summary(titanic_raw)

Class Sex Age Survived
1st :325 Male :1731 Child: 109 No :1490
2nd :285 Female: 470 Adult:2092 Yes: 711
3rd :706
Crew:885

Jun Woo, Jinhua Wang 9

We train a logistic regression model using glm:

R> gfit0 <- glm(Survived ~ Class + Sex + Age, family=binomial(), data=titanic,
+ weights=freq)
R> gfit0

Call: glm(formula = Survived ~ Class + Sex + Age, family = binomial(),
data = titanic, weights = freq)

Coefficients:
(Intercept) Class2nd Class3rd ClassCrew SexFemale
0.6853 -1.0181 -1.7778 -0.8577 2.4201
AgeAdult
-1.0615

Degrees of Freedom: 23 Total (i.e. Null); 18 Residual
Null Deviance: 2769
Residual Deviance: 2210 AIC: 2222

R> summary (gfit0)

Call:
glm(formula = Survived ~ Class + Sex + Age, family = binomial(),
data = titanic, weights = freq)

Deviance Residuals:
Min 1Q Median 3Q Max
-18.505 -4 .247 0.000 4.747 23.915

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.6853 0.2730 2.510 0.0121 *

Class2nd -1.0181 0.1960 -5.194 2.05e-07 **x*

Class3rd -1.7778 0.1716 -10.362 < 2e-16 **x*

ClassCrew -0.8577 0.1573 -5.451 5.00e-08 *x*x*

SexFemale 2.4201 0.1404 17.236 < 2e-16 *x*

AgeAdult -1.0615 0.2440 -4.350 1.36e-05 *x*x

Signif. codes: O '*x*x' 0.001 '«x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2769.5 on 23 degrees of freedom
Residual deviance: 2210.1 on 18 degrees of freedom

AIC: 2222.1

Number of Fisher Scoring iterations: 5

10 bbl: Boltzmann Bayes Learner in R

The fit above included linear terms only. It indicates that survival was strongly associated with
class status, sex (female heavily favored), and age. The model below includes all interactions:

R> gfitl <- glm(Survived ~ (Class + Sex + Age)~2, family=binomial (), data=titanic,
+ weights=freq)
R> summary (gfit1)

Call:
glm(formula = Survived ~ (Class + Sex + Age)~2, family = binomial(),
data = titanic, weights = freq)

Deviance Residuals:
Min 1Q Median 3Q Max
-18.375 -4 .565 0.000 3.286 24.014

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 14.77920 437.96770 0.034 0.97308
Class2nd 0.26021 549.29444 0.000 0.99962
Class3rd -15.76960 437.96782 -0.036 0.97128
ClassCrew -0.52215 0.18088 -2.887 0.00389 x*x*
SexFemale 3.59619 0.74781 4.809 1.52e-06 ***
AgeAdult -15.50683 437.96773 -0.035 0.97176

Class2nd:SexFemale -0.06801 0.67120 -0.101 0.91929
Class3rd:SexFemale -2.79995 .B6875 -4.923 8.52e-07 **x
ClassCrew:SexFemale -1.13608 0.82048 -1.385 0.16616

o

Class2nd:AgeAdult -1.93047 549.29453 -0.004 0.99720
Class3rd:AgeAdult 14.85629 437.96787 0.034 0.97294
ClassCrew:AgeAdult NA NA NA NA

SexFemale:AgeAdult 0.68679 0.52541 1.307 0.19116

Signif. codes: O '*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2769.5 on 23 degrees of freedom
Residual deviance: 2097.5 on 12 degrees of freedom
AIC: 2121.5

Number of Fisher Scoring iterations: 13

The summary of interacting model suggests that class status association arose from the linear
effect of being Crew and interaction effect of Female 3rd-class passengers.

To illustrate training and prediction, we divide the sample into train and test sets:

R> set.seed(159)
R> nsample <- NROW(titanic_raw)

Jun Woo, Jinhua Wang 11

R> flag <- rep(TRUE, nsample)

R> flag[sample(nsample, nsample/2)] <- FALSE
R> dtrain <- titanic_raw[flag,]

R> dtest <- titanic_raw[!flag,]

We train glm model with interactions, omitting interaction Class:Age because it was rank-
deficient, and make prediction on test data:

R> gfit2 <- glm(Survived ~ Class*Sex + Sex*Age, family=binomial(), data=dtrain)
R> prl <- predict(gfit2, newdata=dtest)

R> yhat <- ifelse(prl>0, 'Yes', 'No')

R> mean(yhat==dtest$Survived)

[1] 0.7718182

R> gauc <- pROC: :roc(response=dtest$Survived, predictor=prl, direction='<')$auc
R> gauc

Area under the curve: 0.7699

3.2. Boltzmann Bayes learning

The logistic regression shown in the previous subsection allowed for inference and significance
testing of linear and interaction coefficients in association with the response variable. However,
the regression fit did not provide any further information regarding the source of association:
in the examples in Sec. 3.1, the survival of Titanic passengers was seen to be associated with
being Crew members and Female 3rd-class passengers. The corresponding linear regression
coefficients, which have the same functional form as in Eq. (30), are measures of the difference
in enrichment in the two response groups, while the two terms whose difference yielded the
coefficient remained unknown. How were the sub-groups distributed among survivor and
non-survivor groups? Were there very few Female 3rd-class passengers among the survivor
group compared to non-survivor, or were they found in both groups but more so among non-
survivors? The BB inference estimates the individual distributions of predictors in response
groups separately and subsequently combines them to make predictions. For binary response,
this inference provides estimates of the two coefficients whose difference corresponds to the
linear regression outcome.

With this comparison in mind, we use the same Titanic data below to illustrate the BB
inference. As in glm, the package bbl uses formula input to train an S3 object of class bbl:

R> bfit0 <- bbl(Survived ~ Class + Sex + Age, data=titanic, freq=freq)

which by default triggers a pair of pseudo-likelihood inferences, solving the maximum pseudo-
likelihood equations (15) first under the alternative hypothesis (individual groups have distinct
distributions) and then the null hypothesis (all samples have the same distribution). The
print method on bbl shows the structure of model and (subsets) of inferred parameters:

R> bfit0

12 bbl: Boltzmann Bayes Learner in R

Call:
bbl(formula = Survived ~ Class + Sex + Age, data = titanic, freq = freq)
3 predictor states:
Class = 1st 2nd 3rd Crew
Sex = Female Male
Age = Adult Child
Responses:
Survived = No Yes

Coefficients:
dh_[Class]~(No):

2nd 3rd Crew
0.4446497 0.6881264 0.7047726

dh_[Class] ~(Yes):
2nd 3rd Crew
-0.4104076 -0.9066249 -0.9579479

dh_[Sex]~(No):
Male
1.075354

dh_[Sex] " (Yes):
Male
-1.238318

dh_[Age] ~(No):
Child
-0.3603528

dh_[Age]~(Yes):
Child
0.5181036

(v)

where dh represents parameters Ah;” = hz(»y) — h;; i.e., individual group parameters offset by

7

the pooled values. Internally, the parameters hz(y) and JZ»(]Z-/) are stored as lists with argument
order (y,i) and (y,1,j), respectively. The inner-most elements of the lists are vectors and
matrices of dimension L; — 1 = ¢(3,1,1) and (Li——l,lg — 1), respectively. The summary
method on bbl object prints out parameters and their significance test outcomes under the

naive Bayes approximation (no interactions) as a rough overview of model under consideration:

R> summary (bfit0)

Call:
bbl(formula = Survived ~ Class + Sex + Age, data = titanic, freq = freq)
3 predictor states:

Class = 1st 2nd 3rd Crew

Sex = Female Male
Age = Adult Child
Responses:

Survived = No Yes

Fit method: mf

Jun Woo, Jinhua Wang

naive Bayes coefficients:

h_Class:

2nd
No 0.3134216
Yes -0.5416357

pooled -0.1312281

chisq = 180.3452,
h_Sex:

Male
No 2.37830103
Yes 0.06462923

pooled 1.30294740

chisq = 433.2369,
h_Age:

Child
No -3.310543
Yes -2.432087

pooled -2.950190
chisq = 17.09504,

df

df

3rd Crew

.4635015 1.70604860
.1312497 0.04332808
.7753752 1.00127597

3, Pr(>chisq) =

1, Pr(>chisq)

1, Pr(>chisq)

13

7.428894e-39

3.209119e-96

3.555496e-05

The test results are those from likelihood ratio test applied to the naive Bayes result, Eq. (27),

with the null hypothesis hgy) (a) = hi(a). The tables of bias parameters shown above include
those for two survival status groups, which clearly indicate the enrichment of lower Class
status and Male among non-survivors. Child are few among both survivors and non-survivors;
hence highly negative bias parameters in all groups, although less so in survivor group, as

expected.

We note that the summary method displays naive Bayes results, for which simple analytic
expressions for test results are available, even for models containing interactions.

We now fit an interacting model using bbl:

R> bfit <- bbl(Survived ~ Class*Sex + Sex*Age, data=titanic, freq=freq)

R> bfit

Call:

bbl(formula =
freq = freq)

3 predictor states:

Class

Survived ~ Class * Sex + Sex * Age, data

1st 2nd 3rd Crew

titanic,

14 bbl: Boltzmann Bayes Learner in R

Sex = Female Male
Age = Adult Child
Responses:

Survived = No Yes

Coefficients:
dh_[Class]~ (No):

2nd 3rd Crew
1.486686 2.970870 1.554066

dh_[Class]~(Yes):
2nd 3rd Crew
-0.1035553 -0.7508587 -0.1143729

dh_[Sex]~(No):
Male
3.154356

dh_[Sex]~(Yes):
Male
-1.07586

dh_[Age]~(No):
Child
0.3864377

dh_[Age]l " (Yes):
Child
-0.177389

dJ_[Class,Sex]~(No):
Male

2nd -1.232563

3rd -2.720835

Crew -1.379435

dJ_[Class,Sex]~(Yes):
Male

2nd -0.90342729

3rd -0.01467013

Crew -0.30251859

dJ_[Sex,Age] ~(No):
Child
Male -0.4941875

Jun Woo, Jinhua Wang 15

dJ_[Sex,Age] ~(Yes):
Child
Male 1.167093

The parameters printed include those for interactions. The plot method shows a barplot of
bias parameters and a heatmap of interaction parameters (Fig. 1).

Survived

B No
O Yes

Class:2nd
Class:3rd -
Class:Crew -

Ah
o == N W
Age:Child - I]I

AJ(Survived=No) AJ(Survived=Yes)
2.7
Age:Child Age:Child %

27
Sex:Male - Sex:Male
Jlass:Crew Class:Crew
Class:3rd - Class:3rd
Class:2nd Class:2nd

Class:2nd
Class:3rd
Class:Crew
Sex:Male
Age:Child
Class:2nd
Class:3rd
Class:Crew
Sex:Male
Age:Child

Figure 1: Plot of bbl object displays bias (top) and interaction parameters (bottom). All parameters
are offset by their pooled (singe-group) values.

Note that Male members were predominant (bias parameters; top), while Male 3rd-class pas-
sengers were under-represented (interactions; bottom left), among non-survivors. In addition,
Male-Child class had enhanced survival (bottom right).

We now fit the training data and make prediction on test data:
R> bfit2 <- bbl(Survived ~ Class*Sex + Sex*Age, data=dtrain)

R> pr <- predict(bfit2, newdata=dtest, logit=FALSE)
R> head(pr)

No Yes yhat
1 0.8145593 0.1854407 No

16 bbl: Boltzmann Bayes Learner in R

2 0.8145593 0.1854407 No
3 0.8145593 0.1854407 No
4 0.8145593 0.1854407 No
5 0.8145593 0.1854407 No
6 0.8145593 0.1854407 No

R> pROC: :roc(response=dtest$Survived, predictor=pr[,2], direction='<"')$auc
Area under the curve: 0.7707

Here, Eq. (28) was used with x from the supplied newdata. The predict method returns a
data frame containing predicted group probabilities and the most likely group for each row.

One can do cross-validation applied to dtrain data, dividing it into nfold = 5 train/validation
subsets of 4:1 proportion, and aggregating predictions for validation sets using the trained
model:

R> cv <- crossVal(Survived ~ Class*Sex + Sex*Age, data=dtrain,
+ method='pseudo', lambda=10"seq(-5,-2,0.2), verbose=0)
R> cv

Optimal lambda = 0.0001584893
Max. score: 0.7226426

lambda auc
1 1.000000e-05 0.6566096
2 1.584893e-05 0.6877020
3 2.511886e-05 0.7016226
4 3.981072e-05 0.6987384
5 6.309573e-05 0.6578960
6 1.000000e-04 0.7040212
7 1.584893e-04 0.7226426
8 2.511886e-04 0.7070723
9 3.981072e-04 0.7050073
10 6.309573e-04 0.7114523
11 1.000000e-03 0.6912610
12 1.584893e-03 0.6770809
13 2.511886e-03 0.7081696
14 3.981072e-03 0.6605393
15 6.309573e-03 0.6719538
16 1.000000e-02 0.6423405

R> plot(cv, mar=c(4,4,3,3), tck=-0.04, las=1, ylab='AUC', bty='n')

It returns an object with a data.frame of AUCs for multiple lambda values and optimal
values with maximum AUC. We use this information to make prediction as follows:

Jun Woo, Jinhua Wang 17

o

0.70 °
0.68

0.66 — o

AUC
~

0.64 T 1 1 T 7
1e-05 1e-04 1e-03 1e-02

lambda

Figure 2: Cross-validation run of Titanic data in bbl.

R> model <- bbl(Survived ~ Class*Sex + Sex*Age, data=dtrain, lambda=cv$regstar)
R> pr2 <- predict(model, newdata=dtest)

R> bscore <- mean(dtest$Survived==pr2$yhat)

R> bscore

[1] 0.79

R> bauc <- pROC::roc(response=dtest$Survived, predictor=pr2[,2], direction='<')$auc
R> bauc

Area under the curve: 0.7707

Alternatively, predict(cv, ...) will apply the optimal model within cross-validation to
test data. The difference compared to the re-training step above is that the optimal model
stored in cv was trained on 4/5 of the sample, while model above used the whole training set.

3.3. Simulated data

We next demonstrate the reliability of bbl inference using simulated data.

R> predictors <- list()

R>m<-5

R>L <- 3

R> for(i in 1:m) predictors[[i]] <- seq(0, L-1)

18 bbl: Boltzmann Bayes Learner in R

R> par <- randompar (predictors)
R> names (par)

[1] llh" IIJll

The utility function randompar generates random parameters for predictors. We have set the
total number of predictors as m = 5, each taking values 0,1,2 (L; = L = 3).

R> xi <- sample_xi(nsample=10000, predictors=predictors, h=par$h, J=par$J,
+ code_out=TRUE)
R> head(xi)

o O WwN -
N NDNONO
O NN BEFE NN
O, N NN+
O NNDNDNDN
= = O = N O

The function sample_xi will list all possible predictor states and sample configurations based
on the distribution (6). The total number of states here is L™ = 3%, which is amenable for
exhaustive enumeration. However, this is possible only for small m and L. If either are even
moderately larger, sample_xi will hang.

Because there is only one response group, we call the main engine mlestimate of bbl inference
directly instead of bbl:

R> fit <- mlestimate(xi=xi, method='pseudo',lambda=0)

Predictor 1: 42 iterations, likelihood = 0.718101
Predictor 2: 32 iterations, likelihood = 0.96174
Predictor 3: 45 iterations, likelihood = 0.963491
Predictor 4: 46 iterations, likelihood = 0.923876
Predictor 5: 45 iterations, likelihood = 0.989111

R> names(fit)
[1] uhn an "1kh" ||1le

In contrast to bbl function, which fits a model of multiple response groups and predictors
in factors, mlestimate is for a single group and requires input matrix xi whose elements
are integral codes of factors: a; = 0,---,L; — 1. Figure 3 compares the true and inferred
parameters. Here, the sample size was large enough that no regularization was necessary.

We next simulate a full binary response data set with four-level predictors:

R> nt <_ C('a','C',Ig','tl)
R> set.seed(135)

Jun Woo, Jinhua Wang 19

DA, A
DA
05 — e
£
N
A A
g o
8 0.0 7 At
o
£ s
oA
AL B
(A
o AR
2 ,A
-0.5 — LA
o é,’ o h
'3 A J
a7 a
’ \ \ \
-0.5 0.0 0.5
True

Figure 3: Comparison of true parameters and those inferred from pseudo-likelihood BB inference.
See the text for conditions.

R> for(i in 1:m) predictors[[i]] <- nt

R> names(predictors) <- pasteO('v',1:m)

R> par <- list()

R> par[[1]] <- randompar (predictors)

R> par[[2]] <- randompar (predictors, h0=0.1, J0=0.1)

R> dat <- randomsamp (predictors, response=c('ctrl', 'case'), par=par, nsample=1000)

The function randomsamp generates random samples of predictor-response pairs using the
supplied par. We perform a cross-validation using mean field inference,

R> cv <- crossVal(y ~ .72, data=dat, method='mf', eps=seq(0,1,0.1),verbose=0)
R> cv

Optimal epsilon = 0.7
Max. score: 0.8845219

epsilon auc

0. . 7849546
.8392593
.8610941
.8708767
.8773411
.8812357
.8831850
.8845219
.8840456

©O© 00 NO Ok WN -
O O O O O O o o

O NO Ok WN B+~ O
O O O O O O O o o

20 bbl: Boltzmann Bayes Learner in R

10 0.9 0.8815880
11 1.0 0.8724978

Here, bbl is called inside crossval as before but with method = ’mf’, which triggers mean
field inference with Eqs. (19) and (22).

As shown in Fig. 4a, prediction AUC is optimized near e = 0.7. The difference between AUC

at € = 0 (naive Bayes limit) and the maximum is a measure of the overall effect of interaction.
We select three values of € and examine the fit:

R> fit <- list()
R> eps <- ¢(0.2, 0.7, 1.0)
R> for(i in seq_along(eps))

+ fit[[i]] <- bbl(y ~ ."2, data=dat, method='mf', eps=eps[i], verbose=0)
€=0.2
a b
0.88 - RN 157
. ! 1.0 4 T e
0.86 o 3 .
/ 3 05 A
' -
0084 4 : o
2 : o 0.0 -
< ' E
0.82 § -0.5
0.80 - | -1.0
T T T —— 1 -5 - T T T T T |
00 02 04 06 08 10 -15 05 00 05 10 15
€ True
€=0.7 e=1
c d
1.5 1 L 1.5 7 s, s
. . IS A
1.0 1.0 A a8 A ﬁgf»
o A DA
o 05 o 05 » A§§§§é§§
10} o) LGS Py .
= £ | a TGN
8 001 g 00 A‘“‘A&ﬁ“ﬁ‘ﬁh
5-05— 5-05— @'%% 2
| 2008
1.0 1.0 4 s
s
15 - 15 4,7 A AAA
I T T T T 1 I T T T T T 1
15 05 00 05 10 15 15 05 00 05 10 15
True True

Figure 4: Regularized mean field inference using simulated data. (a) Cross-validation AUC with
respect to regularization parameter (b-d) Comparison of true and inferred parameters under three
Best fit is achieved when AUC is maximum.

Figure 4b-d compares the three inferred parameter sets (coef (fit[[1]1]1)$h, coef (fit[[i]]1)$J)
with the true values (par[[iy]]1$h, par[[iy]]1$J). As € increases from 0 to 1, interaction
parameter J grows from zero to large, usually overfit levels. We verify that the bias and vari-
ance strike the best balance under € = 0.7 (Fig. 4c), as suggested by cross-validation AUC in

Fig. 4a.

Jun Woo, Jinhua Wang

3.4. Genetic code

We consider a different learning task example with a much larger space of response groups,
namely those of amino acides (K = 21, which include 20 amino acids plus stop signal (‘*’),
encoded by DNA sequences (z; = a,c,g,t). In DNA sequences, three nucleotides combine to
encode specific amino acids. We will train a model attempting to discover this genetic code
from data.

R> set.seed(351)

R> n <- 2000

R> dat <- data.frame(bl=sample(nt, size=n, replace=TRUE),
+ b2=sample(nt, size=n, replace=TRUE),
+ b3=sample(nt, size=n, replace=TRUE))

R> head(dat)

bl b2 b3
1 t a g
2 g t c
3 t a a
4 c g g
5 a a c¢
6 c t g

In the above, we generated random instances of triplet codons for training. We use the package
Biostrings (Pages, Aboyoun, Gentleman, and DebRoy 2019) to translate it into amino acids:

R> if(!require('Biostrings',character.only=TRUE)){

+ if(!require('BiocManager',character.only=TRUE))

+ install.packages('BiocManager')

+ BiocManager: :install('Biostrings')

+ }

R> aa <- Biostrings::DNAString(paste(t(dat), collapse='"'))
R> aa

6000-letter "DNAString" instance
seq: TAGGTCTAACGGAACCTGGCGATTATACTTG. ..AGTAAACTCGACAGTGACCGAAGGTACGGGC

R> aa <- strsplit(as.character(Biostrings::translate(aa)), split='"')[[1]]
R> xdat <- cbind(data.frame (aa=aa),dat)
R> head(xdat)

aa bl b2 b3
* t a

oUW N
0= x <
0O M O 0”
o 0 P o
0 0 0@ P O 0

21

22 bbl: Boltzmann Bayes Learner in R

We now cross-validate using bbl:

R> cv <- crossVal(aa ~ ."2, data=xdat, lambda=10"seq(-3,1,0.5), verbose=0)
R> cv

Optimal lambda = 0.3162278
Max. score: 1

lambda score

1 0.001000000 0.9195
2 0.003162278 0.9195
3 0.010000000 0.9875
4 0.031622777 0.9875
5 0.100000000 0.9925
6 0.316227766 1.0000
7 1.000000000 0.9930
8 3.162277660 0.9770
9 10.000000000 0.9770

Note that with the multinomial response group, the score used is Eq. (33). The class cv.bbl
extends bbl and stores the model with the optimal A. In contrast to Sec. 7?7, we do not refit
the model under this A because the score is maximum. Testing can use all possible codon
sequences (43 = 64 total):

R> panel <- expand.grid(bl=nt, b2=nt, b3=nt)
R> head(panel)

bl b2 b3

S O W
0O ct0m 0
oo PP
PP PP P

R> dim(panel)
[1] 64 3

R> p <- predict(cv, panel)

R> ap <- Biostrings::DNAString(paste(t(panel), collapse='"'))

R> ap <- strsplit(as.character(Biostrings::translate(ap)), split='"')[[1]]
R> score <- mean(ap==p$yhat)

R> score

(1] 1

Jun Woo, Jinhua Wang

1.0
—A-A-85ea_
08_‘9"“'§Z§’°‘° ’ S
\
‘0
0.6 \
[0} o
8 \
0.4 <
° n=1x10° A\
A n=gx10* \°\
0.2 A°
o
0.0 ~
I T T T 1
107 107 107? 107 1

€

Figure 5: Cross-validation of BB inference on MNIST data using mean field Sample sizes are for
down-sampled example and full data sets, respectively.

The trained model has perfect prediction score of 1 and will not make mistakes in any trans-
lation of DNA sequences.

3.5. Image data

We next consider learning examples with data sets containing predictors numbering ~ 100
or more. The the MNIST data set (yann.lecun.com/exdb/mnist/), widely used for bench-
marking classification algorithms (Lecun, Bottou, Bengio, and Haffner 1998), contains image
data of grayscale levels (z; = [0,255]) derived from hand-written digits (yx = 0,---,9) for
m = 28 x 28 = 784 pixels. We use down-sampled training (n = 1,000) and test (n = 500)
data sets, where grayscale has been transformed into binary predictors (z; = 0,1):

R> dat <- read.csv(system.file('extdata/mnist_train.csv',package='bbl'))
R> dat <- removeConst (dat)

R> dat[1:5,1:10]

R> cv <- crossVal(y ~ .72, data=dat, method='mf', eps=0.04)

Note that before calling crossVal, we removed predictors without factor variations (pixels
that are always empty) using the utility function removeConst. By default, error will occur
inside crossVal otherwise.

The above run will take a few minutes. By feeding a vector of € values, one can obtain the
profile shown in Fig. 5 (white symbols). The jump in performance under €* ~ 0.04 over € — 0
(naive Bayes) limit gives a measure of interaction effects. The relatively small value of €* at
the optimal condition, compared to e.g., Fig. 4a, reflects the sparseness of image data.

We now retrain the model without cross-validation under €* and classify test set (also down-
sampled to n = 500) images:

23

24 bbl: Boltzmann Bayes Learner in R

Algorithm Method Error rate (%) Reference/package

Linear classifier 1-layer NN 12.0 Lecun et al. (1998)

K-nearest neighbors Euclidean (L2) 5.0 Lecun et al. (1998)

2-layer NN 300 hidden units 4.7 Lecun et al. (1998)

RBM 2-layer 0.95 Salakhutdinov and Hinton (2009)
Naive Bayes Mean field (e = 0) 15.7 bbl

BB Mean field (e = 0.05) 8.4 bbl

Table 1: Performance comparison of BB inference and other models on MNIST data set. BB,
Boltzmann Bayes; NN, neural network; RBM, restricted Boltzmann machine.

R> mnist <- bbl(y ~ ."2, data=dat, method='mf', eps=cv@regstar)

R> dtest <- read.csv(system.file('extdata/mnist_test.csv',package='bbl'))
R> dtest <- dtest[,colnames(dtest) /,injJ, colnames(dat)]

R> pr <- predict(mnist, newdata=dtest[,-1], progress.bar=FALSE)

R> mean(pr$yhat==dtest$y)

Since mnist dropped a subset of original predictors, the test data must be filtered accordingly.
Note the increase in test score compared to cross-validation score because of the use of full
training data. Set progress.bar = TRUE to monitor the progress in a slow predict run.

We performed similar cross-validation and test analyses of the full MNIST data (training
n = 60,000 and test n = 10,000; Fig. 5, red symbols) and obtained the test score of 0.916
(classification error rate 8.4%), which compares favorably with some of the large-scale neural
network algorithms (Table. 1).

3.6. Transcription factor binding site data

One of machine learning tasks of considerable interest in biomedical applications is the detec-
tion of transcription factor binding sites within genomic sequences (Wasserman and Sandelin
2004).Transcription factors are proteins that bind to specific DNA sequence segments and reg-
ulate gene expression programs. Public databases, such as JASPAR (Khan, Fornes, Stigliani,
Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chéneby, Kulkarni, Tan, Baranasic, Are-
nillas, Sandelin, Vandepoele, Lenhard, Ballester, Wasserman, Parcy, and Mathelier 2018),
host known transcription factors and their binding sequence motifs. Supervised learners al-
low users to leverage these data sets and search for binding motifs from candidate sequences.

Here, we illustrate such an inference using an example set (MA0014.3) of binding motif
sequences from JASPAR (http://jaspar.genereg.net):

R> seq <- readFasta(system.file('extdata/MA0014.3.fasta',package='bbl"'))
R> head(seq)

=
o
[y
=
[\

D O WN -
>0 Q0 Q0
Q= = Q= QN
[P eI PINPENPR PR
Qb
QO H Qo
Q934390
[PIP I PG PENPEEN]
== o= = e > 0
Qoo
QO oA
Q= = QA+~
QA aQ

Jun Woo, Jinhua Wang 25

R> dim(seq)
[1] 948 12

The data set consists of common nucleotide segments from n = 948 raw sequences used for
motif discovery. We simulate a training set by generating non-binding sequences with random
mutation of 3 nucleotides:

R> set.seed(561)

R> nsample <- NROW(seq)

R> m <- NCOL(seq)

R> nt <- c('A','C','G','T")

R> ctrl <- as.matrix(seq)

R> for(k in seq_len(nsample))

+ ctrl[k, sample(m,3)] <- sample(nt, 3, replace=TRUE)

R> colnames(ctrl) <- 1:m

R> data <- rbind(data.frame(y=rep('Binding', nsample), seq),
+ data.frame (y=rep('Non-binding', nsample), ctrl))
R> data <- data[sample(NROW(data)),]

We assess the performance of pseudo-likelihood and mean field inferences below using cross-
validation:

R> ps <- crossVal(y~."2, data=data, method='pseudo', lambda=10"seq(-2,-1,0.2),
+ verbose=0)
R> ps

Optimal lambda = 0.02511886
Max. score: 0.8530206

lambda auc
1 0.01000000 0.8492985
2 0.01584893 0.8519268
3 0.02511886 0.8530206
4 0.03981072 0.8527557
5 0.06309573 0.8517421
6 0.10000000 0.8501086

R> mf <- crossVal(y~. 2, data=data, method='mf', eps=seq(0.1,0.4,0.1),
+ verbose=0)
R> mf

Optimal epsilon = 0.2
Max. score: 0.8530829

epsilon auc
1 0.1 0.8523296

26 bbl: Boltzmann Bayes Learner in R

a b
0.85 - 085 4 .
/ ° /
/ %o e e 0, 0.84 —
0.84 — , \
o . o | .
= K = 0.83 S
0.83 - \
0.82 — .
\
0.82 - 0.81 — \
[I I I 1 [I I I 1
10° 102 107 1 10 00 02 04 06 08
A €

Figure 6: Cross-validation of transcription factor binding motif model using bbl with control sequences
generated by 3 nucleotide mutations. Data set is from Khan et al. (2018) (sample ID MA0014.3; see
text). (a) Pseudo-likelihood and (b) mean field inferences.

2 0.2 0.8530829
3 0.3 0.8518778
4 0.4 0.8498872

In both cases, there is an optimal, intermediate range of regularization with maximum AUC
(Fig. 6). The level of performance attainable with non-interacting models, such as position
frequency matrix (Wasserman and Sandelin 2004), corresponds to the e = 0 limit in Fig. 6b.
The AUC range obtained above is representative of the sensitivity and specificity levels one
would get when scanning a genomic segment using a trained model for detection of a binding
site to within resolution of ~ 3 base pairs.

We analyzed 684 data sets with at least 30 sequences from JASPAR database of varying
sample sizes and segment lengths with the same protocol. Differences between fully optimized
AUC scores and those from non-interacting models (naive Bayes) were most pronounced above
the intermediate range of AUC, and were independent of segment lengths (Fig. 7a). Pseudo-
likelihood results had better scores compared to mean field on avarge (Fig. 7b).

4. Summary

We introduced a user-friendly R package bbl, implementing general BB classifiers applicable
to heterogeneous, multifactorial predictor data associated with a discrete multi-class response
variable. The currently available R package BoltzMM is limited to fitting data into a sin-
gle fully visible Boltzmann distribution without reference to response variables, and assumes
binary predictors. The package bbl employs a more general statistical distribution accom-
modating heterogeneous, factor-valued predictors via Eq. (6), embedding it in a Bayesian
classifier to build supervised learning and prediction models. The basic implementation ar-
chitecture bbl follows those of standard base R packages such as glm.

Jun Woo, Jinhua Wang 27

a b
10 - 10 -
0.8 - _ 08
1
< [e]
(] — © —
g oe S os
(%]
®) L _
S o4 S 04
2
02 - 02 -
0.0 0.0
[T T T T 1 [T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
AUC (NB) AUC (MF)

Figure 7: AUC scores of bbl model trained on 856 transcription factor binding site sequence data
sets from JASPAR (Khan et al. 2018) under the same protocol as in Fig. 6. (a) Comparison of naive
Bayes (NB; mean field with € = 0) and full mean field (MF) results. (b) Comparison of mean field
(MF) and pseudo-likelihood maximization (pseudo-L) scores. The symbol colors show the segment
length of each binding site data (color-map in a).

Compared to more widely applied restricted Boltzmann machine algorithms (Hinton 2012),
the BB model explicitly infers interaction parameters for all pairs of predictors, making it
possible to interpret trained models directly, as illustrated in Fig. 1. Tests on MNIST sug-
gest performance scores similar to other deep layer neural network models in classification
tests. However, BB inference is especially suited to data types where a moderate number of
unordered features (such as nucleotide sequences) combine to determine class identity, as in
transcription factor binding motifs (Sec. 3.6). Among the two options for inference methods,
mean field (method = ‘mf’) is faster but can become memory intensive for models with a
large number of predictors. Pseudo-likelihood maximization (method = ’pseudo’) is slower
but generally provides better performance.

Computational details

The current version of bbl is available at the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=bbl. Installation of bbl requires the GNU Scien-
tific library https://www.gnu.org/software/gsl installed. The results in this paper were
obtained using R 3.6.1. R itself and all packages used are available from the CRAN at
https://CRAN.R-project.org/ and at Bioconductor at https://bioconductor.org.

References

Ackley DH, Hinton GE, Sejnowski TJ (1985). “A Learning Algorithm for Boltzmann
Machines.” Cognitive Science, 9(1), 147 — 169. ISSN 0364-0213. doi:https:

28 bbl: Boltzmann Bayes Learner in R

//doi.org/10.1016/50364-0213(85)80012-4. URL http://www.sciencedirect.com/
science/article/pii/S0364021385800124.

Besag J (1975). “Statistical Analysis of Non-Lattice Data.” Journal of the Royal Statistical
Society. Series D (The Statistician), 24(3), 179-195. ISSN 00390526, 14679884.

Chandler D (1987). Introduction to Modern Statistical Mechanics. Oxford, New York.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd edition. New York. URL https://web.stanford.
edu/~hastie/ElemStatLearn/.

Hinton GE (2012). A Practical Guide to Training Restricted Boltzmann Machines, pp. 599—
619. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-35289-8. doi:10.
1007/978-3-642-35289-8_32. URL https://doi.org/10.1007/978-3-642-35289-8_
32.

Hyvérinen A (2006). “Consistency of Pseudolikelihood Estimation of Fully Visible Boltzmann
Machines.” Neural Computation, 18(10), 2283-2292. ISSN 0899-7667. doi:10.1162/neco.
2006.18.10.2283. URL https://doi.org/10.1162/neco.2006.18.10.2283.

Jones A, Bagnall J, Nguyen H (2019a). “BoltzMM: an R Package for Maximum Pseudolikeli-
hood Estimation of Fully-Visible Boltzmann Machines.” Journal of Open Source Software,
4(34), 1193. ISSN 2475-9066. doi:10.21105/joss.01193. URL http://dx.doi.org/10.
21105/ joss.01193.

Jones AT, Nguyen HD, Bagnall JJ (2019b). BoltzMM: Boltzmann Machines with MM Algo-
rithms. R package version 0.1.4, URL https://CRAN.R-project.org/package=BoltzMM.

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy
A, Chéneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K,
Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). “JASPAR 2018:
Update of the Open-Access Database of Transcription Factor Binding Profiles and Its Web
Framework.” Nucleic Acid Research, 46, D260-D266.

Lecun Y, Bottou L, Bengio Y, Haffner P (1998). “Gradient-Based Learning Applied to
Document Recognition.” In Proceedings of the IEEE, pp. 2278-2324.

Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic
JN, Hwa T, Weigt M (2011). “Direct-Coupling Analysis of Residue Coevolution Cap-
tures Native Contacts across Many Protein Families.” Proceedings of the National
Academy of Sciences, USA, 108(49), E1293-E1301. ISSN 0027-8424. doi:10.1073/pnas.
1111471108. https://www.pnas.org/content/108/49/E1293.full.pdf, URL https:
//www.pnas.org/content/108/49/E1293.

Nguyen HC, Zecchina R, Berg J (2017). “Inverse Statistical Problems: From the Inverse
Ising Problem to Data Science.” Advances in Physics, 66(3), 197-261. doi:10.1080/
00018732.2017.1341604. https://doi.org/10.1080/00018732.2017.1341604, URL
https://doi.org/10.1080/00018732.2017.1341604.

Jun Woo, Jinhua Wang 29

Nguyen HD, Wood IA (2016). “Asymptotic Normality of the Maximum Pseudolikelihood Es-
timator for Fully Visible Boltzmann Machines.” IEEFE Transactions on Neural Networks and
Learning Systems, 27(4), 897-902. ISSN 2162-237X. doi:10.1109/TNNLS.2015.2425898.

Nguyen HD, Wood TA (2016). “A Block Successive Lower-bound Maximization Algorithm for
the Maximum Pseudo-likelihood Estimation of Fully Visible Boltzmann Machines.” Neural
Computation, 28(3), 485-492. ISSN 0899-7667. doi:10.1162/NECO_a_00813. URL http:
//dx.doi.org/10.1162/NECO_a_00813.

Pages H, Aboyoun P, Gentleman R, DebRoy S (2019). Biostrings: Efficient Manipulation of
Biological Strings. R package version 2.52.0, URL https://bioconductor.org/packages/
Biostrings.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, MAijller M (2011). “pROC:
An Open-Source Package for R and S+ to Analyze and Compare ROC Curves” BMC
Bioinformatics, 12, 77. URL https://cran.r-project.org/web/packages/pROC.

Salakhutdinov R, Hinton G (2009). “Deep Boltzmann Machines” In D van Dyk,
M Welling (eds.), Proceedings of the Twelth International Conference on Artificial Intel-
ligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 448—
455. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA. URL
http://proceedings.mlr.press/v5/salakhutdinov09a.html.

Wasserman WW, Sandelin A (2004). “Applied Bioinformatics for the Identification of Regu-
latory Elements.” Nature Reviews Genetics, 5, 276—287.

Woo HJ, Yu C, Kumar K, Gold B, Reifman J (2016). “Genotype Distribution-Based Inference
of Collective Effects in Genome-Wide Association Studies: Insights to Age-Related Macular
Degeneration Disease Mechanism.” BMC' Genomics, 17, 695.

30 bbl: Boltzmann Bayes Learner in R

Affiliation:

Jun Woo (corresponding author), Jinhua Wang
Institute for Health Informatics

and

Masonic Cancer Center

University of Minnesota

Minneapolis, Minnesota, USA

E-mail: jwoo@umn.edu

	Introduction
	Model and algorithm
	Model description
	Pseudo-likelihood inference
	Mean field inference
	Naive Bayes
	Classification

	Software Usage and Tests
	Logistic regression
	Boltzmann Bayes learning
	Simulated data
	Genetic code
	Image data
	Transcription factor binding site data

	Summary

