
Continuous Time Structural Equation Modelling

With R Package ctsem

Charles C. Driver

Max Planck Institute for Human Development
Johan H. L. Oud

Radboud University Nijmegen

Manuel C. Voelkle

Humboldt University Berlin
Max Planck Institute for Human Development

Abstract

We introduce ctsem (Driver, Oud, and Voelkle In Press), an R package for continuous
time structural equation modelling of panel (N > 1) and time series (N = 1) data, us-
ing full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel
models) in the social and behavioural sciences are discrete time models. An assumption
of discrete time models is that time intervals between measurements are equal, and that
all subjects were assessed at the same intervals. Violations of this assumption are often
ignored due to the difficulty of accounting for varying time intervals, therefore parameter
estimates can be biased and the time course of effects becomes ambiguous. By using
stochastic differential equations to estimate an underlying continuous process, continuous
time models allow for any pattern of measurement occasions. By interfacing to OpenMx,
ctsem combines the flexible specification of structural equation models with the enhanced
data gathering opportunities and improved estimation of continuous time models. ctsem
can estimate relationships over time for multiple latent processes, measured by multiple
noisy indicators with varying time intervals between observations. Within and between ef-
fects are estimated simultaneously by modelling both observed covariates and unobserved
heterogeneity. Exogenous shocks with different shapes, group differences, higher order
diffusion effects and oscillating processes can all be simply modeled. We first introduce
and define continuous time models, then show how to specify and estimate a range of
continuous time models using ctsem.

Keywords: time series, longitudinal modelling, panel data, state space, structural equation
modelling, continuous time, stochastic differential equation, dynamic models, Kalman filter,
R.

1. Introduction

Dynamic models, such as the well known vector autoregressive model, are widely used in
the social and behavioural sciences. They allow us to see how fluctuations in processes re-
late to later values of those processes, the effect of an input at a particular time, how the
various factors relate to average levels of the processes, and many other possibilities. Some
examples with panel data include the impact of European institutional changes on business

2 Continuous Time Structural Equation Modelling With ctsem

cycles (Canova, Ciccarelli, and Ortega 2012), the coupling between sensory and intellectual
functioning (Ghisletta and Lindenberger 2005), or the analysis of bidirectional links between
children’s delinquency and the quality of parent-child relationships (Keijsers, Loeber, Branje,
and Meeus 2011). Examples of single subject approaches are studies on the decline in pneu-
monia rates in the USA after a vaccine introduction (Grijalva, Nuorti, Arbogast, Martin,
Edwards, and Griffin 2007), or the lack of a relationship between antidepressant sales and
public health in Iceland (?). At present, applications of dynamic models in the social and
behavioural sciences are almost exclusively limited to discrete time models. In discrete time
models it is generally assumed that time progresses in discrete steps, that time intervals be-
tween measurement occasions are equal, and that, in case of panel data, subjects are assessed
with the same time intervals. In many cases, these assumptions are not met, resulting in
biased parameter estimates and a misunderstanding of the strength and time course of ef-
fects. This concept is illustrated in Figure 1 (with a comprehensive example in Appendix
A). In the upper panel, Figure 1 shows a true autoregressive effect of .80 between observed
variables (represented by squares), assuming equal intervals of length ∆t = 1 (represented by
equal distances between observed variables), while the lower panel shows a process with two
intervals of ∆t = 1 and one interval ∆t = 2. In the top panel, the meaning of the estimate
of .80 is clear – it refers to the autoregression estimate for 1 unit of time. In the lower case,
however, the autoregression estimate of .73 is ambiguous – it is too low to characterise the
relation between the first three occasions (correct value of .80 is in brackets) and too high
between the last two occasions (correct value of .64).

Figure 1: Two autoregressive processes, each exhibiting a true autoregressive effect of .80
for 1 unit of time. The top process is measured with equal time intervals (represented by the
space between observations) of 1 unit, while the lower process has unequal intervals.

Obviously, parameter estimates and, thus, scientific conclusions, are biased when observation
intervals vary and this is not adequately accounted for. In simple cases, such as the example
in Figure 1, additional variables – so called phantom variables (Rindskopf 1984), with missing
values for all individuals – could be added in order to artificially create equally spaced time
intervals. For example, an additional variable could be specified at t4, resulting in equal
time intervals and permitting the use of standard discrete time models. For complex patterns
of individually varying time intervals, however, this approach quickly becomes untenable
(Voelkle and Oud 2013). Furthermore, with discrete time models it is difficult to compare
results obtained from different studies with unequal time intervals, which poses a limitation
to the production of cumulative knowledge in science (Voelkle, Oud, Davidov, and Schmidt
2012).

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 3

Continuous time models overcome these problems, offering researchers the possibility to es-
timate parameters free from bias due to unequal intervals, easily compare between studies
and datasets with different observation schedules, gather data with variable time intervals
between observations, understand changes in observed effects over time, and parsimoniously
specify complex dynamics. Although continuous time models have a long history (Coleman
1964; Hannan and Tuma 1979), their use in the social sciences is still uncommon. At least in
part, this is due to a lack of suitable software to specify and estimate continuous time models.
With the introduction of ctsem in this article, we want to overcome this limitation. Although
we will define continuous time models in the next section and provide several examples in the
sections thereafter, a comprehensive treatment of continuous time models is beyond the scope
of this article. For a more general introduction to continuous time models by means of SEM,
the reader is referred to Voelkle et al. (2012). For additional information on the technical
details we refer the reader to Oud and Jansen (2000).

While there are already a range of packages that deal with continuous time (stochastic dif-
ferential equation) models in R, most focus on single subject applications. These include
sde (Iacus 2015), yuima (Brouste, Fukasawa, Hino, Iacus, Kamatani, Koike, Masuda, No-
mura, Ogihara, Shimuzu, and others 2014), SIM.DiffProc (Boukhetala and Guidoum 2014),
cts (Wang 2013), POMP (King et al. 2010). For multi-subject approaches, OpenMx (Neale
et al. 2015) now includes the function mxExpectationStateSpaceContinuousTime, which
can be combined with the function mxFitFunctionMultigroup for fixed effects based group
analysis. ctsem is focused on providing an accessible workflow, for full information maximum
likelihood estimation of continuous time multivariate autoregressive models with random in-
tercepts, for both time series and panel data. Using ctsem, one may specify: Cross lagged
panel models; latent growth curve models; random intercepts at the latent or manifest level;
damped oscillators; dynamic factor analysis models; constant or time dependent exogenous
predictors; continuous time ARMAX models from the time series tradition; multiple groups
or individuals with different parameters; or any combination of the preceding. First order
models should be generally equivalent to discrete time first order models, if there is no vari-
ability in time intervals. For an example of this equivalence in regards to dual change score
models see Voelkle and Oud (2015). For an R script and plot comparing estimates of a simple
autoregressive model using ctsem and other packages, see Appendix B.

The remainder of this article is organised as follows: in Section 2, we provide a formal defini-
tion of the continuous time models dealt with in this package. In Section 3 we will show how
to install ctsem and give an overview of the package. In Section 4, we will review different data
structures and discuss the role of time in continuous time models. In Section 5, we will show
how to specify continuous time models in ctsem, followed by a discussion of model estimation
and testing in Section 6. In Section 7 we will discuss various extensions of basic continuous
time models, including unobserved heterogeneity, time dependent and time independent ex-
ogenous predictors, time series, multiple group models, higher order, and oscillating models.
We will end with some discussion of various specification options and tips for model fitting
in Section 8, and point to current limitations and future research and development directions
in Section 9.

4 Continuous Time Structural Equation Modelling With ctsem

2. Continuous time models: fundamentals

The class of continuous time models implemented in ctsem is represented by the multivariate
stochastic differential equation:

dηi (t) =

(

Aηi (t) + ξi + Bzi +Mχi (t)

)

dt +GdWi (t) (1)

Vector ηi (t) ∈ R
v is a v -variable vector of the processes of interest at time t , for subject i. The

matrix A ∈ Rv×v represents the so-called drift matrix, with auto effects on the diagonal and
cross effects on the off-diagonals characterising the temporal relationships of the processes.

The long term level of processes ηi (t) is determined by the v -length vector of random variables
ξi , with ξi ∼ N(κ,ϕξ) for every i, where vector κ ∈ Rv denotes the continuous time intercepts,
and matrix ϕξ ∈ R

v×v the covariance across subjects. ξi sets the long-term level of the
processes and the long-term differences between the processes of individual subjects – without
it the processes of a stable model would all trend towards zero in the long-run.

The matrix B ∈ Rv×p represents the effect of the p-length vector of (fixed) time independent
predictors z ∈ Rp on processes ηi (t). Time independent predictors would typically be variables
that differs between subjects, but are constant within subjects for the time range in question.

Time dependent predictors χi (t) represent inputs to the system that vary over time and are
independent of fluctuations in the system. Equation 1 shows a generalised form for time
dependent predictors, that could be treated a variety of ways dependent on the assumed time
course (or shape) of time dependent predictors. We use a simple impulse form, in which the
predictors are treated as impacting the processes only at the instant of an observation. When
necessary, the evolution over time can be modeled by extending the state matrices. This is
demonstrated in the level change example in Section 7.2.2, wherein a model containing only
the basic impulse has a persistent level change effect added. To achieve the impulse form we
replace part of Equation 1 as follows:

χi (t) =
∑

u ∈Ui

xi,uδ(t − u) (2)

Here, time dependent predictors xi,u ∈ R
l are observed at times u ∈ Ui ⊂ R. The Dirac delta

function δ(t − u) is a generalised function that is ∞ at 0 and 0 elsewhere, yet has an integral
of 1 (when 0 is in the range of integration). It is useful to model an impulse to a system, and
here is scaled by the vector of time dependent predictors xi,u . The effect of these impulses on
processes ηi (t) is then M ∈ R

v×l .

Wi (t) ∈ R
v represent independent Wiener processes, with a Wiener process being a random-

walk in continuous time. dWi (t) is meaningful in the context of stochastic differential equa-
tions, and represents the stochastic error term, an infinitesimally small increment of the
Wiener process. Lower triangular matrix G ∈ Rv×v represents the effect of this noise on
the change in ηi (t). Q, where Q = GG⊤, represents the variance-covariance matrix of the
diffusion process in continuous time.

The solution of the stochastic differential Equation 1 for any time interval t − t0, with t > t0
is:

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 5

ηi (t) = e
A(t−t0)ηi (t0) +

A−1[eA(t−t0)
− I]ξi +

A−1[eA(t−t0)
− I]Bzi +

M
∑

u ∈Ui

xi,uδ(t − u) +

∫ t

t0

eA(t−s)GdWi (s) (3)

The five summands of this equation correspond to the five of Equation 1, and give the link
between the continuous time model and discrete instantiations of the process.

The last summand of Equation 3, the integral of the diffusion over the given time interval,
exhibits covariance matrix:

cov
[

∫ t

t0

eA(t−s)GdWi (s)

]

=

∫ t

t0

eA(t−s)QeA
⊤ (t−s)ds = irow

(

A−1# [eA# (t−t0)
− I] row(Q)

)

(4)

Where A# = A ⊗ I+ I ⊗A, with ⊗ denoting the Kronecker-product, row is an operation that
takes elements of a matrix rowwise and puts them in a column vector, and irow is the inverse
of the row operation.

The process vector ηi (t) may be directly observed or latent with measurement model

yi (t) = Γi + Ληi (t) + ζi (t), where ζ(t) ∼ N(0,Θ), and Γ ∼ N(τ,Ψ) (5)

where c-length vector τ is the expected value of Γi , which is distributed across subjects
according to covariance matrix Ψ ∈ Rc×c (referred to later as manifest traits – see Section
7.1.1). Λ ∈ Rc×v is a matrix of factor loadings, yi (t) ∈ R

c is a vector of manifest variables,
and residual vector ζi ∈ R

c has covariance matrix Θ ∈ Rc×c .

2.1. Continuous time and SEM

Continuous time models have already been implemented as structural equation models, using
either non-linear algebraic constraints (Oud and Jansen 2000) or linear approximations of the
matrix exponential (Oud 2002). Our formulation uses either the SEM RAM (reticular action
model) specification as per McArdle and McDonald (1984), or the state space form recently
added to OpenMx (Neale et al. 2015; Hunter 2014). For details on the equivalence and dif-
ferences between SEM and state space modelling techniques, see Chow, Ho, Hamaker, and
Dolan (2010). ctsem translates user specified input matrices and switches into an OpenMx

model consisting of continuous time parameter matrices, algebraic transformations of these
matrices to aid optimization (See Section 6), and algebraic transforms from the continuous
time parameters to discrete time parameters for every unique time interval. Expectation ma-
trices are then generated for each individual according to the specified inputs, constraints,
and observed timing data. Optimization using either the Kalman filter or row-wise full in-
formation maximum likelihood (FIML) within OpenMx is used to estimate the parameters,

6 Continuous Time Structural Equation Modelling With ctsem

typically with a first pass using a penalty term (or prior) to find a region of high probability
without extreme parameters, and then a second FIML pass using the first as starting values.

To see exactly how the various matrices are transformed into a RAM SEM, one may run the
following code after ctsem is installed (See Section 3). This example comprises two latent
processes, three observed indicators, a time dependent predictor, and two time independent
predictors, across three time points of observation.

R> data(✬datastructure✬)

R> datastructure

R> semModel<-ctModel(n.latent=2, n.manifest=3, TRAITVAR=✬auto✬,

+ n.TIpred=2, n.TDpred=1, Tpoints=3,

+ LAMBDA=matrix(c(1,✬lambda21✬, 0, 0,1,0),nrow=3))

R> semFit<-ctFit(datastructure, semModel, nofit=TRUE)

R> semFit$mxobj$A$labels

R> semFit$mxobj$S$labels

R> semFit$mxobj$M$labels

R> semFit$mxobj$F$values

For more detailed information on the specification of continuous time structural equation
models, the reader is referred to Oud and Jansen (2000); Arnold (1974); Singer (1998); Voelkle
et al. (2012). Note that while earlier incarnations of continuous time modelling focused
on approaches to implement the matrix exponential, OpenMx now includes a form of the
exponential recommended in computational contexts, the scaling and squaring approach with
Pade approximation (Higham 2009), which has been implemented in ctsem accordingly.

3. ctsem package overview and installation

As ctsem is an R package, it requires R to be installed, available from www.r-project.org

(R Core Team 2014). The R package OpenMx (Neale et al. 2015) is required, and although
it will be installed automatically via CRAN if necessary, it is recommended to download it
from http://openmx.psyc.virginia.edu/, to allow use of the NPSOL optimizer. ctsem is
available via CRAN, so to install and load within R simply use:

R> install.packages("ctsem")

R> library("ctsem")

For the latest development versions, http://github.com/cdriveraus/ctsem provides the
Github repository, which can also be used to flag any issues noted or request support.

Estimating continuous time models via ctsem comprises four steps: First, the data must
be adequately prepared (Section 4). Then, the continuous time model must be specified
by creating a ctsem model object using the function ctModel (Sections 5 and 7). After
specification, the model must be fit to the data using the function ctFit, after which summary

and plot methods may be used to examine parameter estimates, standard errors, and fit
statistics (Section 6). We will discuss these steps in the following.

www.r-project.org
http://openmx.psyc.virginia.edu/
http://github.com/cdriveraus/ctsem

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 7

4. Data structure

The internal functions of ctFit use data in a wide layout, with all data for each individual in
a single row, including the time intervals between measurement occasions for this individual.
Because this is the format used internally when fitting, for the sake of transparency it is
also required as the input format, and is detailed below in Section 4.1. In some cases it
may however be simpler to maintain data in a long format, and use the ctLongToWide and
ctIntervalise functions we provide to convert from long format with absolute times to wide
format with time intervals. This functionality is discussed in Section 4.2. The choice of time
scale and treatment of the initial time point can influence results and will be discussed in
Section 4.3, though first time users may find it easier to return to later.

4.1. Wide format

This is the data format required when fitting a model with ctsem. The example data below
depicts two individuals, observed at three occasions, on three manifest variables, one time
dependent predictor, and two time independent predictors. A corresponding path diagram of
one possible model for this data is shown in Figure 2. The data are ordered into blocks as fol-
lows: Manifest process variables, time dependent predictors, time intervals, time independent
predictors. Manifest variables are grouped by measurement occasion and ordered within this
by variable. In the example there are three manifest variables (Y1, Y2, Y3) assessed across
three measurement occasions. In this case, the first three columns of the data (Y1 T0, Y2 T0,
Y3 T0) represent the three manifest variables at the first measurement occasion, time point 0,
followed by the columns of the second measurement occasion and so on. Note that measure-
ment occasions subsequent to the first may occur at different times for different individuals.
Also note the naming convention, wherein the variable name is followed by an underscore and
T, followed by an integer denoting the measurement occasion, beginning at T0. After the
manifest variables, any time dependent predictors (there need not be any) are also grouped
by measurement occasion and ordered within this by variable (changed since v2.2.0). These
are named in the same way as the manifest variables, with the predictor name preceded by
an underscore and T, then the measurement occasion integer beginning from 0. In the data
below and the model in Figure 2, there is only one time dependent predictor, TD1, though
more could be added. After the time dependent predictors, T -1 time intervals are specified
in chronological order, with column names dT followed by the number of the measurement
occasion occurring after the interval . That is, dT1 refers to the time interval between the first
measurement occasion, T0, and the second, T1. In continuous time modelling it is imperative
to know the time point at which an observation takes place. Thus, while missing values on
observed scores are no problem, missing values on time intervals are not allowed. Finally, two
time independent predictors (TI1, TI2 – the naming here is only with variable names) are
contained in the last two columns of the data structure.

Y1_T0 Y2_T0 Y3_T0 Y1_T1 Y2_T1 Y3_T1 Y1_T2 Y2_T2 Y3_T2 TD1_T0 TD1_T1 TD1_T2 dT1 dT2 TI1 TI2

1 0.44 -0.83 -0.17 1.13 -2.44 0.31 NA NA NA -1.67 0.15 NA 0.65 0.001 0.06 -2.05

2 NA 6.84 9.22 8.24 9.04 7.88 6.45 8.39 7.16 0.81 -1.97 -1.6 2.56 2.260 2.22 -1.41

8 Continuous Time Structural Equation Modelling With ctsem

Figure 2: The first three time points of a two process continuous time model, with three
manifest indicators (blue) measuring 2 latent processes (purple), one time dependent predic-
tor(dark green), and two time independent predictors (light green). Variance / covariance
paths are in orange, regressions in red. Light grey paths indicate those that are constrained
to a function of other parameters. Note that the value of parameters for all paths to latents
at time 2 and higher do not directly represent the effect, rather, the effect depends on a
function including the shown parameter and the time interval ∆t. Covariances between the
time dependent predictor and traits (yellow) are not drawn.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 9

4.2. Conversion from long format with absolute times

Although ctsem uses the wide format as default data input, often data are stored in long
format, that is, each subject has multiple rows of data, with each row reflecting a particu-
lar measurement occasion. In addition, time intervals may not be readily available at the
individual level, instead the absolute time when a measurement took place is recorded. To
convert from long format, the data must contain a subject identification column, columns for
every observed variable, and a time variable. Unlike for the wide format data, at this point
additional unused variables in the long structure are no problem. In the example below, three
manifest variables of interest (Y1, Y2, Y3) have been observed across a number of occasions,
along with one time dependent predictor (TD1) and two time independent predictors (TI1,
TI2). The variable ’time’ contains the time when the measurement took place (e.g., in weeks
from the beginning of the study).

id time Y1 Y2 Y3 TD1 TI1 TI2

[1,] 1 0.00 5.37 6.05 7.35 2.77 -0.45 -0.23

[2,] 1 NA 5.90 3.58 7.19 1.15 NA -0.23

[3,] 1 0.89 5.92 5.05 5.09 1.55 -0.45 -0.23

[4,] 2 1.13 NA 10.77 9.57 -0.44 -0.24 1.98

[5,] 2 1.66 9.49 9.66 10.09 0.09 -0.24 1.98

[6,] 2 1.87 9.58 9.28 8.10 2.83 -0.24 1.98

[7,] 2 4.75 11.82 9.95 9.70 -0.72 -0.24 1.98

Given the specific wide structure required by ctsem, and that the time points of measurement
may vary across individuals, restructuring from long to wide can be complicated, so we have
included functions to manage this. First, the long format data with information on the
absolute time of measurement must be converted to the wide format, using the ctLongToWide
function (The number of Tpoints in the generated data is also messaged to the user at this
point, to be used in the next step). Then, subject specific time intervals based on the absolute
time information must be generated, using the function ctIntervalise. One should take care
that the defaults used by ctIntervalise for structuring the data and handling missing time
information are appropriate.1

R> data("longexample")

R> wideexample <- ctLongToWide(datalong = longexample, id = "id",

+ time = "time", manifestNames = c("Y1", "Y2", "Y3"),

+ TDpredNames = "TD1", TIpredNames = c("TI1", "TI2"))

R> wide <- ctIntervalise(datawide = wideexample, Tpoints = 4, n.manifest = 3,

+ n.TDpred = 1, n.TIpred = 2, manifestNames = c("Y1", "Y2", "Y3"),

+ TDpredNames = "TD1", TIpredNames = c("TI1", "TI2"))

1By default, when timing information is missing, variables measured at that time are also set to NA
for the individual missing the information. Once this is done the actual time of measurement no longer
influences parameter estimates or likelihood, so we can set it to an arbitrary minimum interval. By default,
the mininterval argument to ctIntervalise is set to .001. This argument must be set lower than the
minimum time interval recorded in the data, so that later observations can be adjusted without problems.

10 Continuous Time Structural Equation Modelling With ctsem

4.3. Choice of initial time point and time scale

Choice of initial time point: Pre-determined or stationary?

An important aspect of continuous time modelling is the choice of how to handle the initial
time point. In principle, there are two different ways to do so. One approach is to treat the
first time point as predetermined, where no assumptions are made about the process prior to
the initial time point. In this case, parameters regarding the initial latent variable (latent
means and variances, and effect of predictors) are freely estimated. This is the default in
ctsem, though requires some constraining if fitting a single individual.2 When treating the
first time point as predetermined, it is important to choose a meaningful starting point, as
the process will gradually transition from the variances and means of the initial parameters,
towards those of the parameters when the model is stationary. In principle, the initial time
point does not have to reflect the first measurement occasion, and can also be set to any time
prior. For example it may be of interest to set T0 to the beginning of the school year, although
the first measurement was only taken two weeks after start of school. This can be specified
using the startoffset argument to ctIntervalise, specifying the amount of time prior
to the first observed measurement occasion. The other approach is to assume a stationary
model, that is, a model where the first observations are merely random instantiations of a long
term process with time-invariant mean and variance expectations. Or, put another way, we
assume that sufficient time has elapsed from the unobserved, hypothetical start of the process
to our first measurement occasion, such that whatever the start values were, they no longer
influence the process. Strictly speaking, this requires an infinite length of time, or a process
that began in a stationary state. However, in some practical cases without clear trends in
the data it is possible that the improvement in estimation due to the stationarity assumption
outweighs related losses (this may also be tested). To implement the stationarity assumption
the means and variances of the first measurement occasion are constrained according to the
model predicted means and variances across all time points. This is specified by including
a character vector of the T0 matrices to constrain in the ctFit arguments: stationary =

c("T0VAR", "T0MEANS") constrains both means and variances to stationarity. The ctModel

specification of any matrices that are constrained to stationarity is ignored. Note that any
between-subject variance parameters, factor loadings, manifest residuals, as well as drift and
diffusion parameters, are inherently stationary (given the configuration of ctsem). More
complex model specification within ctsem, or direct modification of the generated OpenMx

model, is necessary for modelling time variability in the parameters.

Choice of time scale: Individual or sample relative time?

An additional consideration when treating the first time point as predetermined is necessary
in cases of individually varying time intervals. Here, two alternatives need to be distinguished.
The default option is to treat the observation times as relative to the individual, the other is
to treat them as relative to the sample. When we treat time as relative to the individual, the
first observation of every individual is set to measurement occasion T0, even though different
individuals may have been recorded many years apart. However if we treat time as relative to
the sample, every individual’s observation times are set relative to the very first observation
in the entire sample. This may result in a larger and sparser data matrix, potentially with

2Either T0VAR or T0MEANS must be fixed, see Section 7.3.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 11

only a single observation at the first measurement occasion. To specify sample relative time
when converting from absolute time to intervals, set the argument individualRelativeTime
= FALSE in the ctIntervalise function. The choice between the individual or sample relative
time may influence parameter estimates when the processes are not stationary. One way of
deciding between the two may be to observe whether the changes of the individuals’ processes
is more closely aligned with the sample relative or individual relative time. The change
in processes may be more aligned with individual relative time when we expect that the
activity of measurement relates to changes in the process. Consider for instance the relation
between abstinence behaviour and mood among individuals attending an alcohol addiction
clinic. Different individuals may come and go from the clinic over many years, but the mean
level of abstinence is likely related to when each individual began attending the clinic and
being measured – not the specific date the observation took place. In contrast, sample relative
time could be more appropriate for a study of linguistic abilities in a cohort of schoolchildren
over the years, with some individuals observed early and some only observed later, once they
are older and more developed. In this case, we may expect changes in the average linguistic
ability related to sample time. Another example that becomes conveniently available with
continuous time models and these functions is to arrange the data in individual relative fashion
but using age as the timing variable. In this case, age-related developmental trajectories
may be studied. When considering these options one should be aware that consistent up or
down trends over time may confound dynamic parameter estimates, if the innovation (latent
residual) at t is correlated with the process at t − 1. Pre-processing approaches that remove
trend components, such as controlling for age or year, removing a linear trend, or differencing
scores, may provide some check on model estimates, but the ramifications of these should be
carefully considered. Alternatively one may wish to explicitly model the diffusion process,
discussed in Section 7.5.

5. Model specification

Continuous time models are specified via the ctModel function. This function takes as input
a series of arguments and parameter matrices, and outputs a list object containing matrices
to be later evaluated by the ctFit function. The ctModel function contains many defaults
that should be generally applicable and safe, in that most parameters are specified to be
freely estimated, with a few exceptions.3 However, as with all default settings, they should
be checked as they may not be applicable. The arguments to the ctModel function and the
relation to equations in Section 2 are shown in Table 1 (required specification) and Table 2
(optional specification). The matrices can be specified with either character labels, to indicate
free parameter names, or numeric values, which indicate fixed values. A mixture of both in
one matrix is fine. These generally need to be set when constraining parameters to equality
(same character label), when fixing certain parameters to specific values (for instance, when
you do not wish to have a certain parameter in the model, or when testing if an effect is
different from 0), or when assigning non-standard names to output parameters.

An example model specification relying heavily on the defaults is:

3
ctModel defaults that may not be considered safe, as they are not freely estimated by default, are the

TRAITVAR and MANIFESTTRAITVAR matrices. While it is very likely that with multiple subjects one or
the other matrix will need to be freed, only one of the two trait matrices can be set at once. See Section 7.1.1
regarding the trait matrices.

12 Continuous Time Structural Equation Modelling With ctsem

Argument Sign Meaning

n.manifest c Number of manifest indicators per individual at each measurement occasion.
n.latent v Number of latent processes.
Tpoints Number of time points, or measurement occasions, in the data.
LAMBDA Λ n.manifest × n.latent loading matrix relating latent to manifest variables.

Table 1: Required arguments for ctModel.

Argument Sign Default Meaning.

manifestNames Y1, Y2, etc n.manifest length character vector of manifest names.
latentNames eta1, eta2, etc n.latent length character vector of latent names.
T0VAR free lower triangular n.latent × n.latent Cholesky matrix of latent

process initial variance / covariance.
T0MEANS free n.latent × 1 matrix of latent process means at first time point,

T0.
MANIFESTMEANS τ 0 n.manifest × 1 matrix of manifest means.
MANIFESTVAR Θ free diag lower triangular n.manifest × n.manifest Cholesky matrix of

variance / covariance between manifests (i.e., measurement
error).

DRIFT A free n.latent × n.latent matrix of continuous auto and cross effects.
CINT κ free n.latent × 1 matrix of continuous intercepts.
DIFFUSION Q free lower triangular n.latent × n.latent Cholesky matrix of diffu-

sion variance / covariance.
TRAITVAR ϕξ NULL NULL if no trait variance, or lower triangular n.latent ×

n.latent Cholesky matrix of trait variance / covariance.
MANIFESTTRAITVAR Ψ NULL NULL if no trait variance on manifest indicators, or lower

triangular n.manifest × n.manifest Cholesky matrix.
n.TDpred l 0 Number of time dependent predictors in the dataset.
TDpredNames TD1, TD2, etc n.TDpred length character vector of time dependent predictor

names.
TDPREDMEANS free n.TDpred × Tpoints rows × 1 column matrix of time depen-

dent predictor means.
TDPREDEFFECT M free n.latent × n.TDpred matrix of effects from time dependent

predictors to latent processes.
T0TDPREDCOV 0 n.latent × (Tpoints × n.TDpred) covariance matrix between

latents at T0 and time dependent predictors.
TDPREDVAR free lower triangular (n.TDpred × Tpoints) × (n.TDpred ×

Tpoints) Cholesky matrix for time dependent predictors vari-
ance / covariance.

TRAITTDPREDCOV 0 n.latent rows × (n.TDpred × Tpoints) columns covariance
matrix for latent traits and time dependent predictors.

TDTIPREDCOV 0 (n.TDpred × Tpoints) rows × n.TIpred columns covariance
matrix between time dependent and independent predictors.

n.TIpred p 0 Number of time independent predictors.
TIpredNames TI1, TI2, etc n.TIpred length character vector of time independent predic-

tor names.
TIPREDMEANS free n.TIpred × 1 matrix of time independent predictor means.
TIPREDEFFECT B free n.latent × n.TIpred effect matrix of time independent predic-

tors on latent processes.
T0TIPREDEFFECT free n.latent × n.TIpred effect matrix of time independent predic-

tors on latents at T0.
TIPREDVAR free lower triangular n.TIpred × n.TIpred Cholesky matrix of time

independent predictors variance / covariance.
startValues NULL a named vector, where the names of each value must match

a parameter in the specified model, and the value sets the
starting value for that parameter during optimization.

Table 2: Optional arguments for ctModel.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 13

R> examplemodel <- ctModel(n.latent = 2, n.manifest = 2, Tpoints = 3,

+ LAMBDA = diag(2))

A visual representation of this model is shown in Figure 3. With n.latent = 2, we have
specified a model with 2 latent processes, shown in purple. Each of these is measured
by a single manifest indicator (in blue), for a total of 2 manifest variables, specified with
n.manifest = 2. Loadings between latents and manifests are fixed to 1.00 (indicated by
the 2×2 diagonal LAMBDA matrix) at 3 measurement occasions, specified by Tpoints = 3.
Because no other parameters are specified, the model defaults are used, resulting in a bi-
variate latent process model where each manifest variable has a measurement error variance
(manifestvar Y1 Y1, manifestvar Y2 Y2), and a mean fixed to 0. The initial latent vari-
ables of each process have freely estimated means (T0mean eta1, T0mean eta2), variances
(T0var eta1 eta1, T0var eta2 eta2), and covariance (T0var eta2 eta1). Subsequent latent
variables of each process all have an innovation term, with the variance dependent on a
function of the diffusion matrix (variances diffusion eta1 eta1, diffusion eta2 eta2, covariance
diffusion eta2 eta1), drift matrix, and time interval ∆t (Note that although we speak here of
variance and covariance parameters for the sake of intuitive understanding, ctsem works with
Cholesky decomposed covariance matrices, discussed in Section 5.0.1). Each latent variable
in our two processes has continuous auto effects on itself according to the drift eta1 eta1 and
drift eta2 eta2 parameters (the diagonals of the drift matrix), and cross effects to the other
process according to the drift eta1 eta2 and drift eta2 eta1 parameters (the off diagonals).
This drift matrix combines with time interval ∆t to generate the auto and cross regressions
shown in the diagram. As usual, the first process listed in the parameter name represents
the row of the drift matrix, and the second the column, with the direction of effects flowing
from column to row – so the parameter drift eta1 eta2 represents the effect of a change in
process 2 on later values of process 1. Each process also has a continuous intercept (cint eta1,
cint eta2), which, in combination with the drift matrix, sets the level to which each process
asymptotes. To develop an understanding of the parameter matrices or simply view a model,
printing the model object (e.g. print(examplemodel)) is recommended. To track how these
matrices are used within the complete SEM specification, one must first estimate the model
(discussed in Section 6), and may then view the A, S, F or M matrices typical to a RAM
specification McArdle and McDonald (1984) via example1fit$mxobj$A (for the A matrix).

Cholesky decomposed variance / covariance input matrices

To ensure reliable estimation, some parameter transformations have been implemented in
ctsem for the estimation of covariance matrices. Rather than directly operate on covariance
matrices, ctsem takes as input Cholesky decomposed covariance matrices, as these allow for
unbounded estimation. The Cholesky decomposition is such that variance / covariance matrix
Σ = LL⊤, where L is lower-triangular. This means that input variance / covariance matrices for
ctsem must be lower triangular. The meaning of a 0 in the matrix is the same for both covari-
ance and Cholesky decomposition approaches. An important point to be aware of is that while
Cholesky matrices are required as input, for convenience, the matrices reported in the summary
function are full variance / covariance matrices. These can be converted to the Cholesky de-
composed form using code in the form t(chol(summary(ctfitobj)$varcovmatrix)).

While not affecting interpretations of the matrix input or output, internally, by default ctsem
also optimizes over the natural logarithm of the diagonal of the Cholesky factor covariance

14 Continuous Time Structural Equation Modelling With ctsem

Figure 3: A two process continuous time model with manifest indicators (blue) measuring
latent processes (purple). Variance / covariance paths are in orange, regressions in red.
Light grey paths indicate those that are either fixed to certain values or constrained to other
parameters. Note that the value of the parameters for all paths to latents at time 2 and higher
do not directly represent the effect, rather, the effect depends on a function of the shown
parameter and the time interval ∆t. This model includes neither observed or unobserved
between person variance, nor any time dependent predictors.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 15

matrices. These transformations are reflected in the raw OpenMx parameter output section
of the output summary (when verbose=TRUE), but otherwise require no specific knowledge
or action – the logarithmic transformations take place internally, and the regular variance /
covariance matrices are displayed in the summary matrices.

6. Model estimation

The ctFit function estimates the specified model, calling the data in wide format along with
the ctsemmodel object. For an example, we can fit a similar model to that defined in Section 5.
We first load an example dataset contained in the ctsem package, then use the ctFit function
for parameter estimation. Output information can be obtained via the summary function. The
dataset used in this example, is a simulation of the relation between leisure time and happiness
for 100 individuals across 6 measurement occasions. Because our data here does not use the
default manifest variable names of Y1 and Y2, but rather LeisureTime and Happiness, we
must include a manifestNames character vector in our model specification. Because each
manifest directly measures a latent process, we can use the same character vector for the
latentNames argument, though one could specify any character vector of length 2 here, or
rely on the defaults of eta1 and eta2.

R> data("ctExample1")

R> example1model <- ctModel(n.latent = 2, n.manifest = 2, Tpoints = 6,

+ manifestNames = c("LeisureTime", "Happiness"),

+ latentNames = c("LeisureTime", "Happiness"), LAMBDA = diag(2))

R> example1fit <- ctFit(datawide = ctExample1, ctmodelobj = example1model)

The output of summary after fitting such a model includes the matrices representing the
continuous time parameters (e.g., DRIFT), a list of estimates of only the free parameters,
and fit information from the OpenMx summary function. Further information can be obtained
using the argument verbose=TRUE, which will return the raw OpenMx parameter values and
standard errors, as well as additional summary matrices of discrete time transformations for
the time interval ∆t = 1 (e.g., discreteDRIFT), and when appropriate, asymptotic values for
the parameters as the time interval ∆t approaches ∞ (e.g., asymDIFFUSION may be taken
to represent the total within subject variance of a process). When appropriate, standardised
matrices are also output with the suffix ‘std’.4

R> summary(example1fit, verbose = TRUE)["discreteDRIFTstd"]

$discreteDRIFTstd

LeisureTime Happiness

LeisureTime 0.9728 -0.0499

Happiness -0.0138 0.9146

4Standardisations are based on only the relevant variance, not the total. For instance, DRIFT parameters
are standardised using only the within-subject variance, asymDIFFUSION, because DRIFT parameters are
typically intended to represent individual, or average individual, temporal dynamics.

16 Continuous Time Structural Equation Modelling With ctsem

The output above shows the standardised discrete time equivalent of the DRIFT matrix for
time interval ∆t = 1. This is provided for convenience, but one should note that it only rep-
resents the temporal effects given the specific interval of 1 unit of time (The specific interval
shown for the discrete summary matrices may be modified with the argument timeInterval).
The unstandardised discreteDRIFT matrix may be calculated from the continuous drift ma-
trix for any desired interval. The following code shows this calculation for a time interval of
2.5:

R> expm(summary(example1fit)$DRIFT * 2.5)

See Equation 3 to understand how this arises. From the diagonals of the discreteDRIFTstd
matrix we see that changes in the amount of leisure time one has tend to persist longer
(indicated by a higher autoregression) than happiness. The cross-regression in row 2 column
1 suggests that as leisure time increases, this tends to be followed by decreases in happiness.
Similarly, the cross-regression in row 1 column 2 suggests that as happiness increases, this
tends to be followed by decreases in leisure time. While these results are accurate for the
specified model, the specified model is likely inappropriate for this data, which we explain
more of in Section 7.1.1 on unobserved heterogeneity.

6.1. Comparing different models

Suppose we wanted to test the model we fit above against a model where the effect of happiness
on later leisure time (parameter drift LeisureTime Happiness) was constrained to 0. First we
specify and fit the model under the null hypothesis by taking our previous model and fixing
the desired parameter to 0:

R> testmodel <- example1model

R> testmodel$DRIFT[1, 2] <- 0

R> testfit <- ctFit(datawide = ctExample1, ctmodelobj = testmodel)

The result may then be compared to the original model with a likelihood ratio test, using the
OpenMx function mxCompare. To use this function a base model fit object and a comparison
model fit object must be specified, with the latter being a constrained version of the former.
Note that ctsem stores the original OpenMx fit object under a $mxobj sub-object, which must
be referenced when using OpenMx functions directly.

R> mxCompare(example1fit$mxobj, testfit$mxobj)

base comparison ep minus2LL df AIC diffLL diffdf p

1 ctsem <NA> 16 4177 1184 1809 NA NA NA

2 ctsem ctsem 15 4197 1185 1827 19.9 1 0.00000833

According to the conventional p < .05 criterion, results show that the more constrained model
fits the data significantly worse, that is, happiness has a significant effect on later leisure time
for this model and data. An alternative to this approach is to estimate 95% profile-likelihood
confidence intervals for our parameters of interest, from our already fit model:

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 17

R> example1cifit <- ctCI(example1fit, confidenceintervals = "DRIFT")

lbound estimate ubound note

drift_LeisureTime_LeisureTime -0.0468 -0.0280 -0.0125

drift_LeisureTime_Happiness -0.1083 -0.0697 -0.0377

drift_Happiness_LeisureTime -0.0312 -0.0111 0.0087

drift_Happiness_Happiness -0.1486 -0.0896 -0.0459

Now the summary function reports 95% confidence bounds for the continuous drift param-
eters, which in case of drift LeisureTime Happiness (DRIFT[1,2]) does not include 0. For
complicated models, the estimation of confidence intervals may increase computation time
considerably. One could also compute a confidence interval by multiplying the standard er-
ror of the estimate (returned in the summary) by 1.96, however profile-likelihood confidence
intervals are in general recommended as they do not assume symmetric intervals, which may
be quite unlikely for such models. We have observed however that optimization difficulties
can sometimes result in inacccurate (extremely close to the point estimate, accuracy can be
checked in the lower and upper delta returned by example1cifit$mxobj$intervals sub-
object) or missing profile-likelihood confidence intervals, so the use of standard error based
intervals can provide a helpful sanity check.

6.2. Plots

A visual depiction of the relationships between the processes over time is given by the
plot.ctsemFit (which can be called simply by plot) function for any fit object created
by ctFit. Depending on arguments, this function can show the processes’ mean trajectories,
within-subject variance, autoregression, and cross regression plots, as well as plots showing
expected changes in each process given either an observed change of 1.00, or an exogenous
input of 1.00 (The former is a mixture of the DIFFUSION and DRIFT matrices, while the
latter is just an alternative representation of the auto and cross regression plots). Autore-
gression plots show the impact of a 1 unit change in a process on later values of that process,
while cross regression plots show the impact of a 1 unit change in one process on later values
of other processes. Some examples can be seen in Figure 4.

7. Continuous time models: extensions

7.1. Unobserved heterogeneity

Traits at the latent level

When modelling panel data, the continuous intercept parameter κ reflects the expected value
for continuous time intercept ξ, which determines the average level of a process (κ is fixed
to 0 in ctsem by default, as free manifest means account for non zero equilibrium levels in
the data). In panel data, however, it is common that individuals exhibit stable differences in
the level. Within ctsem we call such stable differences traits, but they may also be thought
of more abstractly as unit level or between subject differences, or unobserved heterogeneity.
Fitting a model that fails to account for it will result in parameter estimates that will not

18 Continuous Time Structural Equation Modelling With ctsem

reflect the processes of individual subjects, but will mix between and within-person informa-
tion (Balestra and Nerlove 1966; Oud and Jansen 2000; Halaby 2004). To avoid this bias,
individual differences can be incorporated in two different ways. One way is to control for
observed covariates as will be discussed in Section 7.2.1. However as covariates are likely to
be insufficient, one may also estimate the latent trait variance by estimating the variance and
covariance ϕξ of the intercept parameters ξ across individuals.5 In ctsem, freely estimated
latent trait variances and covariances may be added with the argument TRAITVAR = "auto"

to the ctModel command. If the user is interested in a specific variance-covariance structure,
it is of course also possible to specify the n.latent × n.latent lower-triangular matrix of free or
fixed parameters by hand. To illustrate the inclusion of trait variance, we fit the same model
on simulated leisure time and happiness introduced above, but also model the traits.

R> data("ctExample1")

R> traitmodel <- ctModel(n.manifest = 2, n.latent = 2, Tpoints = 6,

+ LAMBDA = diag(2), manifestNames = c("LeisureTime", "Happiness"),

+ latentNames = c("LeisureTime", "Happiness"), TRAITVAR = "auto")

R> traitfit <- ctFit(datawide = ctExample1, ctmodelobj = traitmodel)

0 5 10 15 20

0.
0

0.
4

0.
8

Autoregression

Time

V
al

ue

LeisureTime_LeisureTime
Happiness_Happiness

0 5 10 15 20

−
1.

0
0.

0
1.

0

Unstandardised crossregression

Time

V
al

ue

Happiness_LeisureTime
LeisureTime_Happiness

0 5 10 15 20

0.
0

0.
4

0.
8

Autoregression

Time

V
al

ue

LeisureTime_LeisureTime
Happiness_Happiness

0 5 10 15 20

−
1.

0
0.

0
1.

0

Unstandardised crossregression

Time

V
al

ue

Happiness_LeisureTime
LeisureTime_Happiness

Figure 4: Top row shows parameter plots without accounting for trait variance, bottom row
with trait variance accounted for. Plots show how auto and cross effects change depending
on the length of time between observations.

5Note that this is a substantially different approach to achieve unbiased effect estimates than the fixed effects

approach (see for example Mundlak 1978), as our SEM specification, while a random effects model which have
at times been associated with bias for within effects, allows unbiased estimation of within and between effects
at the same time. For further details on the estimation of unobserved heterogeneity in an SEM context, see
Bollen and Brand (2010).

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 19

From Figure 4, we can see that after accounting for differences in the trait levels of leisure
time and happiness, the estimated auto and cross regression effects between latent processes
are very different. Auto effects (persistence) have reduced, and the magnitude and sign of the
cross effects have switched. Now, rather than a decrease in leisure time predicting an increase
in happiness, after controlling for unobserved heterogeneity we see instead that increases in
leisure time predict later increases in happiness.

Traits at the indicator level

Beyond differences in the level of the latent process, it is also possible that stable individual
differences in the level of some or all indicators of a process may exist, and as such may be
better accounted for at the measurement level. Take for instance a latent process, happiness,
estimated using three survey questions at 10 time points for multiple individuals. Accord-
ing to the models we have described so far, the estimated manifest means apply equally to
all individuals. However, consider that question three queries happiness with work, which
may for some people be consistently high, independent of their actual latent happiness, and
for some may be consistently low. Calculating the latent process using the same mean for
happiness with work again confounds between and within person information, but we can
account for this by using what we will refer to as manifest traits – an additional, time invari-
ant variance-covariance structure on the measurement level. These are specified by including
the MANIFESTTRAITVAR matrix in the ctModel specification, either as MANIFESTTRAITVAR =

"auto" wherein time invariant variance and covariance for all indicators is freely estimated,
or the n.manifest × n.manifest lower-triangular matrix can be specified explicitly as usual.
Such a specification may allow for improved fit of factor models, more realistic estimates of
the dynamics of individual processes, and the testing of measurement related hypotheses.
Note however that identifying restrictions will be necessary for any model that contains both
manifest and process level traits – one possible form for this may be a free process level
TRAITVAR matrix and a MANIFESTTRAITVAR matrix that is fixed to 0 across factors,
but free within any factors that are measured by more than one indicator.

7.2. Predictors

ctsem allows the inclusion of time independent as well as time time dependent exogenous
predictors. Time independent predictors could be variables such as gender, personality or
socio-demographic background variables that remain constant over time. An example of a
time dependent predictor could be a financial crisis, which all individuals in the sample ex-
perience at the same time, or the death of a loved one, which only some individuals may
experience and for whom the time point of the event may differ. Both events may be thought
of as adding some relatively distinct and sudden change to an individual’s life, which influences
the processes of interest. Time dependent predictors are distinguished from the endogenous
latent processes in that they are assumed to be independent of fluctuations in the processes –
changes in the latent processes do not lead to changes in the predictor. Furthermore, no tem-
poral structure between different time points is modeled. Because of these two assumptions,
in any case where the time dependent predictor depends on earlier values of either itself or
the latent process, it may be better to model it as an additional latent process.

20 Continuous Time Structural Equation Modelling With ctsem

Time independent predictors

Time independent predictors are added by including the data as per the structures shown
in Section 4, and specifying the number of time independent predictors, n.TIpred, in the
ctModel arguments. If not using the default variable naming, a TIpredNames character
vector should also be specified. For an example, we add the ‘number of close friends’ as a time
independent predictor to the earlier leisure time and happiness model. Note that, just like in
any conventional regression analysis, if time independent predictors are not centered around
0, the estimate of continuous intercept parameters depends on the mean of the predictor.

R> data("ctExample1TIpred")

R> tipredmodel <- ctModel(n.manifest = 2, n.latent = 2, n.TIpred = 1,

+ manifestNames = c("LeisureTime", "Happiness"),

+ latentNames = c("LeisureTime", "Happiness"),

+ TIpredNames = "NumFriends",

+ Tpoints = 6, LAMBDA = diag(2), TRAITVAR = "auto")

R> tipredfit <- ctFit(datawide = ctExample1TIpred, ctmodelobj = tipredmodel)

R>

R> summary(tipredfit, verbose = TRUE)["TIPREDEFFECT"]

R> summary(tipredfit, verbose = TRUE)["discreteTIPREDEFFECT"]

R> summary(tipredfit, verbose = TRUE)["asymTIPREDEFFECT"]

R> summary(tipredfit, verbose = TRUE)["addedTIPREDVAR"]

$TIPREDEFFECT

NumFriends

LeisureTime -0.225

Happiness 0.549

$discreteTIPREDEFFECT

NumFriends

LeisureTime -0.239

Happiness 0.442

$asymTIPREDEFFECT

NumFriends

LeisureTime -1.673

Happiness 0.219

$addedTIPREDVAR

LeisureTime Happiness

LeisureTime 2.838 -0.3719

Happiness -0.372 0.0487

The matrices output from summary, verbose = TRUE will now include matrices related to
time independent predictors, while the estimated parameters now also includes a range of
variance, covariance, and effect parameters for time independent predictors. Matrix TIPRED-
EFFECT displays the continuous time effect parameters, however discreteTIPREDEFFECT
shows the effect added to the processes for each unit of time, which may provide a useful
comparison with discrete time models. asymTIPREDEFFECT (Asymptotic time indepen-
dent predictor effect) shows the expected total change in process means given an increase
of 1 on the time independent predictor. From these matrices we see that the number of
close friends has a negative relationship to leisure time, but a positive relationship to happi-
ness. The final matrix, addedTIPREDVAR, displays the stable between-subject variance and
covariance in the processes accounted for by the time independent predictors.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 21

Time dependent predictors

ctsem allows the specification of time dependent predictors: The fundamental form of such a
predictor is that of a sudden impulse to the system which then dissipates back to the process
mean, however with some thought it is possible to specify a wide range of effect shapes. Figure
5 provides an example of two different extremes, the basic impulse form and a permanent level
change form.

0 5 10 15

11
12

13
14

15
16

17
18

Impulse predictor

Time

D
ep

en
de

nt
 v

ar
ia

bl
e

●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

● ●
●

●

●

●

● ●

●
● ● ●

●
● ●

●

●

●●

●
●

●

●

● ●

●

●

●

●
● ● ● ●

● ●
●

●

●
●

●

●

●

● ●

● ●

●

●

●
●

●

● ● ●
●

●

0 5 10 15

12
14

16
18

20

Level predictor

Time

D
ep

en
de

nt
 v

ar
ia

bl
e

●

●
●

●

●
●

●

● ●
●

●

●
●

●
●

●
● ● ●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

● ●
● ●

●

●

●
● ●

●

●

● ●

●

●
● ●

●

● ●
●

● ● ●

● ●

●

●

●

●

●

●

●
● ●

●

●
●

●
● ●

●
●

●
●

●
●

●

●

●

●

●
●

● ● ●
● ●

●

●

● ●

Figure 5: Two shapes of time dependent predictors: both plots show 5 selected individuals
data, all experiencing a time dependent predictor at time point 5. The model-based expected
trajectory of the predictor effect (including autoregression) is also shown as a solid black
line. On the left, the processes spike up and then dissipate, reflecting a transient change, or
impulse. On the right, the processes trend upwards towards a new equilibrium, reflecting a
stable change in the level.

A single time dependent predictor can be incorporated in a ctsem model by adding the
argument n.TDpred = 1 to the ctModel function, as well as a TDpredNames vector if not using
the default variable naming in your data, then fitting as usual. In the following example, we
use the same two simulated processes as above and include an intervention that all individuals
experience at time 5. For example, let us assume everyone receives a large amount of money
and we are interested in the impact of this monetary gift on leisure time and happiness. We
expect that some short term increase in both leisure time and happiness may occur, as people
may take holidays or enjoy the unexpected boon otherwise, but we also want to check whether
the gift we provide may also cause a longer term adjustment in leisure time or happiness. To
this end we first fit a model with the basic impulse effect, coded in the data as a 1 when the
intervention occurs and a 0 otherwise.6

R> data("ctExample2")

R> tdpredmodel <- ctModel(n.manifest = 2, n.latent = 2, n.TDpred = 1,

+ Tpoints = 8, manifestNames = c("LeisureTime", "Happiness"),

6While this form of dummy coding works well, if there are predictors with no variance and the TDPREDVAR
matrix is not specified, ctsem warns the user and fixes TDPREDVAR to a diagonal matrix with small variance.

22 Continuous Time Structural Equation Modelling With ctsem

+ TDpredNames = "MoneyInt", latentNames = c("LeisureTime", "Happiness"),

+ LAMBDA = diag(2), TRAITVAR = "auto")

R> tdpredfit <- ctFit(datawide = ctExample2, ctmodelobj = tdpredmodel)

R>

R> summary(tdpredfit, verbose = TRUE)["TDPREDEFFECT"]

$TDPREDEFFECT

MoneyInt

LeisureTime 0.412

Happiness 0.696

The matrices reported from summary(tdpredfit, verbose = TRUE) will now include those
related to the time dependent predictor, and the parameters section will include all the addi-
tional free parameters estimated, including many variance and covariance related parameters,
and the effect parameters TDpred LeisureTime MoneyInt and TDpred Happiness MoneyInt.
Looking at the summary matrices, TDPREDEFFECT shows us the initial impact of the pre-
dictor on the processes. From the matrices, we can see that the monetary intervention relates
directly to subsequent increases in both leisure time and happiness. Standardised estimates
are not provided because we assume no model for the variance of time dependent predictors.

Adding a level change predictor

To test the longer term changes introduced via the monetary intervention, we must model the
impact of the predictor via an intermediate latent process: We fix the intercepts (T0MEANS
and CINT) and random variance (T0VAR, DIFFUSION, and TRAITVAR) of this additional
process to 0; set changes to persist indefinitely via a diagonal DRIFT value very close to
0 (precisely 0 causes computational problems); fix the impact of the predictor on the new
process to 1 (to identify the effect); fix the impact of the two original latent processes on the
new process to 0 (via the off-diagonals in the third row of DRIFT); and estimate the impact
of the additional process on our original two processes of interest (via the off-diagonals in the
third column of DRIFT). Alternatively, one could also estimate the time course of predictor
effects by freeing the DRIFT diagonal of the additional process.

R> data("ctExample2")

R> tdpredlevelmodel <- ctModel(n.manifest = 2, n.latent = 3,

+ n.TDpred = 1,

+ Tpoints = 8, manifestNames = c("LeisureTime", "Happiness"),

+ TDpredNames = "MoneyInt",

+ latentNames = c("LeisureTime", "Happiness", "MoneyIntLatent"),

+ LAMBDA = matrix(c(1,0, 0,1, 0,0), ncol = 3), TRAITVAR = "auto")

R>

R> tdpredlevelmodel$TRAITVAR[3,] <- 0

R> tdpredlevelmodel$TRAITVAR[, 3] <- 0

R> tdpredlevelmodel$DIFFUSION[, 3] <- 0

R> tdpredlevelmodel$DIFFUSION[3,] <- 0

R> tdpredlevelmodel$T0VAR[3,] <- 0

R> tdpredlevelmodel$T0VAR[, 3] <- 0

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 23

R> tdpredlevelmodel$CINT[3] <- 0

R> tdpredlevelmodel$T0MEANS[3] <- 0

R> tdpredlevelmodel$TDPREDEFFECT[1:3,] <- c(0,0,1)

R> tdpredlevelmodel$DRIFT[3,] <- c(0,0,-.000001)

R>

R> tdpredlevelfit <- ctFit(datawide = ctExample2,

+ ctmodelobj = tdpredlevelmodel)

R>

R> summary(tdpredlevelfit, verbose = TRUE)[c("DRIFT","TDPREDEFFECT")]

$DRIFT

LeisureTime Happiness MoneyIntLatent

LeisureTime -0.1393 -0.0394 0.569907

Happiness 0.0798 -0.1038 -0.357674

MoneyIntLatent 0.0000 0.0000 -0.000001

$TDPREDEFFECT

MoneyInt

LeisureTime 0

Happiness 0

MoneyIntLatent 1

Now, if we look at column 3 of the DRIFT matrix, we see that the monetary intervention
process appears to cause long term increases in leisure time, but potentially reductions in
happiness.

7.3. N = 1 time series with multiple indicators

In the examples so far, we have dealt with multiple individuals with relatively few measure-
ment occasions, and latent processes have been estimated by a single indicator. However,
ctsem may also be used for the analysis of time series data for single subjects observed at
many measurement occasions, as well as the estimation of latent factors estimated from mul-
tiple indicators. With single-subject data, a Kalman filter implementation is typically far
quicker than the matrix arrangement we use for multiple subjects, however ctsem allows ei-
ther to be used. To illustrate these features, we perform a dynamic factor analysis on a single
individual, with three manifest indicators measured at 50 occasions. Because the model is
fitted to a single individual, we cannot freely estimate both the latent variance and mean at
the first measurement occasion, but we must fix the 1×1 T0VAR matrix to a reasonable value,
or implement stationarity constraints as discussed in Section 4.3. The precise fixed value
becomes unimportant as the time series length increases (Durbin and Koopman 2012). Note
that in this example the LAMBDA matrix specifies a loading of 1.00 for manifest Y1 (for
identification), while loadings for Y2 and Y3 are freely estimated. Note also that although
ctsem uses the Kalman filter by default when a single subject is specified, this can be over-
ridden by specifying the objective = "mxRAM" argument to ctFit, if one wishes to use the
slower RAM implementation. The Kalman filter may also be specified for multiple subjects.
In this case, between subject trait or time independent predictor matrices are ignored – one
may need to account for consistent differences between subjects through pre-processing or
thoughtful expansion of the state matrices.

24 Continuous Time Structural Equation Modelling With ctsem

R> data("ctExample3")

R> model <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 100,

+ LAMBDA = matrix(c(1, "lambda2", "lambda3"), nrow = 3, ncol = 1),

+ MANIFESTMEANS = matrix(c(0, "manifestmean2", "manifestmean3"), nrow = 3,

+ ncol = 1))

R> fit <- ctFit(data = ctExample3, ctmodelobj = model, objective = "Kalman",

+ stationary = c("T0VAR"))

7.4. Multiple group continuous time models

In some cases, certain groups or individuals may exhibit different model parameters. We can
investigate group or individual level differences by specifying a multiple group model using the
ctMultigroupFit function. For this example, we will use the same model structure as in the
single subject example from Section 7.3, but apply it to two groups of 10 individuals, whom
we expect to exhibit differences in the loading of the third manifest variable. When using
ctMultigroupFit, all parameters are free across groups by default. However, in addition to
the standard model specification you may also specify either a fixed model, or a free model.
A fixed model should be of the same structure as the base model, with any parameters you
wish to constrain across groups set to the character string ‘groupfixed’. The value for any
other parameters is not important. Alternatively, one may specify a free model, where any
parameters to freely estimate for each group are given the label ‘groupfree’, and all others
will be constrained across groups. In this example, because we only want to examine group
differences on one parameter, we specify a free model in which the loading parameter between
manifest3 and our latent process eta1 is labelled ‘groupfree’ – this estimates distinct lambda3
parameters for each group, and constrains all other parameters across the two groups to
equality. The group specific parameter estimates will appear in the resulting summary prefixed
by the specified grouping vector. This is the final requirement for ctMultigroupFit and is
simply a vector specifying a group label for each row of our data. In this case we have groups
one and two, containing the first and the last 10 rows of data respectively, prefixed by the
letter ‘g’ to denote group.

R> data("ctExample4")

R>

R> basemodel <- ctModel(n.latent = 1, n.manifest = 3, Tpoints = 20,

+ LAMBDA = matrix(c(1, "lambda2", "lambda3"), nrow = 3, ncol = 1),

+ MANIFESTMEANS = matrix(c(0, "manifestmean2",

+ "manifestmean3"), nrow = 3, ncol = 1))

R>

R> freemodel <- basemodel

R> freemodel$LAMBDA[3, 1] <- "groupfree"

R> groups <- paste0("g", rep(1:2, each = 10))

R>

R> multif <- ctMultigroupFit(datawide = ctExample4, groupings = groups,

+ objective=✬Kalman✬, ctmodelobj = basemodel, freemodel = freemodel)

g1_lambda3 g2_lambda3

1.417 0.208

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 25

Looking at the estimated parameters from the $omxsummary (OpenMx) portion of summary,
verbose = TRUE, we indeed see a difference between parameters g1 lambda3 (group 1) and
g2 lambda3 (group 2), and could test this with the usual approaches discussed in Section 6.1.
A point to note is that the multiple group and Kalman filter implementations can be easily
combined by specifying a distinct group for each row of data. This can allow for a mixture
of individual and group level parameters.

7.5. Higher order models and simulating data

In the models discussed so far, the individual processes were only conceived of as first order
processes, always tending to revert to baseline when away from it. However, what about
a situation where we have variables which show very slow patterns of change, upwards or
downwards trajectories that are maintained over many observations? This can provide for
oscillations and slower patterns of change, as for example with damped linear oscillators, or
moving average like effects as from the ARMA modelling framework.

Continuous time models of this variety are theoretically plausible, as changes to the level
of a process are not necessarily always random in direction with a tendency to baseline, but
may depend on contextual circumstances that have some persistence. Consider an individual’s
overall health over the course of 20 years, sampled every few months. If the individual changes
exercise or eating habits, changes in health do not manifest instantly, rather we could expect
either a slow increase or slow reduction, depending on whether the change of habits was
positive or negative. Thus, for many measurements, the change in health from the previous
measurement will likely be in the same direction as the change was one step earlier. The
following details how to specify such a model, generate data using the ctGenerate function,
simply plot the generated data, and estimate the parameters.

R> genm <- ctModel(Tpoints = 200, n.latent = 2, n.manifest = 1,

+ LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),

+ DIFFUSION = matrix(c(0, 0, 0, 1), 2),

+ MANIFESTVAR = t(chol(diag(.6,1))),

+ DRIFT = matrix(c(0, -.1, 1, -.2), nrow = 2),

+ CINT = matrix(c(1, 0), nrow = 2))

R>

R> data <- ctGenerate(genm, n.subjects = 1, burnin = 200)

R>

R> ctIndplot(data, n.subjects = 1 , n.manifest = 1, Tpoints = 200)

R>

R> model <- ctModel(Tpoints = 200, n.latent = 2, n.manifest = 1,

+ LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),

+ DIFFUSION = matrix(c(0, 0, 0, "diffusion"), 2),

+ DRIFT = matrix(c(0, "regulation", 1, "diffusionAR"), nrow = 2))

R>

R> fit <- ctFit(data, model, stationary = c("T0VAR"))

In the above, we focus on a model for a single subject, and specify with LAMBDA that a single
manifest variable measures only the first latent process. With DIFFUSION we specify that
only the 2nd unobserved process experiences random innovations. With DRIFT, we specify

26 Continuous Time Structural Equation Modelling With ctsem

that the 2nd process has a freely estimated autoregression term, that it directly impacts the
first process with a 1:1 relationship, and that as the level of the first process increases, the
level of the 2nd process decreases – providing necessary regulation.

Damped linear oscillator

Voelkle and Oud (2013) discuss modelling a damped linear oscillator in detail, however here
we demonstrate how to load the data and fit the oscillating model from their paper. In this
case, we also specify good starting values with the startValues argument to ctModel, and
because of this, set the argument carefulFit = FALSE.

R> data("Oscillating")

R>

R> inits <- c(-39, -.3, 1.01, 10.01, .1, 10.01, 0.05, .9, 0)

R> names(inits) <- c("crosseffect","autoeffect", "diffusion",

+ "T0var11", "T0var21", "T0var22","m1", "m2", ✬manifestmean✬)

R>

R> oscillatingm <- ctModel(n.latent = 2, n.manifest = 1, Tpoints = 11,

+ MANIFESTVAR = matrix(c(0), nrow = 1, ncol = 1),

+ LAMBDA = matrix(c(1, 0), nrow = 1, ncol = 2),

+ T0MEANS = matrix(c(✬m1✬, ✬m2✬), nrow = 2, ncol = 1),

+ T0VAR = matrix(c("T0var11", "T0var21", 0, "T0var22"), nrow = 2, ncol = 2),

+ DRIFT = matrix(c(0, "crosseffect", 1, "autoeffect"), nrow = 2, ncol = 2),

+ MANIFESTMEANS = matrix(✬manifestmean✬, nrow = 1, ncol = 1),

+ DIFFUSION = matrix(c(0, 0, 0, "diffusion"), nrow = 2, ncol = 2),

+ startValues=inits)

R>

R> oscillatingf <- ctFit(Oscillating, oscillatingm, carefulFit = FALSE)

8. Additional specification options and tips for model estimation

Given the complexity of parameter constraints, and that for some classes of models multiple
minima may exist, parameter estimation is sometimes difficult. To ensure reliable estima-
tion, there are some additional approaches that may be helpful. By default the argument
carefulFit = TRUE for the ctFit function is specified. This initiates a two-step procedure,
in which the first step penalises the likelihood7 to help maintain potentially problematic pa-
rameters close (but not too close!) to 0, and then uses these estimates as starting values for
maximum likelihood estimation. Though often useful, in some cases (particularly those with
complex dynamics, or user specified starting values) it can help to switch this off. Beyond this,
as a general guideline we suggest starting with simpler, more constrained models and freeing
parameters in a stepwise fashion (not necessary as a means of model development, simply
for fitting purposes). The ctRefineTo function can be used as a replacement for ctFit and

7The sum of squares of each parameter that is neither factor loading nor mean related is added to the
likelihood, as is the inverse of any parameters on the diagonals of square matrices – essentially penalising
values at the extremes

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 27

automates this step-wise progression. One could do this manually by developing the mea-
surement model separately, estimating only autoregressive parameters of the DRIFT matrix
at first (in simple models, this means constraining the off-diagonals of the DRIFT matrix to
0), or fixing the factor loading matrix prior to free estimation. For such stepwise progression,
the default of small and negative starting values for cross effects should be switched off by
argument crossEffectNegStarts = FALSE, and starting values from the restricted model
should be obtained via the omxStartValues argument, as shown here, using the model fit
from from Section 6:

R> omxInits <- omxGetParameters(example1fit$mxobj)

R>

R> fitWithInits <- ctFit(data = ctExample1, ctmodelobj = example1model,

+ omxStartValues = omxInits)

If stepwise model building with starting values based on simpler fits still fails to produce
an improved solution, some of the following suggestions may be helpful. The time scale,
although theoretically unimportant in the sense that all time ranges can be accounted for,
can be computationally relevant. It is helpful to choose a scale that roughly matches the
expected dynamics – for instance a time scale of nanoseconds for panel data measured yearly
would be problematic, instead, a yearly or monthly time scale could be used. Centering the
grand mean of the variables to 0 may help, as can standardising the variances, particularly
in cases where both a measurement model and dynamic model are estimated. One way to
search for an improved solution is simply to try many times with varying starting values.
This is automated by default using the mxTryHard function from OpenMx, however you
may want to increase the retryattempts argument to ctFit, or simply re-run ctFit many
times, as it generates unspecified starting values with some limited randomness. However,
since both automated procedures begin within a similar range, for truly problematic cases
one may consider adding more extensive randomness to the starting values manually. In
situations with a limited number of time points or of high complexity, you may implement
the stationarity assumption, so that parameters related to the first time point are no longer
estimated, but constrained to the asymptotic effects, when the time interval ∆t → ∞. This
can make optimization more straightforward, and may serve as a useful basis for determining
starting values, or as a viable model in itself. For more discussion regarding stationarity
conditions see Section 4.3. In some cases, optimizing over the continuous time parameters
(the default) results in fits that do not pass every check and you may be left with warnings.
If this occurs, you can instead optimize over asymptotic variants of the parameters, by using
the argument asymptotes = TRUE to ctFit. This will in general produce equivalent results
if the DIFFUSION, CINT, and TIPRED matrices are all freely estimated, even though the
raw parameters of these matrices will look different. If these matrices have been constrained
in some way, this approach is not recommended.

8.1. Optimization performance

When time intervals vary for every individual, optimization can be quite slow. To quickly
estimate approximate versions of a model, you may use the meanIntervals = TRUE argument
to ctFit, which will set every individual’s time intervals to the mean of the interval across
all individuals. A step further even is to specify the argument objective = "cov" in order

28 Continuous Time Structural Equation Modelling With ctsem

to estimate a covariance matrix from the supplied data and fit directly to that. In cases with
variability in time intervals these approaches will substantially speed up optimization, but
also waste information and bias parameters. Using such an approach in combination with a
constrained DRIFT matrix to generate starting values may be a reasonable way to improve
fitting speed and generate starting values for large and complex models.

9. Limitations and future directions

Currently, a number of assumptions are present in the specification of continuous time models
implemented in ctsem. Although the processes are allowed to begin at different levels and
variances, from then on a time-invariant model is assumed. Thus, ctsem cannot presently
account for time-varying aspects of the processes, except in the form of observed exogenous
inputs via time dependent predictors. Although as with many discrete models we could free
various parameters across measurement occasions, their meaning would become unclear, as
each measurement occasion (set of n.manifest columns in the wide format data) may contain
observations from many different times. Instead, models which allow parameters to vary as
a function of time could be incorporated in the future as per the time-varying specification
in Oud and Jansen (2000). As we fit using full information maximum likelihood, standard
assumptions regarding multivariate normality apply to manifest variables. Generalisations of
the measurement model to allow for non-normal indicators could be implemented using the
regular OpenMx functionality however. Although we allow for heterogeneity in the level of
the processes across individuals, heterogeneity in other parameters is not accounted for, and
can only be examined via multiple group approaches. Presently, effects are assumed to be
transmitted near instantaneously, as we do not estimate a dead time between inputs and the
effect of inputs. We believe this is unlikely to severely impact estimates unless the dead time
is of a similar or greater order of magnitude as the time course of effects, however such a
parameter could potentially be incorporated within the continuous time equations (Richard
2003). Although in such areas ctsem may benefit from expansion, ctsem as it stands allows
for the straightforward specification of continuous time dynamic models for both panel and
time series data, which may include a measurement model, exogenous predictors, multiple
processes, unobserved heterogeneity, multiple groups, as well as easy to specify parameter
constraints and more complex dynamic specifications.

10. Acknowledgements

We would like to thank the Intra Person Dynamics and the Formal Methods research groups
at the Max Planck Institute for Human Development for assistance with this work, as well as
Joshua Pritikin and the OpenMx development team for feedback and fast response to issues.
The Knitr (Xie 2015) and Onyx (von Oertzen, Brandmaier, and Tsang 2015) software were
invaluable in constructing this document.

References

Arnold L (1974). Stochastic Differential Equations: Theory and Applications. John Wiley &
Sons, New York.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 29

Balestra P, Nerlove M (1966). “Pooling Cross Section and Time Series Data in the Estimation
of a Dynamic Model: The Demand for Natural Gas.” Econometrica, 34(3), 585–612. ISSN
0012-9682. doi:10.2307/1909771.

Bollen KA, Brand JE (2010). “A General Panel Model with Random and Fixed Effects: A
Structural Equations Approach.” Social Forces, 89(1), 1–34. ISSN 0037-7732, 1534-7605.
doi:10.1353/sof.2010.0072.

Boukhetala K, Guidoum AC (2014). “Sim. DiffProc: Simulation of Diffusion Processes.”

Brouste A, Fukasawa M, Hino H, Iacus SM, Kamatani K, Koike Y, Masuda H, Nomura R,
Ogihara T, Shimuzu Y, others (2014). “The yuima Project: A Computational Framework
for Simulation and Inference of Stochastic Differential Equations.” Journal of Statistical
Software, 57(4), 1–51.

Canova F, Ciccarelli M, Ortega E (2012). “Do Institutional Changes Affect Business Cycles?
Evidence from Europe.” Journal of Economic Dynamics and Control, 36(10), 1520–1533.
ISSN 0165-1889. doi:10.1016/j.jedc.2012.03.017.

Chow SM, Ho MhR, Hamaker EL, Dolan CV (2010). “Equivalence and Differences Between
Structural Equation Modeling and State-Space Modeling Techniques.” Structural Equation
Modeling: A Multidisciplinary Journal, 17(2), 303–332. ISSN 1070-5511. doi:10.1080/

10705511003661553.

Coleman JS (1964). “Introduction to Mathematical Sociology.” London Free Press Glencoe.

Driver CC, Oud J, Voelkle MC (In Press). “Continuous Time Structural Equation Modelling
with R Package Ctsem.” Journal of Statistical Software.

Durbin J, Koopman SJ (2012). Time Series Analysis by State Space Methods: Second Edition.
Oxford University Press. ISBN 978-0-19-964117-8.

Ghisletta P, Lindenberger U (2005). “Exploring Structural Dynamics Within and Between
Sensory and Intellectual Functioning in Old and Very Old Age: Longitudinal Evidence from
the Berlin Aging Study.” Intelligence, 33(6), 555–587. ISSN 0160-2896. doi:10.1016/j.

intell.2005.07.002.

Grijalva CG, Nuorti JP, Arbogast PG, Martin SW, Edwards KM, Griffin MR (2007). “Decline
in Pneumonia Admissions After Routine Childhood Immunisation with Pneumococcal Con-
jugate Vaccine in the USA: A Time-Series Analysis.” The Lancet, 369(9568), 1179–1186.
ISSN 0140-6736. doi:10.1016/S0140-6736(07)60564-9.

Halaby CN (2004). “Panel Models in Sociological Research: Theory into Practice.” Annual
Review of Sociology, 30(1), 507–544. ISSN 0360-0572. doi:10.1146/annurev.soc.30.

012703.110629.

Hannan MT, Tuma NB (1979). “Methods for Temporal Analysis.”Annual Review of Sociology,
5(1), 303–328. ISSN 0360-0572. doi:10.1146/annurev.so.05.080179.001511.

Higham N (2009). “The Scaling and Squaring Method for the Matrix Exponential Revisited.”
SIAM Review, 51(4), 747–764. ISSN 0036-1445. doi:10.1137/090768539.

http://dx.doi.org/10.2307/1909771
http://dx.doi.org/10.1353/sof.2010.0072
http://dx.doi.org/10.1016/j.jedc.2012.03.017
http://dx.doi.org/10.1080/10705511003661553
http://dx.doi.org/10.1080/10705511003661553
http://dx.doi.org/10.1016/j.intell.2005.07.002
http://dx.doi.org/10.1016/j.intell.2005.07.002
http://dx.doi.org/10.1016/S0140-6736(07)60564-9
http://dx.doi.org/10.1146/annurev.soc.30.012703.110629
http://dx.doi.org/10.1146/annurev.soc.30.012703.110629
http://dx.doi.org/10.1146/annurev.so.05.080179.001511
http://dx.doi.org/10.1137/090768539

30 Continuous Time Structural Equation Modelling With ctsem

Hunter MD (2014). State Space Dynamic Mixture Modeling: Finding People With Similar
Patterns Of Change. Ph.D. thesis, University of Oklahoma, Norman, OK.

Iacus SM (2015). “sde: Simulation and Inference for Stochastic Differential Equations.”

Keijsers L, Loeber R, Branje S, Meeus W (2011). “Bidirectional Links and Concurrent De-
velopment of Parent-Child Relationships and Boys’ Offending Behavior.” Journal of Ab-
normal Psychology, 120(4), 878–889. ISSN 1939-1846(Electronic);0021-843X(Print). doi:
10.1037/a0024588.

King AA, Ionides EL, Bretó CM, Ellner S, Kendall B, Wearing H, Ferrari MJ, Lavine M,
Reuman DC (2010). “pomp: Statistical Inference for Partially Observed Markov Processes
(r Package).” URL http://pomp. r-forge. r-rproject. org.

McArdle JJ, McDonald RP (1984). “Some Algebraic Properties of the Reticular Action Model
for Moment Structures.” British Journal of Mathematical and Statistical Psychology, 37(2),
234–251. ISSN 2044-8317. doi:10.1111/j.2044-8317.1984.tb00802.x.

Mundlak Y (1978). “On the Pooling of Time Series and Cross Section Data.” Econometrica,
46(1), 69–85. ISSN 0012-9682. doi:10.2307/1913646.

Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpatrick RM, Estabrook R,
Bates TC, Maes HH, Boker SM (2015). “OpenMx 2.0: Extended Structural Equation
and Statistical Modeling.” Psychometrika, pp. 1–15. ISSN 0033-3123, 1860-0980. doi:

10.1007/s11336-014-9435-8.

Oud JHL (2002). “Continuous Time Modeling of the Cross-Lagged Panel Design.” Kwanti-
tatieve Methoden, 69(01), 1–26.

Oud JHL, Jansen RARG (2000). “Continuous Time State Space Modeling of Panel Data
by Means of Sem.” Psychometrika, 65(2), 199–215. ISSN 0033-3123, 1860-0980. doi:

10.1007/BF02294374.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

Richard JP (2003). “Time-Delay Systems: An Overview of Some Recent Advances and
Open Problems.” Automatica, 39(10), 1667–1694. ISSN 0005-1098. doi:10.1016/

S0005-1098(03)00167-5.

Rindskopf D (1984). “Using Phantom and Imaginary Latent Variables to Parameterize Con-
straints in Linear Structural Models.” Psychometrika, 49(1), 37–47. ISSN 0033-3123,
1860-0980. doi:10.1007/BF02294204.

Singer H (1998). “Continuous Panel Models with Time Dependent Parameters.” Journal
of Mathematical Sociology, 23(2), 77–98. ISSN 0022250X. doi:10.1080/0022250X.1998.
9990214.

Voelkle MC, Oud JHL (2013). “Continuous Time Modelling with Individually Varying Time
Intervals for Oscillating and Non-Oscillating Processes.” British Journal of Mathematical
and Statistical Psychology, 66(1), 103–126. ISSN 2044-8317. doi:10.1111/j.2044-8317.
2012.02043.x.

http://dx.doi.org/10.1037/a0024588
http://dx.doi.org/10.1037/a0024588
http://dx.doi.org/10.1111/j.2044-8317.1984.tb00802.x
http://dx.doi.org/10.2307/1913646
http://dx.doi.org/10.1007/s11336-014-9435-8
http://dx.doi.org/10.1007/s11336-014-9435-8
http://dx.doi.org/10.1007/BF02294374
http://dx.doi.org/10.1007/BF02294374
http://dx.doi.org/10.1016/S0005-1098(03)00167-5
http://dx.doi.org/10.1016/S0005-1098(03)00167-5
http://dx.doi.org/10.1007/BF02294204
http://dx.doi.org/10.1080/0022250X.1998.9990214
http://dx.doi.org/10.1080/0022250X.1998.9990214
http://dx.doi.org/10.1111/j.2044-8317.2012.02043.x
http://dx.doi.org/10.1111/j.2044-8317.2012.02043.x

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 31

Voelkle MC, Oud JHL (2015). “Relating Latent Change Score and Continuous Time Models.”
Structural Equation Modeling: A Multidisciplinary Journal, 22(3), 366–381. ISSN 1070-
5511. doi:10.1080/10705511.2014.935918.

Voelkle MC, Oud JHL, Davidov E, Schmidt P (2012). “An SEM Approach to Continuous
Time Modeling of Panel Data: Relating Authoritarianism and Anomia.” Psychological
Methods, 17(2), 176–192. ISSN 1082-989X. doi:10.1037/a0027543.

von Oertzen T, Brandmaier AM, Tsang S (2015). “Structural Equation Modeling With Ωnyx.”
Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 148–161. ISSN 1070-
5511. doi:10.1080/10705511.2014.935842.

Wang Z (2013). “cts: An R Package for Continuous Time Autoregressive Models via Kalman
Filter.” Journal of Statistical Software, 53(5), 1–19.

Xie Y (2015). Dynamic Documents with R and Knitr. 2nd edition. Chapman and Hall/CRC,
Boca Raton, Florida.

http://dx.doi.org/10.1080/10705511.2014.935918
http://dx.doi.org/10.1037/a0027543
http://dx.doi.org/10.1080/10705511.2014.935842

32 Continuous Time Structural Equation Modelling With ctsem

A. Comparison to discrete time approach

To highlight the problems associated with treating all time intervals in a dataset as equivalent,
in this example we use the data and model specified in Section 7.1.1, but set all the time
intervals to the mean time interval.

R> data("ctExample1")

R> traitmodel <- ctModel(n.manifest = 2, n.latent = 2, Tpoints = 6,

+ LAMBDA = diag(2), manifestNames = c("LeisureTime", "Happiness"),

+ latentNames = c("LeisureTime", "Happiness"), TRAITVAR = "auto")

R> traitfit <- ctFit(datawide = ctExample1, ctmodelobj = traitmodel)

R> traitfit <- ctCI(traitfit, confidenceintervals = ✬DRIFT✬)

R>

R> discrete <- ctExample1

R> discrete[, paste0(✬dT✬, 1:5)] <- mean(discrete[, paste0(✬dT✬, 1:5)])

R> discretefit <- ctFit(discrete, traitmodel)

R> discretefit <- ctCI(discretefit, confidenceintervals = ✬DRIFT✬)

R>

R> summary(traitfit)$omxsummary$Minus2LogLikelihood

[1] 4151

R> summary(traitfit)$omxsummary$CI

lbound estimate ubound note

drift_LeisureTime_LeisureTime -0.535 -0.110 0.227

drift_LeisureTime_Happiness -0.362 -0.134 0.182

drift_Happiness_LeisureTime 0.156 0.387 0.910

drift_Happiness_Happiness -0.698 -0.344 -0.173

R> summary(discretefit)$omxsummary$Minus2LogLikelihood

[1] 4203

R> summary(discretefit)$omxsummary$CI

lbound estimate ubound note

drift_LeisureTime_LeisureTime 0.145 0.332 NA !!!

drift_LeisureTime_Happiness NA -0.299 -0.12 !!!

drift_Happiness_LeisureTime 0.229 0.951 NA !!!

drift_Happiness_Happiness NA -0.742 -0.11 !!!

In this case, the log likelihood of the fit is worse, and the parameter estimates tend toward
the nonsensical, with difficulties estimating confidence intervals for some parameters.

Charles C. Driver, Johan H. L. Oud, Manuel C. Voelkle 33

B. Package comparisons

The following script loops over a sequence in which data is generated from a very simple model
(to facilitate comparison), then various packages are used to fit the data, and the distribution
of parameter estimates is then plotted. ctsem is used to generate 500 time points of data for
a single individual, for a single perfectly measured, stationary process with a drift value of
-0.3. The different packages at times use different transformations of the parameters, but for
ease of comparison these are transformed to the drift parameter in ctsem. This comparison is
not intended as a critique of any package, differences in intended use and estimation routines
may result in the observed differences, and it is hoped the provided code may help others to
explore alternatives when necessary.

R> if (!requireNamespace("cts", quietly = TRUE)) {

+ stop("cts package needed for this function to work. Please install it.",

+ call. = FALSE)

+ }

R> if (!requireNamespace("yuima", quietly = TRUE)) {

+ stop("yuima package needed for this function to work. Please install it.",

+ call. = FALSE)

+ }

R> output <- matrix(NA, 10, 6)

R> colnames(output) <- c(✬True✬, ✬ctsem✬, ✬cts✬, ✬yuima✬, ✬arima✬, ✬OpenMx✬)

R> for(i in 1:nrow(output)){

+ generatingModel <- ctModel(n.latent = 1, n.manifest = 1,

+ Tpoints = 200,

+ LAMBDA = diag(1), DRIFT = matrix(-.3, nrow = 1),

+ CINT = matrix(3, 1, 1),

+ MANIFESTVAR = diag(0.00001, 1),

+ DIFFUSION = t(chol(diag(5, 1))))

+

+ output[i, 1] <- generatingModel$DRIFT #true value

+

+ ctsemData <- ctGenerate(generatingModel, n.subjects=1, burnin=300)

+ longData <- ctWideToLong(ctsemData, Tpoints=200, n.manifest=1)

+ longData <- ctDeintervalise(longData)

+

+ ### ctsem package

+ ctsemModel <- ctModel(n.latent=1, n.manifest = 1,

+ Tpoints = 200,

+ MANIFESTVAR = diag(0.0001, 1),

+ LAMBDA = diag(1))

+ ctsemFit <- ctFit(ctsemData, ctsemModel, stationary = c(✬T0VAR✬))

+ output[i,2] <- mxEval(DRIFT, ctsemFit$mxobj)

+

+ ### CTS package

+ ctsData <- longData[, c(✬time✬, ✬Y1✬)]

+ library(cts)

34 Continuous Time Structural Equation Modelling With ctsem

+ ctsFit <- car(ctsData, order = 1, scale = 1)

+ output[i, 3] <- -1 * (1 + ctsFit$phi) / (1 - ctsFit$phi)

+

+ ### yuima package (not plotted - potential issues due to dT=1)

+ library(yuima)

+ mod <- setModel(drift="drift * x + cint", diffusion = "diffusion")

+ ou <- setYuima(model = mod, data = setData(longData[,✬Y1✬], delta = 1))

+ mlout <- qmle(ou,start = list(drift = -.3, diffusion = 1, cint = 1))

+ output[i, 4] <- mlout@coef[2]

+

+ ### arima (from stats package, discrete time analysis only)

+ arfit <- arima(longData[, ✬Y1✬], order = c(1, 0, 0))

+ log(arfit$coef[1]) #transform ar1 parameter to drift parameter

+ output[i, 5]<-log(arfit$coef[1])

+

+ ### OpenMx state space continuous time function (specified via ctsem here)

+ ctsemModel <- ctModel(n.latent=1, n.manifest = 1,

+ Tpoints = 200,

+ MANIFESTVAR = diag(0, 1), T0VAR=diag(1), LAMBDA = diag(1))

+ mxFit <- ctFit(ctsemData, ctsemModel, objective=✬Kalmanmx✬,

+ carefulFit = FALSE)

+ output[i,6] <- mxEval(DRIFT, ctsemFit$mxobj)

+

+ } #end for loop

R>

R> ### plot output

R> plot(density(output[1:i, 2]), xlim = c(-.4, -.1), lty = 2, lwd = 1,

+ ylab=✬Density✬,

+ main = ✬Density of estimates of drift parameter (true value -0.3)✬)

R> points(density(output[1:i, 3]), col=✬red✬, type=✬l✬, lty=3, lwd=1)

R> points(density(output[1:i, 5]), col=✬blue✬, type=✬l✬, lwd=1, lty=3)

R> points(density(output[1:i, 6]), col=✬green✬, type=✬l✬, lwd=1, lty=5)

R> legend(✬topleft✬, bty=✬n✬,

+ text.col = c(✬black✬,✬red✬,✬blue✬, ✬green✬),

+ legend = c(✬ctsem✬, ✬cts✬, ✬arima✬, ✬OpenMx✬))

Affiliation:

Charles Driver
Center for Lifespan Psychology
Max Planck Institute for Human Development
Lentzeallee 94, 14195 Berlin
Telephone: +49 30 82406-367 E-mail: driver@mpib-berlin.mpg.de
URL: http://www.mpib-berlin.mpg.de/en/staff/charles-driver

mailto:driver@mpib-berlin.mpg.de
http://www.mpib-berlin.mpg.de/en/staff/charles-driver

	Introduction
	Continuous time models: fundamentals
	Continuous time and SEM

	ctsem package overview and installation
	Data structure
	Wide format
	Conversion from long format with absolute times
	Choice of initial time point and time scale
	Choice of initial time point: Pre-determined or stationary?
	Choice of time scale: Individual or sample relative time?

	Model specification
	Cholesky decomposed variance / covariance input matrices

	Model estimation
	Comparing different models
	Plots

	Continuous time models: extensions
	Unobserved heterogeneity
	Traits at the latent level
	Traits at the indicator level

	Predictors
	Time independent predictors
	Time dependent predictors
	Adding a level change predictor

	N = 1 Time series with multiple indicators
	Multiple group continuous time models
	Higher order models and simulating data
	Damped linear oscillator

	Tips
	Optimization performance

	Limitations and future directions
	Acknowledgements
	Comparison to discrete time approach
	Package comparisons

