
1 Overview

In this work, we describe the basic usage of the hierarchical Bayesian formulation of the ctsem
(Driver, Oud & Voelkle, 2017) software for continuous-time dynamic modelling in R (R Core Team,
2014). This formulation, described in detail in Driver and Voelkle (in press), offers advantages over
what could be considered more typical dynamic modelling approaches, such as vector autoregressive
models or latent change score models. The two main advantages relate to the handling of time, and
the treatment of individual differences. Time information is explicitly incorporated into the model,
such that predictions from one measurement to another relate exactly to the amount of time that
has passed, rather than simply the number of measurements, as is typical in discrete-time models.
When the time interval between all measurements are equal, there is an exact relationship between
the discrete and continuous time form, but when they differ, the continuous-time form is typically
more appropriate. For more on continuous-time models, see Oud and Jansen (2000), Singer (1993),
Voelkle and Oud (2013). With respect to individual differences, the hierarchical Bayesian approach
allows for individual variation across all model parameters, while still making full use of the data
from all subjects. This has the result that individual specific parameter estimates may be obtained
with far fewer time points than would be required by single-subject time-series type modelling
approaches. For more on hierarchical Bayesian models, see Gelman, Carlin, Stern and Rubin
(2014).
This document is structured such that we first briefly describe the continuous time dynamic model
governing within subject dynamics, and the hierarchical model governing the distribution of subject
level parameters. These aspects are covered in detail in Driver and Voelkle (in press). Following,
we walk through installing the ctsem software, setting up a data structure, specifying and fitting
the model, followed by summary and plotting functions. Some details on additional complexity are
then provided, including an example model with a more complex dynamic structure, a discussion of
the various options for incorporating stationarity assumptions into the model, and a walk-through
of the various transformations involved in the model.

1.1 Subject Level Latent Dynamic model

This section describes the subject level model characterising the system dynamics and measurement
properties. Although we do not describe it explicitly, the corresponding discrete time autoregressive
/ moving average models can be specified and use the same set of parameter matrices we describe.

1.2 Subject level latent dynamic model

The subject level dynamics are described by the following stochastic differential equation:

dη(t) =
(

Aη(t) + b + Mχ(t)
)

dt+ GdW(t) (1)

Vector η(t) ∈ Rv represents the state of the latent processes at time t. The matrix A ∈ Rv×v

(DRIFT) represents the drift matrix, with auto effects on the diagonal and cross effects on the
off-diagonals characterizing the temporal dynamics of the processes.
The continuous time intercept vector b ∈ Rv (CINT), in combination with A, determines the
long-term level at which the processes fluctuate around.

1

Time dependent predictors χ(t) represent inputs to the system that vary over time and are inde-
pendent of fluctuations in the system. Equation 1 shows a generalized form for time dependent
predictors, that could be treated a variety of ways dependent on the assumed time course (or shape)
of time dependent predictors. We use a simple impulse form shown in Equation 2, in which the
predictors are treated as impacting the processes only at the instant of an observation occasion
u. When necessary, the evolution over time can be modeled by extending the state matrices, for
examples and discussion see Driver and Voelkle (2017).

χ(t) =
∑
u∈U

xuδ(t− tu) (2)

Here, time dependent predictors xu ∈ Rl (tdpreds) are observed at measurement occasions u ∈ U.
The Dirac delta function δ(t− tu) is a generalized function that is ∞ at 0 and 0 elsewhere, yet has
an integral of 1 (when 0 is in the range of integration). It is useful to model an impulse to a system,
and here is scaled by the vector of time dependent predictors xu. The effect of these impulses on
processes η(t) is then M ∈ Rv×l (TDPREDEFFECT).
W(t) ∈ Rv (DIFFUSION) represents independent Wiener processes, with a Wiener process being
a random-walk in continuous time. dW(t) is meaningful in the context of stochastic differential
equations, and represents the stochastic error term, an infinitesimally small increment of the Wiener
process. Lower triangular matrix G ∈ Rv×v represents the effect of this noise on the change in
η(t). Q, where Q = GG>, represents the variance-covariance matrix of the diffusion process in
continuous time.

1.3 Subject level measurement model

The latent process vector η(t) has measurement model:

y(t) = Λη(t) + τ + ε(t) where ε(t) ∼ N(0c,Θ) (3)

y(t) ∈ Rc is the vector of manifest variables, Λ ∈ Rc×v (LAMBDA) represents the factor load-
ings, and τ ∈ Rc (MANIFESTMEANS) the manifest intercepts. The residual vector ε ∈ Rc has
covariance matrix Θ ∈ Rc×c (MANIFESTVAR).

1.4 Overview of hierarchical model

Parameters for each subject are first drawn from a simultaneously estimated higher level distribution
over an unconstrained space, then a set of parameter specific transformations are applied so that
a) each parameter conforms to necessary bounds and b) is subject to the desired prior. Following
this, in some cases matrix transformations are applied to generate the continuous time matrices
described. The higher level distribution has a multivariate normal prior. We provide a brief
description here, and an R code example later in this work, but for the full details, one should
again see Driver and Voelkle (in press).
The joint-posterior distribution of the model parameters given the data is as follows:

p(Φ,µ,R,β|Y, z) ∝ p(Y|Φ)p(Φ|µ,R,β, z)p(µ,R,β) (4)

2

Subject specific parameters Φi are determined in the following manner:

Φi = tform
(
µ+ Rhi + βzi

)
(5)

hi ∼ N(0, 1) (6)

µ ∼ N(0, 1) (7)

β ∼ N(0, 1) (8)

Φi ∈ Rs is the s length vector of parameters for the dynamic and measurement models of subject
i. µ ∈ Rs parameterizes the means of the raw population distributions of subject level parameters.
R ∈ Rs×s is the matrix square root of the raw population distribution covariance matrix, para-
meterizing the effect of subject specific deviations hi ∈ Rs on Φi. β ∈ Rs×w is the raw effect of
time independent predictors zi ∈ Rw on Φi, where w is the number of time independent predictors.
Yi contains all the data for subject i used in the subject level model – y (process related meas-
urements) and x (time dependent predictors). zi contains time independent predictors data for
subject i. tform is an operator that applies a transform to each value of the vector it is applied to.
The specific transform depends on which subject level parameter matrix the value belongs to, and
the position in that matrix.
At a number of points, we will refer to the parameters prior to the tform function as ’raw’ para-
meters. So for instance ‘raw population standard deviation’ would refer to a diagonal entry of R,
and ‘raw individual parameters for subject i’ would refer to µ + Rhi + βzi. In contrast, without
the ‘raw’ prefix, ‘population means’ would refer to tform(µ), and would typically reflect values the
user is more likely to be interested in, such as the continuous time drift parameters.

1.5 Install software and prepare data

Install ctsem software within R:

install.packages("ctsem")
library("ctsem")

Prepare data in long format, each row containing one time point of data for one subject. We need
a subject id column, named by default "id", though this can be changed in the model specification.
Some of the outputs are simpler to interpret if subject id is a sequence of integers from 1 to the
number of subjects, but this is not a requirement. We also need a time column "time", containing
positive numeric values for time, columns for manifest variables (the names of which must be given
in the next step using ctModel), columns for time dependent predictors (these vary over time but
have no model estimated and are assumed to impact latent processes instantly), and columns for
time independent predictors (which predict the subject level parameters, that are themselves time
invariant – thus the values for a particular time independent predictor must be the same across all
observations of a particular subject).

id time Y1 Y2 TD1 TI1 TI2 TI3
[1,] 1 1.877 0.2975 -4.728 0 -0.701 1.257 -0.361
[2,] 1 3.608 6.5180 -2.518 0 -0.701 1.257 -0.361
[3,] 1 4.765 3.2376 0.755 0 -0.701 1.257 -0.361
[4,] 1 15.385 0.0471 -7.386 0 -0.701 1.257 -0.361

3

[5,] 1 16.052 0.6934 -8.971 0 -0.701 1.257 -0.361
[6,] 1 16.934 1.3235 -9.059 0 -0.701 1.257 -0.361
[7,] 1 18.096 1.7718 -9.941 0 -0.701 1.257 -0.361
[8,] 2 0.000 0.4283 4.971 0 NA -0.833 0.183
[9,] 2 0.925 2.6017 6.381 0 NA -0.833 0.183

Priors for the model are set up to be ’weakly informative’ (in that extreme parameter values are
deemed less likely) for typical applications in the social sciences, on data that is centered and
scaled. Because of this, we recommend grand mean centering and scaling each variable in the
data, with the exception of time dependent predictors, which should be scaled as normal, but
centered such that a value of zero implies no effect. Similarly, we expect a time interval of 1.00 to
reflect some ‘moderate change’ in the underlying process. If we wished to model daily hormonal
fluctuations, with a number of measurements each day, a time scale of hours, days, or weeks could
be sensible – minutes or years would likely be problematic. If the data are not adjusted according
to these considerations, the priors themselves should be adjusted, or at least their impact carefully
considered.

ctstantestdat[,c('Y1','Y2','TI1','TI2','TI3')] <-
scale(ctstantestdat[,c('Y1','Y2','TI1','TI2','TI3')])

Functions to convert between wide and long formats used by ctsem are available, these are ctWide
ToLong, ctDeintervalise, ctLongToWide, ctIntervalise. For details see the relevant help in R.

1.6 Missing values

Missingness in the manifest variables is handled using the typical filtering / full information max-
imum likelihood approach, missing values on time dependent predictors are replaced with zeros,
and missing values on time independent predictors are sampled as part of the model, with a default
prior of normal(0,10) (this is specified via a slot in the model object).

1.7 Model specification

Specify model using ctModel(type="stanct",...). "stanct" specifies a continuous time model
in Stan format, "standt" specifies discrete time, while "omx" is the classic ctsem behaviour and
prepares an OpenMx model. Other arguments to ctModel proceed as normal, although some
matrices used for type "omx" are not relevant for the Stan formats, either because the between
subject matrices are handled differently, or because time dependent and independent predictors are
now treated as fixed regressors and only require effect (or design) matrices. These differences are
documented in the help for ctModel, available in R via ?ctModel.

model<-ctModel(type='stanct',
n.latent=2, latentNames=c('eta1','eta2'),
n.manifest=2, manifestNames=c('Y1','Y2'),
n.TDpred=1, TDpredNames='TD1',
n.TIpred=3, TIpredNames=c('TI1','TI2','TI3'),
LAMBDA=diag(2))

4

Table 1: ctModel arguments

Argument Sign Default Meaning
n.manifest c Number of manifest indicators per individual at each

measurement occasion.
n.latent v Number of latent processes.
LAMBDA Λ n.manifest × n.latent loading matrix relating latent to

manifest variables.
manifestNames Y1, Y2, etc n.manifest length character vector of manifest names.
latentNames eta1, eta2, etc n.latent length character vector of latent names.
T0VAR Q∗

1 free lower tri n.latent × n.latent matrix of latent process ini-
tial covariance, specified with standard deviations on di-
agonal and covariance related parameters on lower tri-
angle.

T0MEANS η1 free n.latent × 1 matrix of latent process means at first time
point, T0.

MANIFESTMEANS τ free n.manifest × 1 matrix of manifest means.
MANIFESTVAR Θ free diagonal matrix of var / cov between manifests, spe-

cified with standard deviations on diagonal and zeroes
elsewhere.

DRIFT A free n.latent × n.latent matrix of continuous auto and cross
effects.

CINT b 0 n.latent × 1 matrix of continuous intercepts.
DIFFUSION Q free lower triangular n.latent × n.latent matrix containing

standard deviations of latent process on diagonal, and
covariance related parameters on lower off-diagonals.

n.TDpred l 0 Number of time dependent predictors in the dataset.
TDpredNames TD1, TD2, etc n.TDpred length character vector of time dependent pre-

dictor names.
TDPREDEFFECT M free n.latent × n.TDpred matrix of effects from time depend-

ent predictors to latent processes.
n.TIpred p 0 Number of time independent predictors.
TIpredNames TI1, TI2, etc n.TIpred length character vector of time independent

predictor names.

This specifies a first order bivariate latent process model, with each process measured by a single,
potentially noisy, manifest variable. A single time dependent predictor is included in the model, and
three time independent predictors. Additional complexity or restrictions may be added, the Table 1
shows the basic arguments one may consider and their link to the dynamic model parameters. Note
that for the Stan implementation, ctModel requires variance covariance matrices (DIFFUSION,
T0VAR, MANIFESTVAR) to be specified with standard deviations on the diagonal, covariance
related parameters on the lower off diagonal, and zeroes on the upper off diagonal. While it is
possible to fix the lower off diagonals to non-zero values, in general this is difficult to interpret
because of the necessary matrix transformations, thus we recommend either to fix to zero, or leave
free.
These matrices may all be specified using a combination of character strings to name free paramet-
ers, or numeric values to represent fixed parameters.
The pars subobject of the created model object (in this case, model$pars) shows the parameter
specification that will go into Stan, including both fixed and free parameters, whether the paramet-
ers vary across individuals, how the parameter is transformed from a standard normal distribution
(thus setting both priors and bounds), and whether that parameter is regressed on the time inde-
pendent predictors.

5

head(model$pars,7)

matrix row col param value transform multiplier meanscale offset indvarying sdscale
1 T0MEANS 1 1 T0mean_eta1 NA 0 1 10 0 TRUE 1
2 T0MEANS 2 1 T0mean_eta2 NA 0 1 10 0 TRUE 1
3 LAMBDA 1 1 <NA> 1 NA NA NA NA FALSE 1
4 LAMBDA 1 2 <NA> 0 NA NA NA NA FALSE 1
5 LAMBDA 2 1 <NA> 0 NA NA NA NA FALSE 1
6 LAMBDA 2 2 <NA> 1 NA NA NA NA FALSE 1
7 DRIFT 1 1 drift_eta1_eta1 NA 1 -2 2 0 TRUE 1

TI1_effect TI2_effect TI3_effect
1 TRUE TRUE TRUE
2 TRUE TRUE TRUE
3 FALSE FALSE FALSE
4 FALSE FALSE FALSE
5 FALSE FALSE FALSE
6 FALSE FALSE FALSE
7 TRUE TRUE TRUE

By default, all free model parameters are set to individually varying, except for the T0VAR para-
meters used to initialise the latent processes. One may modify the output model to either restrict
between subject differences (set some parameters to not vary over individuals), alter the transform-
ation used to set the prior / bounds, or restrict which effects of time independent predictors to
estimate. Plotting the original prior, making a change to the transform, and plotting the resulting
prior, are shown here – in this case we will adjust the prior for the auto effect of our first latent pro-
cess, captured by row 1 and column 1 of the DRIFT matrix, to also allow positive values, implying
an explosive process wherein a change in one direction promotes further change in that direction.
To achieve this, we change from built in transform 2, denoting an exponential, to 0, denoting no
transformation. built-in transforms can be viewed at any point via inputting ctsem:::tformshap
es. It is beneficial to use these in general to eliminate compilation time, but one can also specify
a character string containing custom transformations of the ‘param’ – for example 'log(1+exp(p
aram))' could be used for a positive distribution, though this is also built-in transform number 1.
In addition to the transformation field, multiplier, meanscale, and offset can all be used to adjust
the transform. In this case we also set a negative offset because we still believe negative values are
more likely for the drift auto-effect.One consideration when altering priors in this manner is that
the starting values for sampling are taken from around the middle of the distribution normal.

par(mfrow=c(1,2))
plot(model,rows=7,rawpopsd=1)
model$pars$transform[7]<- 0
model$pars$meanscale[7] <- 2
model$pars$multiplier[7] <- 1
model$pars$offset[7] <- -1
plot(model, rows=7,rawpopsd=1)

Figure 1 shows the prior distribution for the population mean of DRIFT[1,1] in black, as well as
two possible priors for the subject level parameters, conditional on our specified raw population
standard deviation of 1. The blue prior results from assuming the population mean is one standard
deviation lower than the mean of its prior, and the red one standard deviation higher.
In addition to adjusting the prior for the population mean, the prior for the extent of individual
variation around that mean can also be adjusted. Amongst other circumstances, this prior may

6

−15 −10 −5 0

0
2

4
6

8
10

12

drift_eta1_eta1

Par. Value

D
en

si
ty

Pop. mean prior
Subject prior | mean = −1
Subject prior | mean = 1

−10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

drift_eta1_eta1

Par. Value

D
en

si
ty

Pop. mean prior
Subject prior | mean = −1
Subject prior | mean = 1

Figure 1: Prior distribution density plots.

need to be reduced when limited time points are available, to ensure adequate regularisation. Here
we change the scaling factor of the individual variation for all parameters, from 1.0 to 0.1, and
demonstrate the effect of this using the previously adjusted auto effect. In this case, we do not fix
the popsd when plotting, which now gives the distribution of individual variation over all possible
values for the population (pop) sd parameter – the marginal distribution of Figure 2 has a very
different shape to the conditional distribution of Figure 1, but the effect of the change in sdscale
parameter could be seen in both cases.

par(mfrow=c(1,2))
plot(model,rows=7)
model$pars$sdscale<- .1
plot(model, rows=7)

It can be helpful to completely eliminate individual variation in some parameters, particularly since
unnecessary between subject effects will slow sampling and hinder appropriate regularization, but
be aware of the many parameter dependencies in these models – restricting one parameter may
lead to genuine variation in the restricted parameter expressing itself elsewhere. Here we only allow
for individual variation in the DRIFT and MANIFESTMEANS parameters.

model$pars$indvarying[!(model$pars$matrix %in% c('DRIFT','MANIFESTMEANS'))] <- FALSE

Also similarly restrict which parameters to include time independent predictor effects for. In this
case, the only adverse effects of such restrictions are that the relationship between the predictor
and variables will not be estimated, but the subject level parameters themselves should not be

7

−15 −10 −5 0 5 10 15

0
1

2
3

4

drift_eta1_eta1

Par. Value

D
en

si
ty

Pop. mean prior
Subject prior | mean = −1
Subject prior | mean = 1

−15 −10 −5 0 5 10 15

0
1

2
3

4

drift_eta1_eta1

Par. Value

D
en

si
ty

Pop. mean prior
Subject prior | mean = −1
Subject prior | mean = 1

Figure 2: Prior distribution density plots of auto-effects, with default (left) and adjusted (right)
scale parameter for population standard deviation.

very different, as they are still freely estimated. Note that such effects can only be estimated for
parameters specified as individually varying – in case one particularly wished to model a covariate
effect without allowing for residual variation, this could be approximated by setting the parameter
to indvarying, but putting a very small sdscale value for the parameter. Here, we first restrict
the tipredeffects on all parameters, and free them only for the drift parameters.

model$pars[,c('TI1_effect','TI2_effect','TI3_effect')] <- FALSE
model$pars[model$pars$matrix == 'DRIFT',

c('TI1_effect','TI2_effect','TI3_effect')] <- TRUE

1.8 Model fitting

Once model specification is complete, the model is fit to the data using the ctStanFit function as
shown in the following example. Depending on the data, model, and number of iterations requested,
this can take anywhere from a few minutes to days. Current experience suggests 300 iterations is
often enough to get an idea of what is going on, but more may be necessary for robust inference,
but this is highly dependent on the specifics. For the sake of speed for this example we only sample
for 300 iterations, with a max treedepth of the Hamiltonian sampler reduced from the default of
10 to 6. With these settings the fit should take only a minute or two, but is unlikely adequate for
inference!. Those that wish to try out the functions without waiting, can simply use the already
existing ctstantestfit object with the relevant functions (the code for this is commented out).
The dataset specified here is built-in to the ctsem package, and available whenever ctsem is loaded
in R.

8

fit<-ctStanFit(datalong = ctstantestdat, ctstanmodel = model, iter=200,
control=list(max_treedepth=6), chains=2, plot=FALSE)

fit <- ctstantestfit

The plot argument allows for plotting of sampling chains in real time, which is useful for slow models
to ensure that sampling is proceeding in a functional manner. Models with many parameters (e.g.,
many subjects and all parameters varying over subject) may be too taxing for the plotting function
to handle smoothly - we have had success with up to around 4000 parameters.

1.9 Summary

After fitting, the summary function may be used on the fit object, which returns details regarding
the population mean parameters, population standard deviation parameters, population correla-
tions, and the effect parameters of time independent predictors. Additionally, summary outputs
a range of matrices regarding correlations between subject level parameters. rawpopcorr_means
reports the posterior mean of the correlation between raw (not yet transformed from the standard
normal scale) parameters. rawpopcorr_sd reports the standard deviation of these parameters.

summary(fit,timeinterval = 1)

In the summary output, the free population mean parameters under $popmeans are likely one of
the main points of interest. They are returned in the same form that they are input to ctModel
- that is, covariance matrix related parameters are in the form of either standard deviations or a
transformed correlation parameter. Because the latter is difficult to interpret, various parameter
matrices are also returned in the $parmatrices section of the summary. The discrete time matrices
reported here (prefixed by dt) are by default from a time interval of 1, but this can be changed.
Asymptotic matrices – those for a time interval of infinity – are also output in some cases, and
prefixed by asym. Covariance related matrices are reported in covariance form, except where the
suffix cor is added to indicate correlations.
The function ctStanContinuousPars can be used to return the continuous time parameter matrices
in actual matrix form, for specific subjects, or groups of subjects. By default the median is calcu-
lated, but the function that aggregates over samples can be changed as desired. In the following
code, the 97.5% quantile is returned, for subject 3.

ctStanContinuousPars(fit,subjects = 3, calcfunc = quantile, calcfuncargs = list(probs=.975))

Note that subject 3 refers to the third subject in the data, not any particular identifier specified in
the subject id column. The mapping of subject id to the internal sequential integer representation
can be found via fit$setup$idmap . If a vector of subjects is specified, or the string 'all' is used,
multiple subjects are aggregated over.

1.10 Plotting

The plot function outputs a sequence of plots, all generated by specific functions. The name of the
specific function appears in a message in the R console, checking the help for each specific function
and running them separately will allow more customization of plots. Some of the plots, such as

9

the trace, density, and interval, are generated by the relevant rstan function and are hopefully self
explanatory. The plots specific to the hierarchical continuous time dynamic model are as follows:

ctStanDiscretePars(fit, plot=TRUE, indices = 'CR', subjects = 'all')

0 2 4 6 8 10

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

Regression coefficients

Time interval

V
al

ue

eta2_eta1
eta1_eta2

Figure 3: Discrete-time cross-effect dynamics of the estimated system for a range of time
intervals, with 95% credible intervals.

Figure 3 shows the dynamic regression coefficients (between latent states at different time points)
that are implied by the model for particular time intervals, as well as the uncertainty (default is
95% credible interval) of these coefficients. In this case the estimates are of the cross regression
effects, obtained by sampling from all subjects data, but specific subjects, as well as specific indices
of the effects (e.g., indices = ’AR’ or indices = rbind(c(2,1))’ can be specified.
The relation between posteriors and priors for variables of interest can also be plotted as follows –
note that the rows argument of the shown code is not necessary, but if only particular parameter
plots are desired the rows corresponding to specific parameters of fit$setup$popsetup can be
specified.

ctStanPlotPost(obj = fit, rows=3)

Shown in Figure 4 are approximate density plots based on the post-warmup samples drawn. For
each parameter that has individual variation specified, three plots are shown. These are the popu-
lation mean posterior compared to the prior, the posterior versus prior distribution of subject level
parameters along with the population mean prior, and then the population standard deviation
posterior compared to the prior.

10

−6 −4 −2 0 2 4

0
1

2
3

4
5

drift_eta1_eta1

Par. Value

D
en

si
ty

Pop. mean posterior
Pop. mean prior

−1.0 −0.5 0.0

0
2

4
6

8

drift_eta1_eta1

Par. Value

D
en

si
ty

Subject param posterior
Subject param prior
Pop mean prior

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
2

4
6

8
10

Pop. sd drift_eta1_eta1

Par. Value

D
en

si
ty

Pop. sd posterior
Pop. sd prior

Figure 4: Prior and posterior densities relevant to the second process auto effect.

11

1.11 Model prediction plots

One means of assessing model performance is to view plots of the observed time series alongside
the model predicted time series. ctsem includes functionality to output prior (based on all prior
observations), updated (based on all prior and current observations), and smoothed (based on
all observations) expectations and covariances from the Kalman filter, based on specific subjects
models. For ease of comparison, expected manifest indicator scores conditional on prior, updated
and smoothed states are also included. This approach allows for: predictions regarding individuals
states at any point in time, given any values on the time dependent predictors (external inputs
such as interventions or events); residual analysis to check for unmodeled dependencies in the
data; or simply as a means of visualization, for comprehension and model sanity checking purposes.
Examples of such are depicted in Figure 5, where we see observed and smoothed scores for a selected
subject from our sample. If we wanted to predict unobserved states in the future, we would need
only to specify the appropriate timerange (Prediction into earlier times is possible but makes little
sense unless the model is restricted to stationarity). For help with these plots, see ?ctKalman and
?ctKalmanPlot (arguments for the latter are passed via ctKalman, as below).

par(mfrow=c(1,2))

ctKalman(fit, subjects=2, timerange=c(0,30), kalmanvec=c('y', 'yprior'), timestep=.01,
plot=TRUE, plotcontrol=list(xaxs='i', main = 'Predicted'))

ctKalman(fit, subjects=2, timerange=c(0,30), kalmanvec=c('y', 'ysmooth'), timestep=.01,
plot=TRUE, plotcontrol=list(xaxs='i',main = 'Smoothed'))

●

●

● ●

●

●

●●
●

●

●
●

● ●●

●
●

●

●

●

0 5 10 15 20 25 30

−
2

0
2

4

Predicted

Time

V
al

ue

● y: Y1
y: Y2
yprior: Y1
yprior: Y2

●

●

● ●

●

●

●●

●
●

●

●

● ●●

●

●
●

●

●

0 5 10 15 20 25 30

−
1

0
1

2
3

Smoothed

Time

V
al

ue

● y: Y1
y: Y2
ysmooth: Y1
ysmooth: Y2

Figure 5: Predicted and smoothed estimates for one subject with two processes. Uncertainty
shown is a 95% credible interval comprising both process and measurement error.

12

1.12 Time independent predictor effect plots

Because time independent predictors give a linear effect prior to any necessary transformations,
the effects necessarily become non-linear when applied to bounded parameters, which can make
them difficult to conceptualise. To aid with this, a visual summary of the full range of effects can
be seen using the ctStanTIpredeffects function, as follows:

ctStanTIpredeffects(fit, plot = TRUE, whichpars=c('dtDRIFT','MANIFESTVAR[2,2]'),
timeinterval = .5, whichTIpreds = 3, includeMeanUncertainty = FALSE, nsubjects=10,
nsamples = 50)

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

TI3

P
ar

. V
al

ue

dtDRIFT[1,1]
dtDRIFT[2,1]
dtDRIFT[1,2]
dtDRIFT[2,2]
MANIFESTVAR[2,2]

Figure 6: Expectations for individuals parameter values change depending on their score on time
independent predictors.

Figure 6 shows how the expectation for an individuals parameter value is likely to change depending
on the value they have for the time independent predictor specified. In this example, the discrete
time drift effects for a time interval of 0.2, as well as the manifest error variance from row 2 column
2 of the MANIFESTVAR matrix, are shown. Of course, the plot for the error variance parameter
is simply a flat line, since we did not allow it to vary across subjects. Multiple predictors can be
specified, and the combined effect based on observed predictor combinations will be shown, but this
will likely make no sense unless there is a deterministic relation between the two – this can be useful
for including linear and quadratic effects, for instance, wherein the first predictor is linear, and the
second quadratic. The nsamples and nsubjects parameters specify how many different parameter
samples, and predictor values, are used – higher values take longer to compute, but give smoother
/ more accurate plots.

13

2 Additional details

2.1 Stationarity

When it is reasonable to assume that the prior for long term expectation and variance of the latent
states is the same as (or very similar to) the prior for initial expectations and variances, setting
some form of stationarity in advance may be beneficial. Three approaches to this are possible.
The first approach is to give free parameters of the T0VAR or T0MEANS matrix the name 'st
ationary', which can be useful if for instance only the initial variance should be stationary, or
just one of the initial variances. Another approach is to set the argument stationary=TRUE to
ctStanFit. Specifying this argument then ignores any T0VAR and T0MEANS matrices in the input,
instead replacing them with asymptotic expectations based on the DRIFT, DIFFUSION, and CINT
matrices. Alternatively, a prior can be placed on the stationarity of the dynamic models, calculated
as the difference between the T0MEANS and the long run asymptotes of the expected value of the
process, as well as the difference between the diagonals of the T0VAR covariance matrix and the
long run asymptotes of the covariance of the processes. Such a prior encourages a minimisation
of these differences, and can help to ensure that sensible, non-explosive models are estimated, and
also help the sampler get past difficult regions of relative flatness in the parameter space due to
colinearities between the within and between subject parameters. However if such a prior is too
strong it can also induce difficult dependencies in model parameters, and there are a range of models
where one may not wish to have such a prior. To place such a prior, the model$stationarymeanprior
and model$stationaryvarprior slots can be changed from the default of NA to a numeric vector,
representing the normal standard deviation of the deviations from stationarity. The number of
elements in the vector correspond to the number of latent processes.

2.2 Accessing Stan model code

For diagnosing problems or modifying the model in ways not achievable via the ctsem model
specification, one can use ctsem to generate the Stan code and then work directly with that, simply
by specifying the argument fit=FALSE to the ctStanFit function, and accessing the $stanmodel
text subobject. Any altered code can be passed back into ctStanFit by using the stanmodeltex
t argument, which can be convenient for setting up the data in particular.

2.3 Using Rstan functions

The standard rstan output functions such as summary and extract are also available, and the
shinystan package provides an excellent browser based interface. The stan fit object is stored
under the $stanfit subobject of the ctStanFit output. The parameters which are likely to be of
most interest in the output are prefixed by pop_ for pop (population) mean, and popsd for pop
standard deviation. Any pop parameters are returned in the form of the continuous time matrix
equations. Subject specific parameters are denoted by the matrix they are from, then the first
index represents the subject id, followed by standard matrix notation. For example, the 2nd row
and 1st column of the DRIFT matrix for subject 8 is DRIFT[8,2,1]. Parameters in such matrices
are returned in the form used for internal calculations – that is, variance covariance matrices are
returned as such, rather than the lower-triangular standard deviation and correlation matrices
required for input.

14

2.4 Oscillating, single subject example - sunspots data

In the following example we fit the sunspots data available within R, which has previously been fit
by various authors including Tómasson (2013). We have used the same CARMA(2,1) model and
obtained similar estimates – some differences are due to the contrast between Bayes and maximum
likelihood, though if desired one could adjust the code to fit using maximum likelihood, as here we
have only one subject.

#get data
sunspots<-sunspot.year
sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]
id <- 1
time <- 1749:1924

datalong <- cbind(id, time, sunspots)

#setup model
ssmodel <- ctModel(type='stanct', n.latent=2, n.manifest=1,
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 'a21', 1, 'a22'), nrow=2, ncol=2),
MANIFESTMEANS=matrix(c('m1'), nrow=1, ncol=1),
CINT=matrix(c(0, 0), nrow=2, ncol=1),
T0VAR=matrix(c(1,0,0,1), nrow=2, ncol=2), #Because single subject
DIFFUSION=matrix(c(0, 0, 0, "diffusion"), ncol=2, nrow=2))

ssmodel$pars$indvarying<-FALSE #Because single subject
ssmodel$pars$offset[14]<- 44 #Because not mean centered
ssmodel$pars[4,c('transform','offset')]<- c(1,0) #To avoid multi modality

#fit
ssfit <- ctStanFit(datalong, ssmodel, iter=300, chains=2)

#output
summary(ssfit)$popmeans

2.5 Population standard deviations - understanding the transforms

This section is intended as a helper to those trying to work through the various transformations
found in the model. Internally, we sample parameters that we refer to as the ‘raw’ parameters –
these parameters have no bounds and are typically drawn from normal distributions. Both raw pop-
ulation mean and subject specific deviation parameters are drawn from normal(0, 1) distributions.
Depending on the specific parameter, various transformations may be applied to set appropriate
bounds and priors. The raw population standard deviation for these raw parameters is sampled (by
default) from a normal(0, 1) distribution called rawpopsdbase, which is by default transformed via
an exponential function – this ensures the parameters are positive and the prior for the standard
deviation is a lognormal distribution. This distribution can be altered via the model subobjects r
awpopsdbase, rawpopsdbaselowerbound, and rawpopsdtransform. This distribution can also be
scaled on a per parameter basis by the sdscale multiplier in the model specification, which defaults
to 1. The following script shows a didactic sequence of sampling and transformation for a model
with a single parameter, the auto effect of the drift matrix, and 3 subjects. Although we sample the
priors themselves here, this is merely to reflect the prior and enable understanding and plotting.

15

Note also that because we are only displaying the procedure for a single parameter here, we simplify
things somewhat by avoiding calculations to determine the square root of the population covariance
matrix – with only one individually varying parameter, it is simply the standard deviation.

#set plotting parameters
par(mfrow=c(2,2), lwd=3, yaxs='i', mgp=c(1.8,.5,0),

mar=c(3,3,3,1)+.1)
bw=.03

n <- 999999 #number of samples to draw to from prior for plotting purposes
nsubjects <- 4 #number of subjects

#parameter specific transform
tform <- function(x) -log(exp(-1.5 * x) + 1) #default drift auto effect transform

#raw pop sd transform
sdscale <- 1 #default
rawsdtform <- function(x) exp(x * 2 -2) * sdscale #default

#sd approximation function
sdapprox <- function(means,sds,tform) {

for(i in 1:length(means)){
sds[i] <- ((tform(means[i]+sds[i]*3) - tform(means[i]-sds[i]*3))/6 +

(tform(means[i]+sds[i]) - tform(means[i]-sds[i]))/2) /2
}
return(sds)

}

#raw population mean parameters
rawpopmeans_prior <- rnorm(n, 0, 1) #prior distribution for rawpopmeans
rawpopmeans_sample <- -.3 #hypothetical sample
sdscale <- 1 #default

#population mean parameters after parameter specific transform
popmeans_prior <- tform(rawpopmeans_prior)
popmeans_sample <- tform(rawpopmeans_sample)

#plot pop means
plot(density(rawpopmeans_prior), ylim=c(0,1), xlim=c(-5,2),

xlab='Parameter value', main='Population means')
points(density(popmeans_prior, bw=bw),col=2,type='l')
segments(y0=0,y1=.5,x0=c(rawpopmeans_sample,popmeans_sample),lty=3,col=1:2)
legend('topleft',c('Raw pop. mean prior', 'Pop. mean prior',

'Raw pop. mean sample', 'Pop. mean sample'),lty=c(1,1,3,3), col=1:2, bty='n')

#population standard deviation parameters
rawpopsd_prior <- rawsdtform(rnorm(n, 0, 1)) #raw population sd prior

popsd_prior <- sdapprox(rawpopmeans_prior,rawpopsd_prior,tform)

#sample population standard deviation posterior
rawpopsd_sample <- rawsdtform(.9) #hypothetical sample
popsd_sample <- sdapprox(means=rawpopmeans_sample, #transform sample to actual pop sd

sds=rawpopsd_sample,tform=tform)

16

#plot pop sd
plot(density(rawpopsd_prior,from=-.2,to=10,na.rm=TRUE, bw=bw), xlab='Parameter value',

xlim=c(-.1,3), ylim=c(0,2), main='Population sd')
points(density(popsd_prior,from=-.2,to=10,na.rm=TRUE, bw=bw),type='l', col=2)
segments(y0=0,y1=1,x0=c(rawpopsd_sample, popsd_sample), col=1:2,lty=3)
legend('topright',c('Raw pop. sd prior','Pop. sd prior',

'Raw pop. sd sample','Pop. sd sample'), col=1:2, lty=c(1,1,3,3),bty='n')

#individual level parameters

#marginal individual level parameters (given all possible values for mean and sd)
rawindparams_margprior <- rawpopmeans_prior + rawpopsd_prior * rnorm(n, 0, 1)
indparams_margprior <- tform(rawindparams_margprior)

plot(density(rawindparams_margprior,from=-10,to=10,bw=bw), xlab='Parameter value',
xlim=c(-5,2), ylim=c(0,1), main='Marginal dist. individual parameters')

points(density(indparams_margprior,from=-10,to=.2,bw=bw),type='l',col=2)
legend('topleft',c('Raw individual parameters prior','Individual parameters prior'),

col=1:2,lty=1,bty='n')

#conditional individual level parameters (given sampled values for mean and sd)
rawindparams_condprior<- rawpopmeans_sample + rawpopsd_sample * rnorm(n,0,1)
rawindparams_condsample<- rawpopmeans_sample + rawpopsd_sample * rnorm(nsubjects,0,1)
indparams_condprior<- tform(rawindparams_condprior)
indparams_condsample<- tform(rawindparams_condsample)

plot(density(rawindparams_condprior), xlab='Parameter value', xlim=c(-5,2),
ylim=c(0,1), main='Conditional dist. individual parameters')

points(density(indparams_condprior),type='l',col=2)
segments(y0=0,y1=.5,x0=c(rawindparams_condsample, indparams_condsample),

col=rep(1:2,each=nsubjects),lty=3, lwd=2)
legend('topleft',c('Raw ind. pars. prior','Ind. pars. prior',

'Raw ind. pars. samples','Ind. pars. samples'), col=1:2, lty=c(1,1,3,3),bty='n')

In the top left of Figure 7, we can see the prior distribution of population means for, in this case,
a diagonal (auto effect) of the drift matrix. The prior for the raw population distribution is a
standard normal, while for the actual population distribution it is definitely not normal. We draw
a hypothetical sample from the raw distribution, and show the resulting transformed value. To the
right, the prior distribution of the raw population standard deviation is shown. This raw distribu-
tion is the same for all parameter types, but the resulting prior distribution of population standand
deviations is also dependent on the parameter specific transform (although in this particular case
the raw and actual population sd priors are almost the same). This dependency is most easily
understood if one considers the case where the parameter specific transformation simply multiplied
the raw parameter by 2 – if we sampled a raw population sd of 1.5, the actual population sd sample
would be 3.0. With nonlinear transformations, the dependency is not so easily calculated, and
we use a sigma point approximation (Julier & Uhlmann, 1997), as shown in the code, when it is
necessary to plot or summarise the population sd. The lower left plot shows the prior distribution
for individual level parameters, marginalising over the priors for population means and standard
deviations. This plot is very similar to the means plot directly above it, just somewhat more spread

17

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Population means

Parameter value

D
en

si
ty

Raw pop. mean prior
Pop. mean prior
Raw pop. mean sample
Pop. mean sample

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Population sd

Parameter value

D
en

si
ty

Raw pop. sd prior
Pop. sd prior
Raw pop. sd sample
Pop. sd sample

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal dist. individual parameters

Parameter value

D
en

si
ty

Raw individual parameters prior
Individual parameters prior

−5 −4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional dist. individual parameters

Parameter value

D
en

si
ty

Raw ind. pars. prior
Ind. pars. prior
Raw ind. pars. samples
Ind. pars. samples

Figure 7: Depiction of the prior distributions and sampling process through which individual
specific parameters are determined.

18

out due to the additional variation included. Things get more interesting when we look at the lower
right plot – here, we see the prior distributions for individual level parameters, conditional on the
values sampled in the top row of plots. Along with the prior distribution, in this lower right plot we
also draw samples for 4 subjects, showing both the raw individual parameter, and the individual
parameter after the necessary transforms.

3 Conclusion

With this work, we have described the basics of the hierarchical continuous time dynamic model,
and provided detailed discussion on the usage of the R package ctsem (Driver et al., 2017) for
fitting such models to data. While the model is necessarily somewhat complex, we believe it offers
many interesting possibilities for understanding the dynamics of personality over time, and hope
that the overview of the software provided here encourages new and interesting applications of the
model.

References

Driver, C. C., Oud, J. H. L. & Voelkle, M. C. (2017). Continuous time structural equation modeling
with r package ctsem. Journal of Statistical Software, 77 (5). doi:10.18637/jss.v077.i05

Driver, C. C. & Voelkle, M. C. (in press). Hierarchical Bayesian continuous time dynamic modeling.
Psychological Methods.

Driver, C. C. & Voelkle, M. C. (2017). Understanding the time course of interventions with con-
tinuous time dynamic models. Manuscript submitted for publication.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2014). Bayesian data analysis. Chapman &
Hall/CRC Boca Raton, FL, USA. Retrieved from http://amstat.tandfonline.com/doi/full/
10.1080/01621459.2014.963405

Julier, S. J. & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems.
(Vol. 3068, pp. 182–194). Signal Processing, Sensor Fusion, and Target Recognition VI. In-
ternational Society for Optics and Photonics. doi:10.1117/12.280797

Oud, J. H. L. & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data
by means of SEM. Psychometrika, 65 (2), 199–215. doi:10.1007/BF02294374

R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Singer, H. (1993). Continuous-time dynamical systems with sampled data, errors of measurement
and unobserved components. Journal of Time Series Analysis, 14 (5), 527–545. 00046. doi:10.
1111/j.1467-9892.1993.tb00162.x

Tómasson, H. (2013). Some computational aspects of Gaussian CARMA modelling. Statistics and
Computing, 25 (2), 375–387. doi:10.1007/s11222-013-9438-9

Voelkle, M. C. & Oud, J. H. L. (2013). Continuous time modelling with individually varying time
intervals for oscillating and non-oscillating processes. British Journal of Mathematical and
Statistical Psychology, 66 (1), 103–126. doi:10.1111/j.2044-8317.2012.02043.x

19

