
S4 Classes for Distributions—a manual for packages

"distr", "distrEx", "distrEllipse", "distrMod",

"distrSim", "distrTEst", "distrTeach", version 2.7

Peter Ruckdeschel∗

Matthias Kohl†

Thomas Stabla‡

Florian Camphausen§

Institute for Mathematics
School of Mathematics and Science

Oldenburg University
PO box 25 03

26111 Oldenburg (Oldb.)
Germany

e-Mail: peter.ruckdeschel@uni-oldenburg.de

Version control information:

Head URL: svn+ssh://ruckdeschel@svn.r-forge.

r-project.org/svnroot/distr/pkg/

distrDoc/vignettes/distr.Rnw

Last changed date: 2018-07-08 16:25:50 +0200 (So, 08 Jul 2018)
Last changes revision: 1183
Version: Revision 1183
Last changed by: Peter Ruckdeschel (ruckdeschel)

July 23, 2018

Abstract

"distr" is a package for R from version 1.8.1 onwards that is distributed un-
der LGPL-3. Its own current version is 2.7. The aim of this package is to provide a
conceptual treatment of random variables (r.v.’s) by means of S4–classes. A mother

∗Carl von Ossietzky Universität Oldenburg
†Hochschule Furtwangen
‡Graf-Münster-Gymnasium, Bayreuth
§European Central Bank, Frankfurt

1

svn+ssh://ruckdeschel@svn.r-forge.r-project.org/svnroot/distr/pkg/distrDoc/vignettes/distr.Rnw
svn+ssh://ruckdeschel@svn.r-forge.r-project.org/svnroot/distr/pkg/distrDoc/vignettes/distr.Rnw
svn+ssh://ruckdeschel@svn.r-forge.r-project.org/svnroot/distr/pkg/distrDoc/vignettes/distr.Rnw

class Distribution is introduced with slots for a parameter and for functions r, d, p,
and q for simulation, respectively for evaluation of density / c.d.f. and quantile func-
tion of the corresponding distribution. All distributions of the "stats" package are
implemented as subclasses of either AbscontDistribution or DiscreteDistribution, which
themselves are again subclasses of UnivariateDistribution. By means of these classes,
we may automatically generate new objects of these classes for the laws of r.v.’s under
standard mathematical univariate transformations and under standard bivariate arith-
metical operations acting on independent r.v.’s. Package "distr" in this setting works
as basic package for further extensions. These start with package "distrEx", covering
statistical functionals like expectation, variance and the median evaluated at distribu-
tions, as well as distances between distributions and basic support for multivariate and
conditional distributions. Next, from version 2.0 on, comes package "distrMod" which
uses these concepts to provide an object orientated competitor to fitdistr from pack-
age "MASS" in covering estimation in statistical models. Further on there are packages
"distrSim" for the standardized treatment of simulations, also under contaminations
and package "distrTEst" with classes and methods for evaluations of statistical proce-
dures on such simulations. Finally, from version 2.0 on, there is package "distrTeach"
to embody illustrations for basic stats courses using our distribution classes.

From version 2.4 on, we have moved support for extreme value distributions, as
well as for certain scale-shape distributions to the new package "RobExtremes". This
concerns the Gumbel, Weibull, Pareto distributions.

Contents

0 Motivation 5

1 Concept 9

2 Organization in classes 11
2.1 Distribution classes . 11

2.1.1 Subclasses . 11
2.1.2 Classes for Mixture Distributions . 16
2.1.3 Classes for multivariate distributions and for conditional distributions 18
2.1.4 Parameter classes . 19

2.2 Simulation classes . 19
2.3 Evaluation class . 21
2.4 EvaluationList class . 22

3 Methods 23
3.1 Arithmetics . 23
3.2 Affine linear transformations . 25
3.3 Decompositions, Flattening and Other Simplifications 26
3.4 The group math of unary mathematical operations 30

2

3.5 Construction of d, p, and q from r . 31
3.6 Convolution . 33
3.7 Further Binary Operators . 33
3.8 Truncation, Pairwise Minimum/Maximum, Huberization 38
3.9 Additional helper functions . 44
3.10 Overloaded generic functions . 47
3.11 Plotting . 47

3.11.1 Plotting for Distribution objects . 47
3.11.2 Plotting for Dataclass objects . 56
3.11.3 Plotting for Evaluation objects . 56
3.11.4 Plotting for L2paramFamily objects 64

3.12 liesInSupport . 64
3.13 Simulation (in package distrSim) . 64
3.14 Evaluate (in package distrTEst) . 64
3.15 Is-Relations . 65
3.16 Further methods . 65
3.17 Functionals (in package distrEx) . 65

3.17.1 Expectation . 65
3.17.2 Variance . 69
3.17.3 Further functionals . 70

3.18 Truncated moments (in package distrEx) . 70
3.19 Distances (in package distrEx) . 71
3.20 Functions for demos (in package distrEx) 71

3.20.1 CLT for arbitrary summand distribution 72
3.20.2 LLN for arbitrary summand distribution 72
3.20.3 Deconvolution example . 72

4 Package distrMod 72
4.1 Symmetry Classes . 73
4.2 Model Classes . 74
4.3 Parameter in a parametric family . 75
4.4 Risk Classes . 76
4.5 Minimum Criterion Estimation . 78

5 Options 86
5.1 Options for distr . 86
5.2 Options for distrEx . 88
5.3 Options for distrMod . 89
5.4 Options for distrSim . 89
5.5 Options for distrTEst . 90

3

6 Further Documentation 90
6.1 Help pages . 90
6.2 NEWS file . 91
6.3 Vignettes . 91
6.4 Articles . 91

7 Startup Messages 91

8 System/version requirements 92
8.1 System requirements . 92
8.2 Required version of R . 92
8.3 Dependencies . 92
8.4 License . 93

9 Details to the implementation 93

10 A general utility 94

11 Odds and Ends 94
11.1 What should be done and what we could do 94
11.2 What should be done but for which we lack the know-how 94

12 Acknowledgement 94

13 Examples 95
13.1 12-fold convolution of uniform (0, 1) variables 95
13.2 Comparison of exact convolution to FFT for normal distributions 97
13.3 Comparison of FFT to RtoDPQ . 101
13.4 Comparison of exact and approximate stationary regressor distribution . . . 105
13.5 Truncation and Huberization/winsorization 109
13.6 Distribution of minimum and maximum of two independent random variables109
13.7 Instructive destructive example . 110
13.8 A simulation example . 111
13.9 Expectation of a given function under a given distribution 119
13.10n-fold convolution of absolutely continuous distributions 119

Parts of this document appeared in an earlier and much shorter form in R-News, 6(2) as “S4 Classes

for Distributions”, c.f. [8], which in its published form refers to package versions 1.6, resp. 0.4-2. This

present document takes into account the subsequent revisions and versions.

4

0 Motivation

R up to now contains powerful techniques for virtually any useful distribution using the
suggestive naming convention [prefix]<name> as functions where [prefix] stands for r,
d, p, or q and <name> is the name of the distribution.
There are limitations of this concept, however: You can only use distributions which are
implemented in some library already or for which you yourself have provided an implemen-
tation. In many natural settings you want to formulate algorithms once for all distributions,
so you should be able to treat the actual distribution <name> as sort of a variable.
You may of course paste together prefix and the value of <name> as a string and then use
eval(parse (....)) . This is neither very elegant nor flexible, however.
Instead, we would rather like to implement the algorithm by passing an object of some
distribution class as argument to the function. Even better though, we would use a generic
function and let the S4-dispatching mechanism decide what to do at run-time. In particu-
lar, we would like to automatically generate the corresponding functions r, d, p, and q for
the law of expressions like X+3Y for objects X and Y of class Distribution, or, more general,
of a transformation of X, Y under a function f :R2 → R which is already realized as a
function in R.
This is possible with package "distr". As an example, try

Loading required package: distrTEst

Loading required package: setRNG

Loading required package: distrSim

Loading required package: distr

Loading required package: startupmsg

Utilities for Start-Up Messages (version 0.9.5)

For more information see ?"startupmsg", NEWS("startupmsg")

Loading required package: sfsmisc

Object Oriented Implementation of Distributions (version 2.8.0)

Attention: Arithmetics on distribution objects are understood as operations

on corresponding random variables (r.v.s); see distrARITH().

Some functions from package ’stats’ are intentionally masked ---see distrMASK().

Note that global options are controlled by distroptions() ---c.f. ?"distroptions".

For more information see ?"distr", NEWS("distr"), as well as

http://distr.r-forge.r-project.org/

Package "distrDoc" provides a vignette to this package as well as to several

extension packages; try vignette("distr").

##

Attaching package: ’distr’

The following objects are masked from ’package:stats’:

##

5

df, qqplot, sd

Simulation Classes Based on Package ’distr’ (version 2.7.0)

Some functions from package ’stats’ are intentionally masked ---see distrSimMASK().

For more information see ?"distrSim", NEWS("distrSim"), as well as

http://distr.r-forge.r-project.org/

Package "distrDoc" provides a vignette to this package as well as to several

related packages; try vignette("distr").

##

Attaching package: ’distrSim’

The following object is masked from ’package:stats’:

##

simulate

The following object is masked from ’package:base’:

##

rbind

Estimation and Testing Classes Based on Package ’distr’ (version 2.7.0)

For more information see ?"distrTEst", NEWS("distrTEst"), as well as

http://distr.r-forge.r-project.org/

Package "distrDoc" provides a vignette to this package as well as to several

related packages; try vignette("distr").

Loading required package: distrEx

Extensions of Package ’distr’ (version 2.7.0)

Note: Packages "e1071", "moments", "fBasics" should be attached /before/

package "distrEx". See distrExMASK().Note: Extreme value distribution functionality

has been moved to

package "RobExtremes". See distrExMOVED().

For more information see ?"distrEx", NEWS("distrEx"), as well as

http://distr.r-forge.r-project.org/

Package "distrDoc" provides a vignette to this package as well as to several

related packages; try vignette("distr").

##

Attaching package: ’distrEx’

The following objects are masked from ’package:stats’:

##

IQR, mad, median, var

Loading required package: distrTeach

Extensions of Package ’distr’ for Teaching

Stochastics/Statistics in Secondary School (version 2.7.0)

For more information see ?"distrTeach", NEWS("distrTeach"), as well as

http://distr.r-forge.r-project.org/

6

Package "distrDoc" provides a vignette to this package as well as to several

related packages; try vignette("distr").

Loading required package: distrMod

Loading required package: RandVar

Implementation of Random Variables (version 1.1.0)

For more information see ?"RandVar", NEWS("RandVar"), as well as

http://robast.r-forge.r-project.org/

This package also includes a vignette; try vignette("RandVar").

Loading required package: MASS

Loading required package: stats4

Object Oriented Implementation of Probability Models (version 2.7.0)

Some functions from pkg’s ’base’ and ’stats’ are intentionally masked ---see

distrModMASK().

Note that global options are controlled by distrModoptions() ---c.f. ?"distrModoptions".

For more information see ?"distrMod", NEWS("distrMod"), as well as

http://distr.r-forge.r-project.org/

There is a vignette to this package; try vignette("distrMod").

##

Package "distrDoc" provides a vignette to the other distrXXX packages,

as well as to several related packages; try vignette("distr").

##

Attaching package: ’distrMod’

The following object is masked from ’package:stats4’:

##

confint

The following object is masked from ’package:stats’:

##

confint

The following object is masked from ’package:base’:

##

norm

require(distr)

N <- Norm(mean = 2, sd = 1.3)

P <- Pois(lambda = 1.2)

Z <- 2*N + 3 + P

Z

Distribution Object of Class: AbscontDistribution

7

Warning in methods::show(x): arithmetics on distributions are understood

as operations on r.v.’s

see ’distrARITH()’; for switching off this warning see ’?distroptions’

plot(Z)

−5 0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

x

d(
x)

Density of AbscontDistribution

−5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

p
q(

p)

Quantile function of AbscontDistribution

p(Z)(0.4)

[1] 0.002415387

q(Z)(0.3)

[1] 6.705068

in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)

Zs <- r(Z)(50)

Zs

[1] 7.520092 10.295296 12.992221 4.697551 6.756354 4.087549 12.521229

[8] 11.534870 12.304511 9.151391 2.834167 7.120988 10.959564 1.894926

[15] 10.122343 13.258145 4.918518 4.864011 12.276343 4.971894 10.934716

[22] 9.071761 6.433836 6.886184 7.235351 5.677702 10.707303 5.937008

[29] 8.505613 10.936953 5.562108 8.348851 7.565560 6.032656 10.987640

8

[36] 9.222622 5.533323 6.588991 7.926626 5.994016 13.462126 8.516666

[43] 4.357358 12.654622 7.264672 6.290012 7.042983 11.606861 7.990045

[50] 7.287143

In the environments of RStudio, see https://www.rstudio.com/ and Jupyter IRKernel, see

https://github.com/IRkernel/IRkernel, calls to q are caught away from standard R evaluation

and are treated in a non-standard way. This non-standard evaluation in particular throws errors

at calls to our accessor methods q to slot q of the respective distribution object. For RStudio,

this holds for calls from the console (i.e., in the .GlobalEnv environment) only, while calls to our

accessor q in different environment are not affected. This is not true in IRKernel, where all calls

to our accessor q are affected. To amend this, from version 2.6 on, we provide function q. l (for

left-continuous quantile function) as alias to our accessors q, so that all our package functionality

also becomes available in RStudio and IRKernel. The same holds, albeit with less consequences in

RStudio and IRKernel for accessor p: Here we have an alias p.r (for the right-continuous cdf) for it.

Comment:

Let N an object of class ”Norm” with parameters mean=2, sd=1.3 and let P an object of class ”Pois”

with parameter lambda=1.2. Assigning to Z the expression 2∗N+3+P, a new distribution object is

generated —of class ”AbscontDistribution” in our case— so that identifying N, P, Z with random

variables distributed according to N, P, Z, L(Z) = L(2 ∗ N + 3 + P), and writing p(Z)(0.4) we get

P (Z ≤ 0.4), q(Z)(0.3) the 30%-quantile of Z, and with r(Z)(50) we generate 50 pseudo random

numbers distributed according to Z, while the plot command generates the above figure.

1 Concept

In developing our packages, we had the following principles in mind: We wanted to be
open in our design so that our classes could easily be extended by any volunteer in the R
community to provide more complex classes of distributions as multivariate distributions,
times series distributions, conditional distributions. As an exercise, the reader is encour-
aged to implement extrem value distributions from the package "evd"1. The largest effort
will in fact be the documentation. . .
We also wanted to preserve naming and notation from R-"stats" as far as possible so that
any programmer used to S could quickly use our package. Even more so, as the distribu-
tions already implemented to R are all well tested and programmed with skills we lack, we
use the existing r, d, p, and q-functions wherever possible, only wrapping them by small
code sniplets to our class hierarchy.
Third we wanted to use a suggestive notation for our automatically generated methods r,
d, p, and q, which we think is now largely achieved. All this should make intensive use

1a solution to this “homework” may be found in the sources to "distrEx", resp. from version 2.4 on, in
the sources to "RobExtremes"

9

https://www.rstudio.com/
https://github.com/IRkernel/IRkernel

of object orientation in order to be able to use inheritance and method overloading. Let
us briefly explain why we decided to realize r, d, p, and q as part of our class definitions:
Doing so, we place ourselves somewhere between pure object orientation where methods
would be slots —in the language of the S4-concept, confer [2]— and the S4 paradigm where
methods “live their own life” apart from the classes, or, to q, which should be regarded
use [1]’s terminology, we use COOP2-style for r, d, p, and q methods, and FOOP3 -style
for ”normal” methods.
The S4-paradigm with methods which are not attached to an object but rather behave
differently according to the classes of their arguments is fine if there are particular user-
written methods for only some few general distribution classes like AbscontDistribution, as
in the case for plot or ”+” (c.f. [5], Section 2.2). During a typical R session with "distr",
however, there will be a lot of, mostly automatically generated objects of our distribution
classes, each with its own r, d, p, and q; this even applies to intermediate expressions like
2∗N, 2∗N+3 to eventually produce Z in the example in the motivation. Treating r, d, p,
and q as generic functions, we would need to generate new classes for each expression 2∗N,
2∗N+3, Z and, correspondingly, particular S4-methods for r, d, p, and q for each of these
new classes; apparently, this would produce overly many classes for an effective inheritance
structure.
In providing arithmetics for distributions, we have to deviate a little from the paradigm
of S as a functional language: For operators like “+”, additional parameters controlling
the precision of the results cannot be handily passed as arguments. For this purpose we
provide global options which may be inspected and modified by distroptions , getdistrOption4

in complete analogy to options, getOption. Finally our concept as to parameters: Contrary
to the standard R-functions like rnorm we only permit length 1 for parameters like mean,
because we see the objects as implementations of univariate random variables, for which
vector-valued parameters make no sense; rather one could gather several objects with pos-
sibly different parameters to a vector/list of distributions. Of course, the original functions
rnorm etc. remain unchanged and still allow for vector-valued parameters. Kouros Owzar
in an off-list mail raised the point, that in case of multiple parameters as in case of the
normal or the Γ-distribution, it might be useful to be able to pass these multiple parame-
ters in vectorized form to the generating function. We, too, think that this is a good idea,
but have shifted this question to the new extension package "distrMod" which covers more
general treatment of statistical models, see section 4.

2class-object-orientated programming, as e.g. in C++
3function-object-orientated programming, as in the S4-concept
4Upto version 0.4-4, we used a different mechanism to inspect/modify global options of "distrEx" (see

section 5.2); corresponding functions distrExoptions, getdistrExOption for package "distrEx" are available
from version 1.9 on.

10

2 Organization in classes

Loosely speaking we have three large groups of classes: distribution classes (in "distr"),
simulation classes (in "distrSim") and an evaluation class (in "distrTEst"), where the
latter two are to be considered only as tools which allow a unified treatment of simulations
and evaluation of statistical estimation (perhaps also tests and predictions later) under
varying simulation situations. Additionally, package "distrEx" provides classes for discrete
multivariate distributions and for factorized, conditional distributions, as well as a bundle
of functionals and distances (see below).

2.1 Distribution classes

The purpose of the classes derived from the class Distribution is to implement the concept
of a r.v./distribution as such in R.
All classes derived from Distribution have a slot param for a parameter, a slot img for the
range and the constitutive slots r, d, p, and q.
From version 1.9 on, up to arguments referring to a parameter of the distribution (like
mean for the normal distribution), these function slots have the same arguments as those
of package "stats", i.e.; for a distribution object X we may call these functions as

• r(X)(n) —except for objects of class Hyper, where there is a slot n already, so
here the argument name to r is nn.

• d(X)(x, log = FALSE)

• p(X)(q, lower.tail = TRUE, log.p = FALSE)

• q(X)(p, lower.tail = TRUE, log.p = FALSE)

For the arguments of these function slots see e.g. rnorm from package "stats". Note
that, as usual, slots d, p, and q are vectorized in their first argument, but are not on the
subsequent ones. The idea is to gain higher precision for the upper tails or when multiplying
probabilities.

2.1.1 Subclasses

To begin with, we consider univariate distributions giving S4-class UnivariateDistribution, and
as typical subclasses, we introduce classes for absolutely continuous and discrete distribu-
tions —AbscontDistribution and DiscreteDistribution.

The former, from version 1.9 on, has a slot gaps of class OptionalMatrix, i.e.; an object
which may either be NULL or a matrix. This slot, if non-NULL, contains left and right
endpoints of intervals where the density of the object is 0. This slot may be inspected by

11

the accessor gaps() and modified by a corresponding replacement method. It may also be
filled automatically by setgaps(object, exactq = 6, ngrid = 50000), where upon evaluation of the
d-slot on a grid of length ngrid, all regions in the range5 of the distribution where the density
is smaller than 10−exactq are set to gaps. Internally, we have helper functions .consolidategaps

to merge adjacent intervals and mergegaps to merge slots of different objects.
For saved objects from earlier versions, we provide the functions isOldVersion and
conv2NewVersion to check whether the object was generated by an older version of this
package and to convert such an object to the new format, respectively.

Class DiscreteDistribution has a slot support, a vector containing the support of the distri-
bution, which is truncated to the lower/upper TruncQuantile in case of an infinite support.
TruncQuantile is a global option of "distr" described in section 5.

Also from version 1.9 on, class DiscreteDistribution has a subclass LatticeDistribution for
supports consisting of6 an affine linear lattice of form p+ iw for p ∈ R, w ∈ R, w 6= 0 and
i = 0, 1, . . . , L, L ∈ N ∪∞. This class gains a slot lattice of class Lattice (see below). The
purpose of this class is mainly its use in DFT/FFT methods for convolution. Slot lattice

may be inspected by the usual accessor function lattice (). As by inheritance, all subclasses
of LatticeDistribution which prior to version 1.9 were direct subclasses of DiscreteDistribution

gain a slot lattice , too, we provide again isOldVersion and conv2NewVersion methods to check
whether the object was generated by an older version of this package and to convert such
an object to the new format, respectively. Also note that internally, we suppress lattice
points from the support where the probability is 0.

Objects of classes LatticeDistribution resp. DiscreteDistribution, and from version 2.0 on,
also AbscontDistribution, may be generated using the generating functions LatticeDistribution ()

resp. DiscreteDistribution() resp. AbscontDistribution(); see also the corresponding help. E.g., to
produce a discrete distribution with support (1, 5, 7, 21) with corresponding probabilities
(0.1, 0.1, 0.6, 0.2) we may write

D <- DiscreteDistribution(supp = c(1,5,7,21), prob = c(0.1,0.1,0.6,0.2))

D

Distribution Object of Class: DiscreteDistribution

plot(D)

5more precisely: between lower and upper TruncQuantile; TruncQuantile is a global option of "distr"
described in section 5

6or at least if filled with points carrying no mass have a representation as an affine linear lattice

12

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

d(
x)

Probability function of DiscreteDistribution

● ●

●

●

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

●

●

●

●

●

CDF of DiscreteDistribution

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

p

q(
p)

●

●

●

●

Quantile function of DiscreteDistribution

●

●

●

●

and to generate an absolutely continuos distribution with density proportional to e−|x|
3
,

we write

AC <- AbscontDistribution(d = function(x) exp(-abs(x)^3), withStand = TRUE)

AC

Distribution Object of Class: AbscontDistribution

plot(AC)

13

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

d(
x)

Density of AbscontDistribution

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

p

q(
p)

Quantile function of AbscontDistribution

As subclasses of these absolutely continuous and discrete classes, we have implemented
all parametric families which already exist in the "stats" package of R in form of [prefix]<name>
functions —by just providing wrappers to the original R-functions.
Schematically, the inheritance relations as well as the slots of the corresponding classes may
be read off from Figure 1. Class LatticeDistribution and slot gaps, as well as additional classes
AffLinAbscontDistribution, AffLinDiscreteDistribution, AffLinLatticeDistribution (c.f. section 3.2) are
still lacking in this graphic so far, however, as well as the classes introduced in version 2.0.

The most powerful use of our package probably consists in operations to automatically

14

Figure 1: Inheritance relations and slots of the corresponding (sub-)classes for Distribution where we do

not repeat inherited slots

generate new slots r, d, p, and q —induced by mathematical transformations. This is
discussed in some detail in subsection 3.

15

2.1.2 Classes for Mixture Distributions

Lists of distributions As a first step, we allow distributions to be gathered in lists,
giving classes DistrList and UnivarDistrList, where in case of the latter, all elements must be
univariate distributions. For these, the usual indexing operations with [[.]] are available.
As we will use these lists to construct more general mixture distributions in some subsequent
versions, we have moved these routines to package "distr" from version 1.9 on.

Mixing distributions To be able to work with distributions which are neither purely
absolutely continuous nor purely discrete, like e.g. the distribution of min(X, 1) for X ∼
N (0, 1), from package version 2.0 on, we support mixtures of distributions. These are
realized as subclasses of class UnivariateDistribution. To begin with, we introduce a class
UnivarMixingDistribution as subclass of class UnivariateDistribution which additionally has two
slots MixCoeff and MixDistr. While the former is a numeric vector taking up the mixture
coefficients of the distribution, the latter is an object of class UnivarDistrList as described
below, taking up the distributions of the mixture components; as usual, these slots have
their respective accessor and replacement functions. Usually, this mixing distribution will
neither have a Lebesgue density nor be purely discrete, having a counting density. So slot
d as a rule will be empty. Objects of this class may be generated by the generating function
UnivarMixingDistribution(), see also the corresponding help. In addition there is the function
flat .mix to simplify such an object converting it to an object of class UnivarLebDecDistribution;
confer subsection 3.3. Note that these mixing distributions may be recursive, i.e. compo-
ments of slot MixDistr may again be of class UnivarMixingDistribution.

library(distr)

M1 <- UnivarMixingDistribution(Norm(), Pois(lambda=1), Norm(),

withSimplify = FALSE)

M2 <- UnivarMixingDistribution(M1, Norm(), M1, Norm(), withSimplify = FALSE)

M2

An object of class "UnivarMixingDistribution"

It consists of 4 components

Components:

[[1]]An object of class "UnivarMixingDistribution"

:---

:It consists of 3 components

:Components:

:[[1]]Distribution Object of Class: Norm

: :mean: 0

: :sd: 1

16

:[[2]]Distribution Object of Class: Pois

: :lambda: 1

:[[3]]Distribution Object of Class: Norm

: :mean: 0

: :sd: 1

:---

:Weights:

:0.333000 :0.333000 :0.333000 :

[[2]]Distribution Object of Class: Norm

:mean: 0

:sd: 1

[[3]]An object of class "UnivarMixingDistribution"

:---

:It consists of 3 components

:Components:

:[[1]]Distribution Object of Class: Norm

: :mean: 0

: :sd: 1

:[[2]]Distribution Object of Class: Pois

: :lambda: 1

:[[3]]Distribution Object of Class: Norm

: :mean: 0

: :sd: 1

:---

:Weights:

:0.333000 :0.333000 :0.333000 :

[[4]]Distribution Object of Class: Norm

:mean: 0

:sd: 1

Weights:

0.250000 0.250000 0.250000 0.250000

Lebesgue Decomposed distributions As seen in the above example of min(X, 1),
classes DiscreteDistribution and Abscontdistribution are not closed under arithmetic operations.
To have such a closure, from version 2.0 on, we introduce class UnivarLebDecDistribution,
which realizes a Lebesgue decomposition of a univariate distribution into a discrete and

17

an absolutely continuous distribution. Of course, we still cannot cover distributions hav-
ing a non-trivial continuous but not absolutely continuous part like the Cantor distribu-
tion, but class UnivarLebDecDistribution provides a sufficiently general compromise. Class
UnivarLebDecDistribution is a subclass of class UnivarMixingDistribution, where in addition we
assume that both slots MixCoeff and MixDistr are of length 2, and that the first component
of slot MixDistr is of class AbscontDistribution while the second is of class DiscreteDistribution.
For this class there are particular accessors acWeight, discreteWeight for the respective weights
and acPart, discretePart for the respective distributions. Again there is a generating function
UnivarMixingDistribution(). In addition there is the function flat .LCD to simplify such an ob-
ject converting it to an object of class UnivarLebDecDistribution; confer subsection 3.3.Classes
AbscontDistribution, DiscreteDistribution and UnivarLebDecDistribution are grouped to a virtual
class (more specifically a class union) AcDcLcDistribution.

Compound distributions From version 2.1 on, we also support compound distribu-

tions, i.e. the distributions D of form D = L(
∑N

i=1Xi), Xi
i.i.d.∼ F , a distribution on R,

and, independent of the Xi, N ∼ Q a distribution on N0. These distributions are im-
plemented as class CompoundDistribution which is a subclass of class UnivarMixingDistribution;
in addition this class has two slots, NumbOfSummandsDistr, the distribution Q of the num-
ber of summands (or frequency distribution) and SummandsDistr the distribution F of the
summands. Correspondingly, in package "distrEx" there are specialized expectation and
variance methods.

2.1.3 Classes for multivariate distributions and for conditional distributions

In "distrEx", we provide the following classes for handling multivariate distributions:

Multivariate distribution classes Multivariate distributions are much more compli-
cated than univariate ones, which is why but a few exceptional ones have already been
implemented to R in packages like "multnorm". In particular it is not so clear what a
slot q should mean and, in higher dimensions slot p, and possibly also slot d may become
awkward. So, for multivariate distributions, realized as class MultivariateDistribution, we only
insist on slot r, while the other functional slots may be left void.

The easiest case is the case of a discrete multivariate distribution with finite support
which is implemented as class DiscreteMVDistribution.

Conditional distribution classes Also arising in multivariate settings only are con-
ditional distributions. In our approach, we realize factorized, conditional distributions
where the (factorized) condition is in fact treated as an additional parameter to the dis-
tribution. The condition is realized as an object of class Condition, which is a slot of
corresponding classes UnivariateCondDistribution. This latter is the mother class to classes
AbscontCondDistribution and DiscreteCondDistribution. The most important application of these

18

classes so far is regression, where the distribution of the observation given the covariates
is just realized as a UnivariateCondDistribution.

2.1.4 Parameter classes

As most distributions come with a parameter which often is of own interest, we endow the
corresponding slots of a distribution class with an own parameter class, which allows for
some checking like “Is the parameter lambda of an exponential distribution non-negative?”,
“Is the parameter size of a binomial a positive integer?”
Consequently, we have a method liesIn that may answer such questions by a TRUE/FALSE

statement. Schematically, the inheritance relations of class Parameter as well as the slots
of the corresponding (sub-)classes may be read off in Figure 2 where we do not repeat
inherited slots. The most important set to be used as parameter domain/sample space
(rSpace) will be an Euclidean space. So rSpace and EuclideanSpace are also implemented as
classes, the structure of which may be read off in Figure 3.

From version 1.9 on, we also have a subclass Lattice, which is still lacking in the preceding
figure. It has slots pivot (of class ”numeric”), width (of class ”numeric” but tested against
“==0”) and Length (of class ”numeric” but tested to be an integer “>0” or Inf). All slots
may be inspected/modified by the usual accessor/replacement functions.

2.2 Simulation classes

From version 1.6 on, the classes and methods of this subsection are available in package
"distrSim".

The aim of simulation classes is to gather all relevant information about a simulation
in a correspondingly designed class. To this end we introduce the class Dataclass that serves
as a common mother class for both ”real” and simulated data. As derived classes we then
have a simulation class where we also gather all information needed to reconstruct any
particular simulation.
From version 1.8 of this package on, we have changed the format how data / simulations
are stored: In order to be able to cope with multivariate, regression and (later) time se-
ries distributions, we have switched to the common array format samplesize x obsDim

x runs where obsDim is the dimension of the observations. For saved objects from earlier
versions, we provide the functions isOldVersion and conv2NewVersion to check whether the
object was generated by an older version of this package and to convert such an object
to the new format, respectively. For objects generated from version 1.8 on, you get the
package version of package "distrSim", under which they have been generated by a call
to getVersion().
Finally, coming from robust statistics we also consider situations where the majority of the
data stems from an ideal situation/distribution whereas a minority comes from a contam-
inating source. To be able to identify ideal and contaminating observations, we also store

19

Figure 2: Inheritance relations and slots of the corresponding (sub-)classes for Parameter

this information in an indicator variable.
As the actual values of the simulations only play a secondary role, and as the number of
simulated variables can become very large, but still easily reproducible, it is not worth
storing all simulated observations but rather only the information needed to reproduce the
simulation. This can be done by savedata.

20

rSpace
+name: character

EuclideanSpace
+dimension: numeric

Reals

Naturals

Figure 3: Inheritance relations and slots of the corresponding (sub-)classes for rSpace

Schematically, the inheritance relations of class Dataclass as well as the slots of the corre-
sponding (sub-)classes may be read off in Figure 4 where we do not repeat inherited slots.
Also, analogously to package "distr", global options for the output by methods plot and

Dataclass
+filename: vectororNULL
+Data: vectororNULL
+runs: numeric
+samplesize: numeric

Simulation
+seed: list
+distribution: UnivariateDistribution

Contsimulation
+ind: vectororNULL
+Data.id: vectororNULL
+Data.c: vectororNULL
+rate: numeric
+seed: list
+distribution.c: UnivariateDistribution
+distribution.id: UnivariateDistribution

Figure 4: Inheritance relations and slots of the corresponding (sub-)classes for Dataclass

summary are controlled by distrSimoptions() and getdistrSimoptions()

2.3 Evaluation class

From version 1.6 on, the class and methods of this subsection are available in package
"distrTEst".

21

When investigating properties of a new procedure (e.g. an estimator) by means of simu-
lations, one typically evaluates this procedure on a large set of simulation runs and gets
a result for each run. These results are typically not available within seconds, so that it
is worth storing them. To organize all relevant information about these results, we intro-
duce a class Evaluation the slots of which is filled by method evaluate —see subsection 3.14.
Schematically, the slots of this class may be read off in Figure 5. A corresponding savedata

Evaluation
+name: character
+filename: character
+call.ev: call
+result: vectororNULL
+estimator: OptionalFunction

Figure 5: Slots of class Evaluation

method saves the object of class Evaluation in two files in the R-working directory: one using
the filename <filename> also stores the results; the other one, designed to be “human read-
able”, comes as a comment file with filename <filename>.comment only stores the remaining
information. The filename can be specified in the optional argument fileN to savedata; by
default it is concatenated from the filename slot of the Dataclass object and <estimatorname>,
which you may either pass as argument estimatorName or by default is taken as the R-name
of the corresponding R-function specified in slot estimator.

From version 1.8 on, slot result in class Evaluation is of class DataframeorNULL, i.e.; may
be either a data frame or NULL, and slot call .ev in class Evaluation is of class ”CallorNULL”,
i.e.; may be either a call or NULL. Also, we want to gather Evaluation objects in a particular
data structure EvaluationList (see below), so we have to be able to check whether all data
sets in the gathered objects coincide. For this purpose, from this version on, class Evaluation

has an additional slot Data of class Dataclass. In order not to burden the objects of this
class too heavily with uninformative simulated data, in case of a slot Data of one of the
simulation-type subclasses of Dataclass, this Data itself has an empty Data-slot.

2.4 EvaluationList class

The class and methods of this subsection are available in package "distrTEst".
In order to compare different procedures / estimators for the same problem, it is natural
to gather several Evaluation objects with results of the same range (e.g. a parameter space)
generated on the same data, i.e.; on the same Dataclass object. To this end, from version
1.8 on, we have introduced class EvaluationList. Schematically, the slots of this class may
be read off in Figure 6. The common Data slot of the Evaluation objects in an EvaluationList

object may be accessed by the accessor method Data.

22

 EvaluationList

+name: character

+Elist: list

Figure 6: Slots of class EvaluationList

3 Methods

3.1 Arithmetics

We have made available quite general arithmetical operations to our distribution objects,
generating new image distributions automatically. In this context some comments are due
as to the interpretation of corresponding arithmetic expressions of distribution objects:

Caveat: These arithmetics operate on the corresponding r.v.’s and not on
the distributions.

(For the latter, they only would make sense in restricted cases like convex combinations).

Martin Mächler pointed out that this might be confusing. So, this warning is also
issued on attaching package "distr", and, by default, again whenever a Distribution object,
produced by such arithmetics is shown or printed; this also applies to the last line in

A1 <- Norm(); A2 <- Unif()

A1 + A2

Distribution Object of Class: AbscontDistribution

Warning in methods::show(x): arithmetics on distributions are understood

as operations on r.v.’s

see ’distrARITH()’; for switching off this warning see ’?distroptions’

Warning message:

arithmetics on distributions are understood as operations on r.v.'s
see 'distrARITH()'; for switching off this warning see '?distroptions' in:

print(object)

This behaviour will soon be annoying so you may switch it off setting the global option
WarningArith to FALSE (see section 5).

Function distrARITH() displays the following comment

23

##

On arithmetics operating on distributions in package "distr"

##

Attention:

Special caution is due in the followin issues

%--

% Interpretation of arithmetics

%--

Arithmetics on distribution objects are understood as operations on

corresponding random variables (r.v.'s) and _not_ on distribution

functions or densities;

e.g.

sin(Norm() + 3 * Norm()) + 2

returns a distribution object representing the distribution of the r.v.

sin(X+3*Y)+2

where X and Y are r.v.'s i.i.d. N(0,1).

%--

% Adjusting accuracy

%--

Binary operators like "+", "-" would loose their elegant calling

e1 + e2 if they had to be called with an extra argument controlling

their accuracy. Therefore, this accuracy is controlled by global options.

These options are inspected and set by distroptions(), getdistrOption(),

see ?distroptions

%--

% Multiple instances in expressions and independence

%--

Special attention has to be paid to arithmetic expressions of

distributions involving multiple instances of the same symbol:

/-> All arising instances of distribution objects in arithmetic

expressions are assumed stochastically independent. <-/

As a consequence, whenever in an expression, the same symbol for

an object occurs more than once, every instance means a new

independent distribution.

24

So for a distribution object X, the expressions X+X and 2*X are _not_

equivalent.

The first means the convolution of distribution X with distribution

X, i.e. the distribution of the r.v. X1 + X2, where X1 and X2 are

identically distributed according to X.

In contrast to this, the second expression means the distribution of

the r.v. 2 X1 = X1 + X1, where again X1 is distributed according to X.

Hence always use 2*X, when you want to realize the second case.

Similar caution is due for X^2 and X*X and so on.

%--

% Simulation based results varying from call to call

%--

At several instances (in particular for non-monotone functions from group

Math like sin(), cos()) new distributions are generated by means of

RtoDPQ, RtoDPQ.d, RtoDPQ.LC. In these functions, slots d, p, q are

filled by simulating a large number of random variables, hence they are

stochastic estimates.

So don't be surprised if they will change from call to call.

3.2 Affine linear transformations

We have overloaded the operators ”+”, ”−”, ”∗”, ”/” such that affine linear transformations
which involve only single univariate r.v.’s are available; i.e. is expressions like Y=(3∗X+5)/4

are permitted for an object X of class AbscontDistribution or DiscreteDistribution (or some sub-
class), giving again an object Y of class AbscontDistribution or
DiscreteDistribution (in general). Here the corresponding transformations of the d, p, and
q-functions are done analytically.
From version 1.9 on, we use subclasses AffLinAbscontDistribution, AffLinDiscreteDistribution,
AffLinLatticeDistribution as classes of the return values to enhance accuracy of functinals
like E, var, etc. in package "distrEx". These classes in addition to their counterparts
without prefix “AffLin” have slots a, b, and X0, to capture the fact that an object of this
class is distributed as a ∗ X0 + b. Also, we introduce a class union AffLinDistribution of classes
AffLinAbscontDistribution and
AffLinDiscreteDistribution. Consequently, the result Y of Y <−a1 ∗X + b1 for an object X of
(a subclass of) class AffLinDiscreteDistribution (if a !=0) is of the same class as X but with
slots Y@a = a1 ∗X@a, Y@b = b1 + a1 ∗X@b, Y@X0 = X@X0. In version 2.0, the same principle
has been applied to introduce class AffLinUnivarLebDecDistribution. All AffLin-xxx distribution
classes are grouped to a virtual class (more specifically a class union) AffLinDistribution.

25

3.3 Decompositions, Flattening and Other Simplifications

Decompositions: One of the issues when programming the distribution of the multi-
plication of independent random variables is that we have to treat positive and negative
part (and, if nontrivial, point mass to 0) separately. To this end, from version 2.0 on, there
are methods decomposePM to decompose a discrete, an absolutely continuous or a Lebesgue
decomposed distribution into its respective parts.

decomposePM(Norm())

$neg

negD

Distribution Object of Class: AbscontDistribution

##

negw

[1] 0.5

##

##

$pos

posD

Distribution Object of Class: AbscontDistribution

##

posw

[1] 0.5

decomposePM(Binom(2,0.3)-Binom(5,.4))

$neg

negD

Distribution Object of Class: DiscreteDistribution

##

negw

[1] 0.758944

##

##

$`0`
$`0`$D
Distribution Object of Class: Dirac

location: 0

##

$`0`$w
[1] 0.1780704

26

##

##

$pos

posD

Distribution Object of Class: DiscreteDistribution

##

posw

[1] 0.0629856

decomposePM(UnivarLebDecDistribution(Norm(),Binom(2,0.3)-Binom(5,.4),

acWeight = 0.3))

$pos

posD

An object of class "UnivarLebDecDistribution"

--- a Lebesgue decomposed distribution:

##

Its discrete part (with weight 0.227000) is a

Distribution Object of Class: DiscreteDistribution

This part is accessible with 'discretePart(<obj>)'.
##

Its absolutely continuous part (with weight 0.773000) is a

Distribution Object of Class: AbscontDistribution

This part is accessible with 'acPart(<obj>)'.
##

posw

discreteWeight

0.1940899

##

##

$neg

negD

An object of class "UnivarLebDecDistribution"

--- a Lebesgue decomposed distribution:

##

Its discrete part (with weight 0.780000) is a

Distribution Object of Class: DiscreteDistribution

This part is accessible with 'discretePart(<obj>)'.
##

Its absolutely continuous part (with weight 0.220000) is a

Distribution Object of Class: AbscontDistribution

27

This part is accessible with 'acPart(<obj>)'.
##

negw

discreteWeight

0.6812608

##

##

$`0`
$`0`$D
Distribution Object of Class: Dirac

location: 0

##

$`0`$w
discreteWeight

0.1246493

Simplification by flattening: On the other hand, concatenating mathematical op-
erations would easily yield quite complicated structures. A first thing to do is to look
whether some components carry mass (approximately) 0. simplifyD uses this to cancel out
such components, and if possible return simpler types; see also the help to this function.

Also, sometimes one would like to let collapse a whole list of distributions (as in the
MixDistr of a UnivarMixingDistribution object) into a simpler UnivarLebDecDistribution-class form.
This is what is done in the the functions flat .mix and flat .LCD.

D1 <- Norm()

D2 <- Pois(1)

D3 <- Binom(1,.4)

D4 <- UnivarMixingDistribution(D1,D2,D3, mixCoeff = c(0.4,0.5,0.1),

withSimplify = FALSE)

D <- UnivarMixingDistribution(D1,D4,D1,D2, mixCoeff = c(0.4,0.3,0.1,0.2),

withSimplify = FALSE)

D

An object of class "UnivarMixingDistribution"

It consists of 4 components

Components:

[[1]]Distribution Object of Class: Norm

:mean: 0

:sd: 1

28

[[2]]An object of class "UnivarMixingDistribution"

:---

:It consists of 3 components

:Components:

:[[1]]Distribution Object of Class: Norm

: :mean: 0

: :sd: 1

:[[2]]Distribution Object of Class: Pois

: :lambda: 1

:[[3]]Distribution Object of Class: Binom

: :size: 1

: :prob: 0.4

:---

:Weights:

:0.400000 :0.500000 :0.100000 :

[[3]]Distribution Object of Class: Norm

:mean: 0

:sd: 1

[[4]]Distribution Object of Class: Pois

:lambda: 1

Weights:

0.400000 0.300000 0.100000 0.200000

D0<-flat.mix(D)

D0

An object of class "UnivarLebDecDistribution"

--- a Lebesgue decomposed distribution:

##

Its discrete part (with weight 0.380000) is a

Distribution Object of Class: DiscreteDistribution

This part is accessible with 'discretePart(<obj>)'.
##

Its absolutely continuous part (with weight 0.620000) is a

Distribution Object of Class: AbscontDistribution

This part is accessible with 'acPart(<obj>)'.

Warning in methods::show(x): arithmetics on distributions are understood

29

as operations on r.v.’s

see ’distrARITH()’; for switching off this warning see ’?distroptions’

Many arithmetic operations described in the subsequent sections do this simplification
on their return value, according to the global option SimplifyD.

Simplification by collapsing: Dealing with discrete distributions, several arithmeti-
cal/mathematical operations tend to create new quite unequally spaced supports (mostly
by joining supports of operands), often accumulating support points somewhere. In order
to overcome this, from version 2.1 on, following a proposal by Jacob van Etten, whenever
support points get closer to each other than prescribed in global option DistrResolution (see
also section 5), and if in addition global option DistrCollapse is TRUE, we collapse these sup-
port point, using the median of the collapsed points as new support point, to which we at-
tribute the cumulated probability mass. If in addition global option DistrCollapse.Unique.Warn

is TRUE we issue a warning on collapsing occasions.

3.4 The group math of unary mathematical operations

Also the group math of unary mathematical operations is available for distribution classes;
so expressions like exp(sin(3∗X+5)/4) are permitted. The corresponding r method consists
in simply performing the transformation to the simulated values of X. The corresponding
(default-) d, p and q-functions are obtained by simulation, using the technique described
in the following subsection.
By means of substitute, the bodies of the r, d, p, q-slots of distributions show the parameter
values with which they were generated; in particular, convolutions and applications of the
group math may be traced in the r-slot of a distribution object, compare
r(sin(Norm()) + cos(Unif() ∗3 + 2)).

Initially, it might be irritating that the same “arithmetic” expression evaluated twice
in a row gives two different results, compare

A1 <- Norm(); A2 <- Unif()

d(sin(A1 + A2))(0.1)

[1] 0.3781079

d(sin(A1 + A2))(0.1)

[1] 0.3781079

sin(A1 + A2)

Distribution Object of Class: AbscontDistribution

30

mailto:jacobvanetten@yahoo.com

Warning in methods::show(x): arithmetics on distributions are understood

as operations on r.v.’s

see ’distrARITH()’; for switching off this warning see ’?distroptions’

Warning in methods::show(x): slots d,p,q have been filled using simulations;

for switching off this warning see ’?distroptions’

This is due to the fact, that all slots are filled starting from simulations. To explain
this, a warning is issued by default, whenever a Distribution object, filled by such simulations
is shown or printed; this also applies to the last line in the preceding code sniplet. This
behaviour may again be switched off by setting the global option WarningSim to FALSE (see
section 5).

As they are frequently needed, from version 1.9 on, math operations abs(), exp(), and
—if an R-version ≥ 2.6.0 is used— also log() are implemented in an analytically exact
form, i.e.; with exact expressions for slots d, p, and q.

3.5 Construction of d, p, and q from r

In order to facilitate automatic generation of new distributions, in particular those arising
as image distributions under transformations of correspondingly distributed random vari-
ables, we provide ad hoc methods that should be overloaded by more exact ones wherever
possible. As, at least in principle each of these slots is sufficient for the reconstruction of
the other ones, we follow the following strategy:

31

d p q r reconstruction

+ + + + no reconstruction necessary
+ + + −

r as q(X)(runif(n))

+ + − +
q by numerical inversion from p

+ + − −
q again from p and r again from slot q

+ − + +
p by numerical integration from d

+ − + −
p from d, and r from q

+ − − +
p from d, and q from p

+ − − −
p from d, q from p and r from q

− + + +
d by numerical differentiation (with D1ss from package
"sfsmisc" from p

− + + −
d from p, r from q

− + − +
d, q from p

− + − −
d, q from p, r from q

− − + +
p by numerical inversion from q, d from p

− − + −
p, r from q, d from p

− − − + use RtoDPQ

− − − − not allowed

More specifically, by means of the function RtoDPQ we first generate 10RtoDPQ.e random
numbers where RtoDPQ.e is a global option of this package and is discussed in section 5. A
density estimator is evaluated along this sample, the distribution function is estimated by
the empirical c.d.f. and, finally, the quantile function is produced by numerical inversion.
Of course the result is rather crude as it relies on the law of large numbers only, but
this way all transformations within the group math become available. If the input of the
transformation is of class UnivarLebDecDistribution, RtoDPQ is replaced by RtoDPQ.LC. In
this case, replicated values are taken as belonging to the discrete part, for which the
distribution is generated according to the corresponding frequencies with the generating
function DiscreteDistribution(). With the remaining, non replicated values, the absolutely
continuous part is reconstructed just as with RtoDPQ.

Where laws under transformations can easily be computed exactly —as for affine linear
transformations— we replace this procedure by the exactly transformed d, p, q-methods.

32

3.6 Convolution

A convolution method for two independent r.v.’s is implemented by means of explicit cal-
culations for discrete summands, and by means of DFT/FFT7 if one of the summands is
absolutely continuous or (from version 1.9 on:) both are lattice distributed with a common
lattice as support. This method automatically generates the law of the sum of two inde-
pendent variables/distributions X and Y of any univariate distributions —or in S4-jargon:
the addition operator ”+” is overloaded for two objects of class UnivariateDistribution and
corresponding subclasses.

3.7 Further Binary Operators

Having implemented a class for Lebesgue decomposed distributions, we have been able to
realize further binary operators, in particular we have exact analytical constructions for
multiplication, division, exponentiation:

A1 <- Norm(); A2 <- Unif()

A1A2 <- A1*A2

plot(A1A2)

7Details to be found in [5]

33

−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

2.
0

x

d(
x)

Density of AbscontDistribution

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

p

q(
p)

Quantile function of AbscontDistribution

A12 <- 1/(A2 + .3)

plot(A12)

34

0.5 1.5 2.5 3.5

0.
0

0.
5

1.
0

1.
5

x

d(
x)

Density of AbscontDistribution

0.5 1.5 2.5 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

p

q(
p)

Quantile function of AbscontDistribution

B <- Binom(5,.2)+1

A1B <- A1^B

plot(A1B, xlim=c(-3,3))

35

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

x

d(
x)

Density of AbscontDistribution

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

p

q(
p)

Quantile function of AbscontDistribution

plot(1.2^A1)

36

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

d(
x)

Density of AbscontDistribution

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

p

q(
p)

Quantile function of AbscontDistribution

●

●

plot(B^A1)

37

0 1 2 3 4

0.
0

0.
4

0.
8

q

p(
q)

●

●

CDF of UnivarLebDecDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

25
0

p

q(
p)

Quantile function of UnivarLebDecDistribution

●

●

●

●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

x

x

Density of AbscontDistribution

0 50 100 200

0.
0

0.
4

0.
8

q

q
CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

25
0

p

p

Quantile function of AbscontDistribution

●

●

0.6 0.8 1.0 1.2 1.4

0.
0

0.
4

0.
8

x

d(
x)

Probability function of Dirac(1)

●

0.85 0.95 1.05

0.
0

0.
4

0.
8

q

p(
q)

●

●

CDF of Dirac(1)

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

p

q(
p) ●

Quantile function of Dirac(1)

●

3.8 Truncation, Pairwise Minimum/Maximum, Huberization

Up to version 2.0, we have had truncation, Huberization and minimum and maximum of
random variables as illustrating demos; in particular the last three could not be realized
in a completely satisfactory manour, as Lebesgue decomposed distributions had not been
available before. Now these illustrations have moved into the package itself:

38

H <- Huberize(Norm(),lower=-1,upper=2)

plot(H)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

q

p(
q)

●

●

●

●

CDF of AffLinUnivarLebDecDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0
2.

0

p

q(
p)

Quantile function of AffLinUnivarLebDecDistribution

●

●

−1.0 0.0 1.0 2.0

0.
0

0.
2

0.
4

x

x

Density of AffLinAbscontDistribution

−1.0 0.0 1.0 2.0

0.
0

0.
4

0.
8

q

q

CDF of AffLinAbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0
2.

0
p

p

Quantile function of AffLinAbscontDistribution

−1.0 0.0 1.0 2.0

0.
0

0.
4

0.
8

x

d(
x)

Probability function of AffLinDiscreteDistribution

●

●

−4 −2 0 2 4

0.
0

0.
4

0.
8

q

p(
q)

●

●●
●

CDF of AffLinDiscreteDistribution

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0
2.

0

p

q(
p)

●

●

Quantile function of AffLinDiscreteDistribution

●

●

T <- Truncate(Norm(),lower=-1,upper=2)

plot(T)

39

−1.0 0.0 1.0 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

d(
x)

Density of AbscontDistribution

−1.0 0.0 1.0 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

p

q(
p)

Quantile function of AbscontDistribution

●●

M1 <- Maximum(Unif(0,1), Minimum(Unif(0,1), Unif(0,1)))

plot(M1)

40

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

d(
x)

Density of AffLinAbscontDistribution

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AffLinAbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

q(
p)

Quantile function of AffLinAbscontDistribution

●●

M2 <- Minimum(Exp(4),4)

plot(M2)

41

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

x

d(
x)

Density of AbscontDistribution

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

p

q(
p)

Quantile function of AbscontDistribution

M3 <- Minimum(Norm(2,2), Pois(3))

plot(M3)

42

−5 0 5 10

0.
0

0.
4

0.
8

q

p(
q)

●

●

●

●
●●●●●

●

●

●

●
●●●●●

CDF of UnivarLebDecDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

p

q(
p)

Quantile function of UnivarLebDecDistribution

●
●

●

●

−5 0 5 10

0.
00

0.
10

0.
20

x

x

Density of AbscontDistribution

−5 0 5 10

0.
0

0.
4

0.
8

q

q
CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

p

p

Quantile function of AbscontDistribution

●
●

0 2 4 6 8

0.
00

0.
10

0.
20

0.
30

x

d(
x)

Probability function of DiscreteDistribution

●

●
●

●

●

● ● ● ●

0 2 4 6 8

0.
0

0.
4

0.
8

q

p(
q)

●
●

●

●

●
● ● ● ●

●

●

●

●
● ● ● ● ●

CDF of DiscreteDistribution

●
●

●

●

●
● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

p

q(
p)

●
●

●
●

●
●
●
●
●

Quantile function of DiscreteDistribution

●
●

●
●

●
●
●
●

●

Enhanced accuracy by using log scales: Following an idea proposed by Peter Dal-
gaard on r-help, confer https://stat.ethz.ch/pipermail/r-help/2008-September/174295.html

we use the log.p argument to be able to simulate from the far out tails. To this end,
from version 2.1, our distribution classes gain internal slots . lowerExact and . logExact which
control whether the corresponding slot functions p and q use particular code for computing
on the log-scale respectively whether they use explicit representations for upper quantiles
(instead of computing 1− lowerQuantile). If a corresponging distribution object has slots
. lowerExact and . logExact both TRUE, we may use this to produce accurate simulations,

43

https://stat.ethz.ch/pipermail/r-help/2008-September/174295.html

especially for respectively truncated distributions:

N <- Norm()

TN <- Truncate(N, 20,22)

r(TN)(20) ## simulation accurate although :

[1] 20.08381 20.06502 20.07535 20.00245 20.03183 20.06699 20.01685

[8] 20.00274 20.17791 20.04436 20.12320 20.11174 20.10632 20.01616

[15] 20.14563 20.01733 20.01004 20.00586 20.04816 20.07056

p(N)(20, lower.tail = FALSE) ## prob that N>=20

[1] 2.753624e-89

3.9 Additional helper functions

From version 1.9 on, there are methods p. l and q.r available for DiscreteDistribution objects for
the left-continuous variant of the cdf, i.e.; t 7→ p.l(t) = P (X < t)), and the right-continuous
variant of the quantile function, i.e.;

s 7→ q.r(s) = sup{t |P (object ≤ t) ≤ s}

From version 2.1 on, p. l and q.r, are also available for class AbscontDistribution (where q.r

takes care about correct treatment of gaps using helper function modifyqgaps), for class
UnivarLebDecDistribution, and for class UnivarMixingDistribution.

B <- Binom(5,0.5)

p(B)(3)

[1] 0.8125

p.l(B)(3)

[1] 0.5

q(B)(.5)

[1] 2

q.r(B)(0.5)

[1] 3

44

Again from version 2.1 on, class DiscreteDistribution has a helper method prob which
returns vector of probabilities for the support points. More precisely, the return value is a
numeric vector named by the values of support points. This method is also available for
objects of class UnivarLebDecDistribution where it returns a two-row matrix where the column
names are the values of the support points, and the first row, named ”cond”, contains the
probabilities of the discrete part (summing up to 1), while the second row, named ”abd”

contains the probabilities of discrete part multiplied with discreteWeight; hence these values
are the absolute probabilities of the support points.

Again for objects of class UnivarLebDecDistribution, we have methods p.ac, d.ac, p. discrete ,
d. discrete to give the density/probability and the cumulative distribution function of the
discrete and absolutely continuous (ac) part of the distribution. All these methods have an
extra argument CondOrAbs with default value ”cond”, which if it does not partially match
”abs”, returns exactly slot p (resp. d) the respective a.c./ discrete part of the object; else
the return value is weighted by the respective weight of the part, i.e. acWeight/discreteWeight.

B0 <- as(Binom(5,0.5),"DiscreteDistribution")

coercion necessary:

otherwise slot "prob" of B0 will be returned

prob(B0)

0 1 2 3 4 5

0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

HN <- Huberize(N, -2,1)

prob(HN)

-2 1

cond 0.12541045 0.8745895

abs 0.02275013 0.1586553

In order to convert arbitrary univariate distributions to AbscontDistribution from version
2.1 on, we have function makeAbscontDistribution which takes slot p and uses AbscontDistribution()

to generate a corresponding smoothed version; to smear out mass points on the border of
the support, these upper and lower bounds are somewhat enlarged. Note that in the result,
slots p and q are not replaced but rather taken unchanged from the argument:

par(mfrow=c(2,3))

plot(makeAbscontDistribution(Nbinom(5,.5)),mfColRow=FALSE)

Warning in .makeDNew(xx, dx, h = NULL, Cont = TRUE, standM = "integrate"):

’integrate()’ threw an error ---result may be inaccurate.

45

plot(makeAbscontDistribution(HN),mfColRow=FALSE)

Warning in .makeDNew(xx, dx, h = NULL, Cont = TRUE, standM = "integrate"):

’integrate()’ threw an error ---result may be inaccurate.

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

x

d(
x)

Density of AbscontDistribution

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

p

q(
p)

Quantile function of AbscontDistribution

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

d(
x)

Density of AbscontDistribution

−2 −1 0 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of AbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

p

q(
p)

Quantile function of AbscontDistribution

par(mfrow=c(1,1))

Methods getLow, getUp available for classes DiscreteDistribution, AbscontDistribution, UnivarLebDecDistribution,
and UnivarMixingDistribution return “numerical” end points of the respective supports: if

46

these distributions have finite end points, these are returned, else a lower/upper eps-quantile
is returned, where ep, by default, is set to global options TruncQuantile.

getLow(Nbinom(5,0.5))

[1] 0

getUp(Nbinom(5,0.5))

[1] 61

getLow(Norm(5,0.5))

[1] 2.867555

getUp(Norm(5,0.5))

[1] 7.132445

3.10 Overloaded generic functions

Methods print, plot, show and summary have been overloaded for classes Distribution,
Dataclass, Simulation, ContSimulation, as well as Evaluation and EvaluationList to produce “pretty”
output. More specifically there are also particular show methods for classes UnivarDistrList,
UnivarMixingDistribution and UnivarLebDecDistribution. print, plot, show and summary have ad-
ditional, optional arguments for plotting subsets of the simulations / results: index vectors
for the dimensions, the runs, the observations, and the evaluations may be passed using
arguments obs0, runs0, dims0, eval0, confer
help(”<mthd>−methods”,package=<pkg>) where <mthd> stands for plot, show, print, or plot,
and <pkg> stands for either "distrSim" or "distrTEst".

3.11 Plotting

3.11.1 Plotting for Distribution objects

For an object of class Distribution, plot displays the density/probability function, the c.d.f.
and the quantile function of a distribution. Note that all usual parameters of plot remain
valid. For instance, you may increase the axis annotations and so on. plot() can also cope
with log-arguments.

xlim argument: More importantly, you may also override the automatically chosen x-
region by passing an xlim argument:

47

plot(Cauchy())

−15 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

d(
x)

Density of Cauchy(0, 1)

−15 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Cauchy(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

p

q(
p)

Quantile function of Cauchy(0, 1)

plot(Cauchy(),xlim=c(-4,4))

48

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

d(
x)

Density of Cauchy(0, 1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Cauchy(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

p

q(
p)

Quantile function of Cauchy(0, 1)

From version 2.1, the automatic choice of the x-range of plot for distributions has been
enhanced: just as for expectation (see subsection 3.17.1) we use both a quantile and a scale
based approach to get sensible values. Also argument ylim can now be matrix-valued to
use different limits for the various panels (d, p, q, or in case of UnivarLebDecDistribution, p,
q, d.ac, p.ac, q.ac, d. discrete , p. discrete , q. discrete).

titles: Moreover you may control optional main, inner titles and subtitles with arguments
main / sub / inner. To this end there are preset strings substituted in both expression and
character vectors (where in the following x denotes the argument with which plot() was

49

called)

%A deparsed argument x

%C class of argument x

%P comma-separated list of parameter values of slot param of argument x

%Q comma-separated list of parameter values of slot param of argument x in parenthesis
unless this list is empty; then ””

%N comma-separated <name> = <value> - list of parameter values of slot param of argu-
ment x

%D time/date at which plot is/was generated

This substitution can be switched off by means of argument withSubst. As usual you may
control title sizes and colors with cex.main / cex.inner / cex.sub respectively with col / col.main

/ col.inner / col.sub. Additionally it may be helpful to control top and bottom margins
with arguments bmar, tmar.

step-function features: We provide different default symbols for unattained [pch.u] /
attained [pch.a] one-sided limits, which may be overridden by corresponding arguments pch

/ pch.a / pch.u.
For objects of class AbscontDistribution, you may set the number of grid points used by an

ngrid argument; also the “quantile”-panel takes care of finite left/right endpoints of support
and optionally tries to identify constancy region of the p-slot.

For objects of class DiscreteDistributions, we use stepfun() from package "base" as far as
possible and (also for panel “q” for AbscontDistributions) consequently take over its arguments
do.points, verticals , col.points / col.vert / col.hor and cex.points.

As examples consider the following plots: The standard plot for a discrete distribution
is shown in Figure 7.

Omitting the point symbols at jump points (do.points = FALSE) and the corresponding
vertical lines (verticals = FALSE) in the p and q panels gives Figure 8.

Instead we might use a somewhat enlarged (cex.main = 1.6) main title (main = TRUE) and
omit the panel titles (inner = FALSE). To this end, we should increase the margin between
main title and panels (by tmar = 6). This is shown in Figure 9.

Changing point sizes (cex.points) and line width (lwd), and using (default) panel titles
(set TRUE by default) gives a somewhat different picture as in Figure 10.

Different colors for different plot elements can be used by arguments col (general),
col.points (jump points), col.sub (sub-titles), col.inner (panel titles). In Figure 11, this is
shown; the figure uses main (main = TRUE), inner (TRUE by default) and sub (sub = TRUE)
titles, using the default titles respectively.

50

plot(Binom(size = 4, prob = 0.3))

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

●

●

●

●

●

● ●

CDF of Binom(4, 0.3)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

●

●

●

●

●

Quantile function of Binom(4, 0.3)

●

●

●

●

●

Figure 7: Standard plot for discrete distributions

51

plot(Binom(size = 4, prob = 0.3), do.points = FALSE, verticals = FALSE)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Binom(4, 0.3)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

Quantile function of Binom(4, 0.3)

Figure 8: Plot for discrete distributions without extra symbols at jump points and vertical
lines

52

plot(Binom(size = 4, prob = 0.3), main = TRUE, inner = FALSE, cex.main = 1.6,

tmar = 6)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

●

●

●

●

●

●

●

●

●

●

Distribution Plot for Binom(size = 4, prob = 0.3)

Figure 9: Plot for discrete distributions using a main title

53

plot(Binom(size = 4, prob = 0.3), cex.points = 1.2, pch = 20, lwd = 2)

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

●

●

●

●

●

● ●

CDF of Binom(4, 0.3)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

●

●

●

●

●

Quantile function of Binom(4, 0.3)

●

●

●

●

●

Figure 10: Plot for discrete distributions using panel titles and changed point sizes

54

B <- Binom(size = 4, prob = 0.3)

plot(B, col="red", col.points = "green", main = TRUE, col.main="blue",

col.sub = "orange", sub = TRUE, cex.sub = 0.6, col.inner = "brown")

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Probability function of Binom(4, 0.3)

●

●

●

●

●

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●

●

●

●

●

●

●

●

● ●

CDF of Binom(4, 0.3)

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

q(
p)

●

●

●

●

●

Quantile function of Binom(4, 0.3)

●

●

●

●

●

Distribution Plot for B

generated Mon Jul 23 14:20:16 2018

Figure 11: Plot for discrete distributions using main, panel and sub titles with changed
colors

55

Changing plot size for marking the jump points by cex.points = 1.2 and selecting symbols
for left limits (by pch.u = 20) and right values (by pch.a = 20) at jump points is exemplified
in Figure 12.

Using log-scale for both axes by log = ”xy” and a reduced number of grid points for
plotting by ngrid = 200 is shown in Figure 13.

Changing line type by lty = 3 and color by col = ”red”, axis notation orientation by
las = 2 and the number of grid points used for plotting by ngrid = 200 is shown in Figure 14.

You may also use hook functions in distribution plots from version 2.0 on, which is
especially useful for plotting grids in the background as shown in Figure 15; this plot also
has non-default titles using preset strings substitutions (%N, %C, %P, %A, %D).

Special care is take to correctly depict jumps in the quantile function / gaps in the
support; from version 2.0 on you have function setgaps() to automatically such gaps, but in
case of very small density values this may give some “false positives” as shown for the χ2

distribution in Figure 16
From version 2.0 on, you may override the given panel configuration using argument

mfColRow=FALSE —see Figure 17.
Following a suggestion by Anthony Unwin, from version 2.1 you may also select the

panels you like to plot, using argument to.draw.arg; the corresponding panels are named and
may either be given by name or by number (the rank in drawing the default “complete”
plot); for details see ?plot. As example for this panel selection, see Figure 18.

3.11.2 Plotting for Dataclass objects

For objects of class Dataclass —or of a corresponding subclass— plot plots the sample against
the run index and in case of ContSimulation the contaminating variables are highlighted by a
different color. Additional arguments controlling the plot as in the default plot command
may be passed, confer help(”plot−methods”,package=”distrSim”).

3.11.3 Plotting for Evaluation objects

For an object of class Evaluation, plot yields a boxplot of the results of the evaluation. For
an object of class EvaluationList, plot regroups the list according to the different column-
s/coordinates of the result of the evaluation; for each such coordinate, a boxplot is gen-
erated, containing possibly several procedures, and, if evaluated at a Contsimulation, the
plots are also grouped into evaluations on ideal and real data. As for the usual boxplot

function you may pass additional “plot-type” arguments to this particular plot method,
confer help(”plot−methods”,package=”distrTEst”). In particular, the plot-arguments main and
ylim, however, may also be transmitted coordinatewise, i.e.; a vector of the same length as
the dimension of the result resDim (e.g. parameter dimension), respectively a 2 x resDim

matrix, or they may be transmitted globally, using the usual S recycling rules.

56

mailto:unwin@math.uni-augsburg.de

plot(Nbinom(size = 4,prob = 0.3), cex.points = 1.2, pch.u = 20, pch.a = 10)

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

x

d(
x)

Probability function of Nbinom(4, 0.3)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●

●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

CDF of Nbinom(4, 0.3)

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

p

q(
p)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Quantile function of Nbinom(4, 0.3)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

Figure 12: Plot for discrete distributions with different symbols for marking jump points

57

plot(Chisq(), log = "xy", ngrid = 100)

0.1 0.2 0.5 1.0 2.0 5.0

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

x

d(
x)

Density of Chisq(1, 0)

0.1 0.2 0.5 1.0 2.0 5.0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Chisq(1, 0)

0.2 0.4 0.6 0.8

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

p

q(
p)

Quantile function of Chisq(1, 0)

Figure 13: Plot for absolutely continuous distributions using log scales

58

plot(Norm(), lwd=3, col = "red", ngrid = 200, lty = 3, las = 2)

−
4

−
2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

d(
x)

Density of Norm(0, 1)

−
4

−
2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

q

p(
q)

CDF of Norm(0, 1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4

−2

0

2

4

p

q(
p)

Quantile function of Norm(0, 1)

Figure 14: Plot for absolutely continuous distributions with different line type and reduced
number of grid points

59

plot(Norm(), panel.first = grid(), main = "my Distribution: %A",

inner = list(expression(paste(lambda, "-density of %C(%P)")), "CDF",

"Pseudo-inverse with param's %N"),

sub = "this plot was correctly generated on %D",

cex.inner = 0.9, cex.sub = 0.8)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

λ−density of Norm(0, 1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

p

q(
p)

Pseudo−inverse with param's mean = 0, sd = 1

my Distribution: Norm()

this plot was correctly generated on Mon Jul 23 14:20:16 2018

Figure 15: Plot for absolutely continuous distributions using non-standard titles and with
a background grid

60

Ch <- Chisq(); setgaps(Ch, exactq = 3)

plot(Ch, cex = 1.2, pch.u = 20, pch.a = 10, col.points = "green",

col.vert = "red")

0 2 4 6 8

0
1

2
3

4

x

d(
x)

Density of Chisq(1, 0)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Chisq(1, 0)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

p

q(
p)

Quantile function of Chisq(1, 0)

●

●

Figure 16: Plot for absolutely continuous distributions with automatic gap detection

61

layout(matrix(c(1,3,2,3), nrow=2))

plot(N, mfColRow = FALSE)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

d(
x)

Density of Norm(0, 1)

−4 −2 0 2 4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

q

p(
q)

CDF of Norm(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

p

q(
p)

Quantile function of Norm(0, 1)

Figure 17: Plot for absolutely continuous distributions using non-standard panel configu-
ration

62

layout(matrix(c(rep(1,6),2,2,3,3,4,4,5,5,5,6,6,6),

nrow=3, byrow=TRUE))

plot(HN, mfColRow = FALSE,

to.draw.arg=c("p","d.c","p.c","q.c", "p.d","q.d"))

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

q

p(
q)

●

●

●

●

CDF of AffLinUnivarLebDecDistribution

−2.0 −1.0 0.0 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

x

Density of AffLinAbscontDistribution

−2.0 −1.0 0.0 1.0

0.
0

0.
4

0.
8

q

q

CDF of AffLinAbscontDistribution

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
0

0.
0

1.
0

p

p

Quantile function of AffLinAbscontDistribution

−4 −2 0 2 4

0.
0

0.
4

0.
8

x

d(
x)

●
●●

●

CDF of AffLinDiscreteDistribution

●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
0

0.
0

1.
0

q

p(
q)

●

●

Quantile function of AffLinDiscreteDistribution

●

●

Figure 18: Plot for Lebesgue decomposed distributions with user-chosen selection of plotted
panels

63

3.11.4 Plotting for L2paramFamily objects

In package "distrMod" we have an additional plotting method for class L2paramFamily;
besides the underlying model distribution this also plots the coordinates of the L2-derivative
(scores function). From version 2.1 on, this plot is as flexible as the one for Distribution.
You can select the panels to be plotted by argument to.draw.arg, and may use (almost)
all arguments generally available for plot. In particular, also you may use an argument
panel. first=grid() to produce a grid behind the panel.

3.12 liesInSupport

For all discrete distribution classes, we have methods liesInSupport to check whether a given
vector/ a matrix of points lies in the support of the distribution.

3.13 Simulation (in package "distrSim")

From version 1.6 on, simulation is available in package "distrSim".
For the classes Simulation and ContSimulation, we normally will not save the current values

of the simulation, as they can easily be reproduced knowing the values of the other slots of
this class. So when declaring a new object of either of the two classes, the slot Data will be
empty (NULL). To fill it with the simulated values, we have to apply the method simulate

to the object. This has to be redone whenever another slot of the object is changed. To
guarantee reproducibility, we use the slot seed.
This slot is controlled and set through Paul Gilbert’s "setRNG" package. By default, seed is
set to setRNG(), which returns the current “state” of the random number generator (RNG).
So the user does not need to specify a value for seed, and nevertheless may reproduce his
samples: He simply uses simulate to fill the Data slot. If the user wants to, he may also set
the seed explicitly via the replacement function seed(), but has to take care of the correct
format himself, confer the documentation of setRNG. One easy way to fill the Data slot of
a simulation X with “new” random numbers is

X <- Simulation()

seed(X) <- setRNG()

simulate(X)

Data(X)[1:10]

[1] 1.2607568 -1.5042560 0.5669074 2.5570389 0.4045747 1.4513306

[7] -0.2710109 0.1449068 -0.3766749 1.7910869

3.14 Evaluate (in package "distrTEst")

From version 1.6 on evaluate is available in "distrTEst".

64

mailto:pgilbert@bank-banque-canada.ca

In an object of class Evaluation we store relevant information about an evaluation of a
statistical procedure (estimator/test/predictor) on an object of class Dataclass, including
the concrete results of this evaluation. An object of class Evaluation is generated by an
application of method evaluate which takes as arguments an object of class Dataclass and
a procedure of type function. As an example, confer Example 13.8. For data of class
Contsimulation, the result takes a slightly different, combining evalations on ideal and real
data.

3.15 Is-Relations

By means of setIs , we have “told” R that a distribution object obj of class

• ”Unif” with Min
.
= 0 and Max

.
= 1 also is a Beta distribution with parameters

shape1 = 1, shape2 = 1

• ”Geom” also is a negative Binomial distribution with parameters size = 1, prob = prob(obj)

• ”Cauchy” with location
.
= 0 and scale

.
= 1 also is a T distribution with parameters

df = 1, ncp = 0

• ”Exp” also is a Gamma distribution with parameters shape = 1, scale = 1/rate(obj) and
a Weibull distribution with parameters shape = 1, scale = 1/rate(obj)

• ”Chisq” with non-centrality ncp
.
= 0 also is a Gamma distribution with parameters

shape = df(obj)/2, scale = 2

• ”DiscreteDistribution” (from version 1.9 on) with an equally spaced support also is a
”LatticeDistribution”

3.16 Further methods

When iterating/chaining mathematical operations on a univariate distribution, generation
process of random variables can become clumsy and slow. To cope with this, we introduce
a sort of “Forget-my-past”-method simplifyr that replaces the chain of mathematical op-
erations in the r-method by drawing with replacement from a large sample (10RtoDPQ.e) of
these.

3.17 Functionals (in package "distrEx")

3.17.1 Expectation

The most important contribution of package "distrEx" is a general expectation operator.
In basic statistic courses, the expectation E may come as E [X], E [f(X)], E [X|Y = y], or
E [f(X)|Y = y]. Our operator (or in S4-language “generic function”) E covers all of these
situtations (or signatures).

65

default call The most frequent call will be E(X) where X is an (almost) arbitrary distri-
bution object. More precisely, if X is of a specific distribution class like Pois, it is evaluated
exactly using analytic terms. Else if it is of class DiscreteDistribution we use a sum over the
support of X, and if it is of class AbscontDistribution we use numerical integration8; for X of
class UnivarLebDecDistribution, expectations for discrete and absolutely continuous part are
evaluated separately and subsequently combined according to their respective weights. If
we only know that X is of class UnivariateDistribution we use Monte-Carlo integration. This
also is the default method in for class MultivariateDistribution, while for DiscreteMVDistribution

we again use sums. For an object Y of a subclass of class union AffLinDistribution, we de-
termine the expectation as Y@a ∗E(Y@X0) + Y@b and hence use analytic terms for X0 if
available.

with a function as argument we proceed just as without: if X is of class
DiscreteDistribution, we use a sum over the support of X, and if X is of class
AbscontDistribution we use numerical integration; else we use Monte-Carlo integration.

in addition: with a condition as argument we simply use the corresponding d

respective r slots with the additional argument cond.

exact evaluation is available for X of class Arcsine, Beta (for noncentrality 0), Binom,
Cauchy, Chisq, Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois, Td, Unif.

examples

D4 <- LMCondDistribution(theta = 1)

D4 # corresponds to Norm(cond, 1)

Distribution object of class: AbscontCondDistribution

theta: 1

intercept: 0

scale: 1

cond:

name: conditioning by an Euclidean space

Range: Euclidean Space with dimension 1

N <- Norm(mean = 2)

E(D4, cond = 1)

8i.e., we first try (really(!): try) integrate and if this fails we use Gauß-Legendre integration according
to [6], see also ?distrExIntegrate

66

[1] 0.9999998

E(D4, cond = 1, useApply = FALSE)

[1] 0.9999998

E(as(D4, "UnivariateCondDistribution"), cond = 1)

Warning in 0 + cond %*% 1 + 1 * r(n, ...): Recycling array of length 1 in

array-vector arithmetic is deprecated.

Use c() or as.vector() instead.

[1] 1.002653

E(D4, function(x){x^2}, cond = 2)

[1] 4.999993

E(D4, function(x){x^2}, cond = 2, useApply = FALSE)

[1] 4.999993

E(N, function(x){x^2})

[1] 4.999993

E(as(N, "UnivariateDistribution"), function(x){x^2},
useApply = FALSE) # crude Monte-Carlo

[1] 4.983086

E(D4, function(x, cond){cond*x^2}, cond = 2,

withCond = TRUE)

[1] 9.999987

E(D4, function(x, cond){cond*x^2}, cond = 2,

withCond = TRUE, useApply = FALSE)

[1] 9.999987

E(N, function(x){2*x^2})

[1] 9.999987

67

E(as(N, "UnivariateDistribution"), function(x){2*x^2},
useApply = FALSE) # crude Monte-Carlo

[1] 10.01177

Y <- 5 * Binom(4, .25) - 3

Y

Distribution Object of Class: AffLinLatticeDistribution

E(Y)

[1] 2

Controlling integration range: From version 2.1 on, E gains arguments low and upp

to restrict evaluation of the integrand to a given integration domain; these arguments can
also be passed through by other functionals based on expectation, like var, sd, skewness,
and kurtosis.

E(Cauchy(), low=3, upp=5)

[1] 0

var(Cauchy(), low=3, upp=5)

[1] 0.5739097

Controlling accuracy: From version 2.1 on, our expectation methods gain explicit ar-
guments to set accuracy locally; i.e.; the MC-methods have an argument Nsim defaulting
to global option MCIterations, while the methods for class AbscontDistribution using numer-
ical integration have an argument rel . tol defaulting to global option ErelativeTolerance. To
obtain a sensible integration range automatically, these methods use both quantile and
scale based methods; more precisely you may pass on arguments lowerTruncQuantile and
upperTruncQuantile, defaulting to global options ElowerTruncQuantile, and EupperTruncQuantile,
respectively, by means of these we determine lower and upper quantiles l0, u0. In addition,
we determine scale based bounds as median ± sf IQR where sf is a scaling factor to be
passed on as argument IQR.fac which defaults to global option IQR.fac.

68

E(N, function(x)x^2)

[1] 4.999993

E(N, function(x)x^2, lowerTruncQuantile = 1e-5)

[1] 4.999933

var(Cauchy(), low =3, upperTruncQuantile = 1e-5, IQR.fac = 10)

[1] 4.979597

var(Cauchy(), low =3, upperTruncQuantile = 1e-10, IQR.fac = 20)

[1] 11.0304

3.17.2 Variance

The next-common functional is the variance. In order to keep a unified notation we will
use the same name as for the empirical variance, i.e., var.

masking "stats"-method var To cope with the different argument structure of the em-
pirical variance, i.e. var(x, y = NULL, na.rm = FALSE, use) and our functional variance, i.e.,
var(x, fun = function(t) {t}, cond, withCond = FALSE, useApply = TRUE, ...) we have to mask the
original "stats"-method:

var <- function(x , ...)

{dots <- list(...)

if(hasArg(y)) y <- dots$"y"

na.rm <- ifelse(hasArg(na.rm), dots$"na.rm", FALSE)

if(!hasArg(use))

use <- ifelse (na.rm, "complete.obs","all.obs")

else use <- dots$"use"

if(hasArg(y))

stats::var(x = x, y = y, na.rm = na.rm, use)

else

stats::var(x = x, y = NULL, na.rm = na.rm, use)

}

before registering var as generic function. Doing so, if the x (or the first) argument of
var is not of class UnivariateDistribution, var behaves identically to the "stats" package

69

default method if x is of class UnivariateDistribution, var just returns the variance of
distribution X — or of fun(X) if a function is passed as argument fun, or, if a condition
argument cond (for Y = y), Var [X|Y = y] respectively Var [f(X)|Y = y] — just as for
E. The same goes for corresponding arguments controlling the accuracy of E locally from
version 2.1 on (see paragraph “Controlling accuracy”): These may simply passed through
in a call to var.

For an object Y of a subclass of class union AffLinDistribution, we determine the variance
as Y@a\textasciicircum2 ∗var(Y@X0) and hence use analytic terms for X0 if available.

exact evaluation is provided for specific distributions if no function and no condition
argument is given: this is available for X of class Arcsine, Beta (for noncentrality 0), Binom,
Cauchy, Chisq, Dirac, Exp, Fd, Gammad, Geom, Hyper, Logis, Lnorm, Nbinom, Norm, Pois, Unif, Td.

3.17.3 Further functionals

By the same techniques we provide the following functionals for univariate distributions:

• standard deviation: sd

• skewness: skewness (code contributed by G. Jay Kerns, gkerns@ysu.edu)

• kurtosis: kurtosis (code contributed by G. Jay Kerns, gkerns@ysu.edu)

• median: median (not for function arguments)

• median of absolute deviations: mad (not for function/condition arguments)

• interquartile range: IQR (not for function arguments)

For details, see ?skewness.

3.18 Truncated moments (in package "distrEx")

For Robust Statistics, the first two truncated moments are very useful. These are realized
as generic functions m1df and m2df: They use the expectation operator for general univariate
distributions, but are overloaded for most specific distributions:

• Binom

• Pois

• Norm

• Exp

• Chisq

70

3.19 Distances (in package "distrEx")

For several purposes like Goodness-of-fit tests or minimum-distance estimators, distances
between distributions are useful. This applies in particular to Robust Statistics. In package
"distrEx", we provide the follwoing distances:

• Kolmogoroff distance (KolmogorovDist)

• total variation distance (TotalVarDist)

• Hellinger distance (HellingerDist)

• Cramér von Mises distance (CvMDist) with an additional argument for the weighting
measure µ (defaulting to second operand Q):

dµ(P,Q)2 =

∫ (
Q((−∞; t])− P ((−∞; t])

)2
µ(dt)

• convex-contamination “distance” (asymmetric!) (ContaminationSize) defined as

d(Q,P) := inf{r > 0 | ∃ probability H : Q = (1− r)P + rH}

• from version 2.1 on: an asymmetric version of total variation distance (AsymTotalVarDist):
to given ratio ρ ≥ 0 of negative to positive part of the deviation we set

dv;ρ(Q,P) :=

∫
(dQ− c dP)+

where c ∈ R is such that

ρ

∫
(dQ− c dP)+ =

∫
(dQ− c dP)−

• minimal total variation distance (OAsymTotalVarDist):

dv;opt(Q,P) := min
c

∫
(dQ− c dP)+ + (dQ− c dP)−

Methods using numerical integration use a similar technique as for the expectation men-
tioned in subsection 3.17.1, combining scale and quantile based methods to obtain a sensible
integration range automatically.

3.20 Functions for demos (in package "distrEx")

To illustrate the possibilities with packages "distr" and "distrEx" we include two major
demos to "distrEx", each with extra code to it — one for the CLT and one for the LLN.

From version 2.0 on, we have started a new package "distrTeach", which is to use the
capabilities of packages "distr" and "distrEx" for illustrating topics of Stochastics and
Statistics as taught in secondary school. So far we have moved the illustrations for the
CLT and the LLN just mentioned to it.

71

3.20.1 CLT for arbitrary summand distribution

By means of our convolution algortithm as well as with the operators E and sd an illustra-
tion for the CLT is readily written: function illustrateCLT, respectively demo illustCLT. For
plotting, we have particular methods for discrete and absolute continuous distributions.
The user may specify a given summand distribution, an upper limit for the consecutive
sums to be considered and a pause between the corresponding plots in seconds. From ver-
sion 1.9 on, we also include a TclTk-based version of this demo, where the user may enter
the distribution argument (i.e.; the summands’ distribution) into a text line and control the
sample size by a slider in some widget: illustCLT\ tcl From version 2.0 on, this functionality
has moved to package "distrTeach".

3.20.2 LLN for arbitrary summand distribution

From version 1.9 on, similarly, we provide an illustration for the LLN: function illustrateLLN,
respectively demo illustLLN. The user may specify a vector of sample sizes to be considered,
the number of replicates to be drawn and a pause between the corresponding plots in
seconds, also, optionally, the limiting expectation (in case of class Cauchy: the non-limiting
median) is drawn as a line and Chebyshev/CLT-based (pointwise) confidence bands and
their respective empirical coverages are displayed. From version 2.0 on, this functionality
has moved to package "distrTeach".

3.20.3 Deconvolution example

To illustrate conditional distributions and their implementation in
"distrEx", we consider the following situation: We consider a signal X ∼ PX which
is disturbed by noise ε ∼ P ε, independent from X; in fact we observe Y = X + ε and want
to reconstruct X by means of Y . By means of the generating function PrognCondDistribution

of package "distrEx", for absolutely continuous PX , P ε, we may determine the factor-
ized conditional distribution PX|Y=y, and based on this either its (posterior) mode oder
(posterior) expectation; also see demo(Prognose, package=”distrEx”).

4 Package distrMod

The package "distrMod" aims for an object orientated (S4-styple) implementation of prob-
ability models and introduces several new S4-classes for this purpose. Moreover, it includes
functions to compute minimum criterion estimators – in particular, minimum distance and
maximum likelihood (i.e., minimum negative log-likelihood) estimators.

72

4.1 Symmetry Classes

As symmetry is a property which usually cannot be proven via numerical computations,
we introduce the S4-class Symmetry and corresponding subclasses which may serve as slots
which indicate that there exists a certain symmetry. So far, we have subclasses for the
symmetry of distributions as well as for the symmetry of functions; confer Figure 19.

S y m m e t r y

+type: character

+SymmCenter: ANY

Dist r ibut ionSymmetry Funct ionSymmetry

N o S y m m e t r y El l ipt ica lSymmetry NonSymmetr ic EvenSymmetr ic OddSymmetr ic

Spher ica lSymmetry

Figure 19: Inheritance relations and slots of the corresponding (sub-)classes for Symmetry where we do

not repeat inherited slots

73

4.2 Model Classes

Based on class Distribution and its subclasses we define classes for families of probability
measures. So far, we specialised this to parametric families of probability measures; confer
Figure 20. But it would also be possible to derive subclasses for other (e.g., semiparametric)
families of probability measures. In case of L2-differentiable (i.e., smoothly parameterized)
parametric families we introduce several additional slots, in particular the slot L2deriv which
is of class EuclRandVarList. Hence, package "distrMod" depends on package "RandVar" [4].
Note that for general central distribution in the one-dimensional location and scale model,

ProbFamily

+name: character

+distribution: Distribution

+distrSymm: DistributionSymmetry

+props: character

ParamFami ly

+param: ParamFamParameter

+modifyParam: function

L2ParamFami ly

+L2deriv: EuclRandVarList

+L2deriv.fct: function

+L2derivSymm: FunSymmList

+L2derivDistr: DistrList

+L2derivDistrSymm: DistrSymmList

+FisherInfo: PosSemDefSymmMatrix

+FisherInfo.fct: function

L2GroupParamFami ly

+LogDeriv: function

L2LocationFamily L2ScaleFamily L2LocationScaleFamily

Figure 20: Inheritance relations and slots of the corresponding (sub-)classes for ProbFamily where we do

not repeat inherited slots

we need to determine a consistency factor for the MAD (when used as scale estimator). From
version 2.1 on this consistency factor is determined automatically.

74

4.3 Parameter in a parametric family: class ParamFamParameter

In many applications, it is not the whole parameter of a parametric family which is of
interest, but rather parts of it, while the rest of it either is known and fixed or has to
be estimated as a nuisance parameter; in other situations, we are interested in a (smooth)
transformation of the parameter. This all is realized in a class design for the parameter of a
parametric family —class ParamFamParameter, the formal class of a slot of class ParamFamily.
It has slots name (the name of the parameter), main (the interesting aspect of the parameter),

P a r a m e t e r

+name: character

ParamFamParamete r

+main: numeric

+nuisance: OptionalNumeric

+fixed: OptionalNumeric

+trafo: MatrixorFunction

Figure 21: Inheritance relations and slots of ParamFamParameter where we do not repeat inherited slots

nuisance an unknown part of the parameter of secondary interest, but which has to be
estimated, for instance for confidence intervals, and fixed a known and fixed part of the
parameter. Besides these it also has a slot trafo which also sort of arises in class Estimate.

trafo realizes partial influence curves; i.e.; we are only interested is some possibly lower
dimensional smooth (not necessarily linear or even coordinate-wise) aspect/transformation
τ of the parameter θ.

To be coherent with the corresponding nuisance implementation, we make the following
convention:

The full parameter θ is split up coordinate-wise in a main parameter θ′ and a nuisance
parameter θ′′ (which is unknown, too, hence has to be estimated, but only is of secondary
interest) and a fixed, known part θ′′′.

Without loss of generality, we restrict ourselves to the case that transformation τ only
acts on the main parameter θ′ — if we want to transform the whole parameter, we only
have to assume both nuisance parameter θ′′ and fixed known part of the parameter θ′′′

have length 0.

To the implementation: Slot trafo can either contain a (constant) matrix Dθ or a
function

τ : Θ′ → Θ̃, θ 7→ τ(θ)

mapping main parameter θ′ to some range Θ̃.

75

If slot value trafo is a function, besides τ(θ), it will also return the corresponding
derivative matrix ∂

∂θ τ(θ). More specifically, the return value of this function theta is a list
with entries fval , the function value τ(θ), and mat, the derivative matrix.

In case trafo is a matrix D, we interpret it as such a derivative matrix ∂
∂θ τ(θ), and,

correspondingly, τ(θ) is the linear mapping τ(θ) = Dθ.
According to the signature, method trafo will return different return value types. For

signatures Estimate,missing, Estimate,ParamFamParameter, and ParamFamily,ParamFamParameter,
it will return a list with entries fct , the function τ , and mat, the matrix ∂

∂θ τ(θ). function τ
will then return the list list (fval , mat) mentioned above. For signatures ParamFamily,missing

and ParamFamParameter,missing, it will just return the corresponding matrix.
From version 2.1 on, there are helper functions trafo . fct () (see ?trafo . fct) and trafoEst.

While trafo . fct () allows to access “function” aspect of the transformation, returning the
corresponding function, trafoEst transforms an existing estimator of class estimate consis-
tently (i.e.; with corresponding untransfromed.estimate and untransformed.asvar information and
transformed asvar) by a “trafo” function; see ?trafoEst.

4.4 Risk Classes

The risk classes are up to now (i.e, version 2.0) not used inside of the distr-family. They
are however used in the RobASt-family [4]. We distinguish between various finite-sample
and asymptotic risks; confer Figure 24. The bias and norm classes given in Figure 22 and
Figure 23, respectively, occur as slots of the risk classes.

BiasType

+name: character

symmetr icBias onesidedBias

+sign: numeric

asymmetr icBias

+nu: numeric

Figure 22: Inheritance relations and slots of the corresponding (sub-)classes for BiasType where we do

not repeat inherited slots

76

NormType

+name: character

+fct: function

In foNorm

QFNorm

+QuadForm: PosSemDefSymmMatrix

Sel fNorm

Figure 23: Inheritance relations and slots of the corresponding (sub-)classes for NormType where we do

not repeat inherited slots

RiskType

+type: character

fiRiskasRisk

asCov trAsCov asRiskwithBias

+biastype: BiasType

+normtype: NormType

fiCov trFiCov f iHampel

+bound: numeric

f iMSE fiUnOvShoot

+width: numeric

fiBias

asHampel

+bound: numeric

asBias asGRisk

asMSE asUnOvShoot

+width: numeric

asSemivar

Figure 24: Inheritance relations and slots of the corresponding (sub-)classes for RiskType where we do

not repeat inherited slots

77

4.5 Minimum Criterion Estimation

The S4-classes and methods defined inside of our distr-family enable us to define general
functions for the computation of minimum criterion estimators – in particular, minimum
distance and maximum likelihood (i.e., minimum negative log-likelihood) estimators. The
main function for this purpose is MCEstimator. As an example we can use the negative
log-likelihood as criterion; i.e., compute the maximum likelihood estimator.

library(distrMod)

x <- rgamma(50, scale = 0.5, shape = 3)

G <- GammaFamily(scale = 1, shape = 2)

negLoglikelihood <- function(x, Distribution){
res <- -sum(log(Distribution@d(x)))

names(res) <- "Negative Log-Likelihood"

return(res)

}
MCEstimator(x = x, ParamFamily = G, criterion = negLoglikelihood)

Warning in fn(par, ...): Criterion evaluation at theta = 0.429,3.63 threw

an error;

returning starting par;

Warning in fn(par, ...): Criterion evaluation at theta = 0.792,3.63 threw

an error;

returning starting par;

Warning in fn(par, ...): Criterion evaluation at theta = 0.429,3.994 threw

an error;

returning starting par;

Evaluations of Minimum criterion estimate:

--

An object of class "Estimate"

generated by call

MCEstimator(x = x, ParamFamily = G, criterion = negLoglikelihood)

samplesize: 50

estimate:

scale shape

0.4285842 3.6304688

Criterion:

##

1e+20

The user can specialize the behavior of MCEstimator on two layers: instance-individual

78

or class-individual.
Using the first layer, we may specify model-individual starting values / search intervals

by slot startPar of class ParamFamily, pass on special control parameters to functions optim

/ optimize by a ... argument in function MCEstimator, and we may enforce valid parameter
values by specifying function slot makeOKPar of class ParamFamily; also one can specify a
penalty value penalizing invalid parameter values. E.g.; in case of the censored Poisson
distribution family in demo censoredPois to this package these functions are defined as

search interval for reasonable parameters

startPar <- function(x,...) c(.Machine$double.eps,max(x))

what to do in case of leaving the parameter domain

makeOKPar <- function(param) {if(param<=0) return(.Machine$double.eps)

return(param)}

In some situations, one would rather like to define rules for groups of models or to
be even more flexible; this can be achieved using the class-individual layer: We may use
method dispatch to find the “right” function to determine the MC estimator; to this end
subclasses to class L2ParamFamily have to be defined, which has alread been done, e.g. in
case of class PoisFamily. In general these sub classes will not have any new slots. E.g.; the
code to define class PoisFamily simply is

setClass("PoisFamily", contains = "L2ParamFamily")

For group models, like the location scale model, there may be additional slots and
intermediate classes. E.g.,

setClass("NormLocationFamily", contains = "L2LocationFamily")

Then, for these subclasses, particular methods may be defined; so far, in package
"distrMod" we have particular validParameter methods for classes ParamFamily, L2ScaleFamily,
L2LocationFamily, and L2LocationScaleFamily. E.g.; the code to signature L2ScaleFamily simply
is

setMethod("validParameter", signature(object = "L2ScaleFamily"),

function(object, param, tol=.Machine$double.eps){
if(is(param,"ParamFamParameter"))

param <- main(param)

if(!all(is.finite(param))) return(FALSE)

if(length(param)!=1) return(FALSE)

return(param > tol)})

79

To move the whole model from one parameter value to the other, so far we have
modifyModel methods for classes L2ParamFamily, L2LocationFamily, L2ScaleFamily, L2LocationScaleFamily,
GammaFamily, and ExpScaleFamily, where the second argument to dispatch on so for has to
be of class ParamFamParameter. E.g.; the code to signature model=”GammaFamily” is

setMethod("modifyModel", signature(model = "GammaFamily",

param = "ParamFamParameter"),

function(model, param, ...){
M <- modifyModel(as(model, "L2ParamFamily"), param = param,

.withCall = FALSE)

M@L2derivSymm <- FunSymmList(OddSymmetric(SymmCenter =

prod(main(param))),

NonSymmetric())

class(M) <- class(model)

return(M)

})

We also allow for particular methods within function MCEstimator, as therein we call
method mceCalc; so far there only is a method for signature(x=”numeric”, PFam=”ParamFamily”)

Similarly, and more important, the same technique is applied for the wrapper function
MLEstimator.

In case of the maximum likelihood estimator as well as in case of minimum distance
(MD) estimation there are the function MLEstimator and MDEstimator which provide user-
friendly interfaces to MCEstimator. Hence, the maximum likelihood estimator and for in-
stance the Kolmogorov MD estimator can more easily be computed as follows.

MLEstimator(x = x, ParamFamily = G)

Evaluations of Maximum likelihood estimate:

An object of class "Estimate"

generated by call

MLEstimator(x = x, ParamFamily = G)

samplesize: 50

estimate:

scale shape

0.44074313 3.53040293

(0.09060699) (0.67537953)

asymptotic (co)variance (multiplied with samplesize):

scale shape

scale 0.4104814 -2.84726

80

shape -2.8472597 22.80688

Criterion:

negative log-likelihood

56.45372

MDEstimator(x = x, ParamFamily = G, distance = KolmogorovDist)

Evaluations of Minimum Kolmogorov distance estimate:

--

An object of class "Estimate"

generated by call

MDEstimator(x = x, ParamFamily = G, distance = KolmogorovDist)

samplesize: 50

estimate:

scale shape

0.4981583 3.1342355

Criterion:

Kolmogorov distance

0.06482986

Within MLEstimator, we call method mleCalc, which then dispatches according to its ar-
guments x and PFam as in case of method mceCalc. So far x must inherit from class numeric,
and there are particular methods for argument PFam of classes ParamFamily, BinomFamily,
PoisFamily, NormLocationFamily, NormScaleFamily, and NormLocationScaleFamily. More specifi-
cally, mleCalc must have an extra ... argument to cope with different callings from MLEstimator;
additional arguments are possible of course. The return value must be a list with prescribed
structure; to this end function meRes() is helpful which produces this structure. E.g. the
mleCalc-method for signature(x=”numeric”, PFam=”NormScaleFamily”) is

setMethod("mleCalc", signature(x = "numeric", PFam = "NormScaleFamily"),

function(x, PFam, ...){
n <- length(x)

theta <- sqrt((n-1)/n)*sd(x); mn <- mean(distribution(PFam))

ll <- -sum(dnorm(x, mean=mn, sd = theta, log=TRUE))

names(ll) <- "neg.Loglikelihood"

crit.fct <- function(sd)

-sum(dnorm(x, mean=mn, sd = sd, log=TRUE))

param <- ParamFamParameter(name = "scale parameter",

main = c("sd"=theta))

if(!hasArg(Infos)) Infos <- NULL

return(meRes(x, theta, ll, param, crit.fct, Infos = Infos))

81

})

We also provide a coercion to class mle from package "stats4", hence making profiling
by the profile-method therein possible. In order to be able to do so, we need to fill a
functional slot criterion . fct of class MCEstimate. In many examples this is straightforward,
but in higher dimensions, helper function get. criterion . fct can be useful, e.g. it handles the
general case for signature(PFam=”ParamFamily”).

The results of our computations in functionsMCEstimator, MDEstimator, and MLEstimator

are objects of S4-class MCEstimate which inherits from S4-class Estimate. The definitions
are given in Figure 25. For class MCEstimate, we have a method confint, which produces

Est imate

+name: character

+estimate: ANY

+samplesize: numeric

+asvar: OptionalMatrix

+Infos: matrix

+estimate.call: call

+nuis.idx: OptionalNumeric

+trafo: list

+untransformed.estimate: ANY

+untransformed.asvar: OptionalMatrix

MCEst imate

+criterion: numeric

Figure 25: Inheritance relations and slots of the corresponding (sub-)classes for Estimate where we do

not repeat inherited slots

confidence intervals (of class Confint). For class Confint as well as for class Estimate we have
particular show and print methods where you may scale the output by setting global options
with distrModOptions, see also subsection 5.3. As example consider the following:

require(distrMod)

some transformation

mtrafo <- function(x){
nms0 <- c("scale","shape")

nms <- c("shape","rate")

fval0 <- c(x[2], 1/x[1])

names(fval0) <- nms

mat0 <- matrix(c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,

dimnames = list(nms,nms0))

list(fval = fval0, mat = mat0)}

82

set.seed(124)

x <- rgamma(50, scale = 0.5, shape = 3)

parametric family of probability measures

G <- GammaFamily(scale = 1, shape = 2, trafo = mtrafo)

MLE

res <- MLEstimator(x = x, ParamFamily = G)

print(res, digits = 4, show.details="maximal")

Evaluations of Maximum likelihood estimate:

An object of class "Estimate"

generated by call

MLEstimator(x = x, ParamFamily = G)

samplesize: 50

estimate:

shape rate

3.1519 2.3789

(0.6000) (0.4909)

asymptotic (co)variance (multiplied with samplesize):

shape rate

shape 18.00 13.59

rate 13.59 12.05

untransformed estimate:

scale shape

0.42036 3.15193

(0.08675) (0.60002)

asymptotic (co)variance of untransformed estimate (multiplied with samplesize):

scale shape

scale 0.3763 -2.401

shape -2.4008 18.001

Transformation of main parameter:

function(x){

nms0 <- c("scale","shape")

nms <- c("shape","rate")

fval0 <- c(x[2], 1/x[1])

names(fval0) <- nms

mat0 <- matrix(c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,

dimnames = list(nms,nms0))

list(fval = fval0, mat = mat0)}

<bytecode: 0x11f78ab8>

83

Trafo / derivative matrix:

scale shape

shape 0.000 1

rate -5.659 0

Criterion:

negative log-likelihood

50.59

print(res, digits = 4, show.details="medium")

Evaluations of Maximum likelihood estimate:

An object of class "Estimate"

generated by call

MLEstimator(x = x, ParamFamily = G)

samplesize: 50

estimate:

shape rate

3.1519 2.3789

(0.6000) (0.4909)

asymptotic (co)variance (multiplied with samplesize):

shape rate

shape 18.00 13.59

rate 13.59 12.05

Criterion:

negative log-likelihood

50.59

print(res, digits = 4, show.details="minimal")

Evaluations of Maximum likelihood estimate:

shape rate

3.1519 2.3789

(0.6000) (0.4909)

ci <- confint(res)

print(ci, digits = 4, show.details="maximal")

A[n] asymptotic (CLT-based) confidence interval:

2.5 % 97.5 %

84

shape 1.976 4.328

rate 1.417 3.341

Type of estimator: Maximum likelihood estimate

samplesize: 50

Call by which estimate was produced:

MLEstimator(x = x, ParamFamily = G)

Transformation of main parameter by which estimate was produced:

function(x){

nms0 <- c("scale","shape")

nms <- c("shape","rate")

fval0 <- c(x[2], 1/x[1])

names(fval0) <- nms

mat0 <- matrix(c(0, -1/x[1]^2, 1, 0), nrow = 2, ncol = 2,

dimnames = list(nms,nms0))

list(fval = fval0, mat = mat0)}

<bytecode: 0x11f78ab8>

Trafo / derivative matrix at which estimate was produced:

scale shape

shape 0.000 1

rate -5.659 0

print(ci, digits = 4, show.details="medium")

A[n] asymptotic (CLT-based) confidence interval:

2.5 % 97.5 %

shape 1.976 4.328

rate 1.417 3.341

Type of estimator: Maximum likelihood estimate

samplesize: 50

Call by which estimate was produced:

MLEstimator(x = x, ParamFamily = G)

print(ci, digits = 4, show.details="minimal")

A[n] asymptotic (CLT-based) confidence interval:

2.5 % 97.5 %

shape 1.976 4.328

rate 1.417 3.341

some profiling

par(mfrow=c(2,1))

plot(profile(res))

85

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

shape

z

2.2 2.3 2.4 2.5 2.6 2.7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

rate

z

5 Options

5.1 Options for "distr"

Analogously to the options command in R you may specify a number of global “constants”
to be used within the package. These include

• DefaultNrFFTGridPointsExponent: the binary logarithm of the number of grid-points
used in FFT —default 12

86

• DefaultNrGridPoints: number of grid-points used for a continuous variable —default
4096

• DistrResolution: the finest step length that is permitted for a grid for a discrete variable
—default 1e−06

• RtoDPQ.e: For simulational determination of d, p and q, 10RtoDPQ.e random variables
are simulated —default 5

• TruncQuantile: to work with compact support, random variables are truncated to their
lower/upper TruncQuantile-quantile —default 1e−05.
From version 1.9 on, for ε = TruncQuantile, we use calls of form q(X)(eps, lower.tail = FALSE)

instead of q(X)(1−eps) to gain higher precision.

• warningSim: controls whether a warning issued at printing/showing a Distribution object
the slots of which have been filled starting with simulations —default TRUE

• warningArith: controls whether a warning issued at printing/showing a Distribution

object produced by arithmetics operating on distributions —default TRUE

• withgaps: controls whether in the return value of arithmetic operations the slot gaps of
an the AbscontDistribution part is filled automatically based on empirical evaluations
via setgaps —default TRUE

• simplifyD: controls whether in the return value of arithmetic operations there is a call
to simplifyD or not —default TRUE

• DistrCollapse: logical; shall support points with distance smaller than DistrResolution be
collapsed; default value: TRUE

• withSweave: logical; is code run in Sweave (then no new graphic devices are opened);
default value: FALSE

• DistrCollapse.Unique.Warn: logical; shall a warning be issued upon collapsing? default
value: TRUE

• use.generalized .inverse.by.default which is a logical variable giving the default value
for argument generalized of our method solve in package "distrMod". This argument
decides whether our method solve is to use generalized inverses if the original solve-
method from package "base" fails; if the option is set to FALSE, in case of failure,
and unless argument generalized is not explicitely set to TRUE, solve will throw an
error as is the "base"-method behavior. The default value of thie option is TRUE.

All current options may be inspected by distroptions () and modified by
distroptions (”<options−name>”=<value>).

87

As options, distroptions (”<options−name>”) returns a list of length 1 with the value of the
corresponding option, so here, just as getOption, getdistrOption(”<options−name>”) will be
preferable, which only returns the value.

5.2 Options for "distrEx"

Up to version 0.4-4 we used the function distrExOptions(arg = ”missing”, value = −1) to man-
age some global options for "distrEx", i.e.:
distrExOptions() returns a list of these options, distrExOptions(arg=x) returns option x, and
distrExOptions(arg=x,value=y) sets the value of option x to y.
From version 1.9 on, we use a mechanism analogue to the distroptions/getdistrOption com-
mands: You may specify certain global output options to be used within the package with
distrExoptions/getdistrExOption. These include

• MCIterations: number of Monte-Carlo iterations used for crude Monte-Carlo integra-
tion; defaults to 1e5.

• GLIntegrateTruncQuantile: If integrate fails and there are infinite integration limits, the
function GLIntegrate is called inside of distrExIntegrate with the corresponding quantiles
GLIntegrateTruncQuantile resp. 1−GLIntegrateTruncQuantile as finite integration limits; de-
faults to 10∗.Machine$double.eps.

• GLIntegrateOrder: The order used for the Gauß-Legendre integration inside of distrExIntegrate;
defaults to 500.

• ElowerTruncQuantile: The lower limit of integration used inside of E which corresponds
to the ElowerTruncQuantile-quantile; defaults to 1e−7.

• EupperTruncQuantile: The upper limit of integration used inside of E which corresponds
to the (1−ElowerTruncQuantile)-quantile; defaults to 1e−7.

• ErelativeTolerance: The relative tolerance used inside of E when calling
distrExIntegrate; defaults to .Machine$double.epsˆ0.25.

• m1dfLowerTruncQuantile: The lower limit of integration used inside of m1df which cor-
responds to the m1dfLowerTruncQuantile-quantile; defaults to 0.

• m1dfRelativeTolerance: The relative tolerance used inside of m1df when calling distrExIntegrate;
defaults to .Machine$double.epsˆ0.25.

• m2dfLowerTruncQuantile: The lower limit of integration used inside of m2df which cor-
responds to the m2dfLowerTruncQuantile-quantile; defaults to 0.

• m2dfRelativeTolerance: The relative tolerance used inside of m2df when calling distrExIntegrate;
defaults to .Machine$double.epsˆ0.25.

88

• nDiscretize: number of support values used for the discretization of objects of class
”AbscontDistribution”; defaults to 100.

• hSmooth: smoothing parameter to smooth objects of class ”DiscreteDistribution”. This
is done via convolution with the normal distribution Norm(mean = 0, sd = hSmooth);
defaults to 0.05.

• IQR.fac: for determining sensible integration ranges, we use both quantile and scale
based methods; for the scale based method we use the median of the distribution ±
IQR.fac × the IQR; defaults to 15.

5.3 Options for "distrMod"

Just as with to the distroptions/getdistrOption commands you may specify certain global out-
put options to be used within the package with distrModoptions/
getdistrModOption. These include

• show.details which controls the detailedness for method show for objects of classes of
the "distrXXX" family of packages. Possible values are

– ”maximal”: all information is shown

– ”minimal”: only the most important information is shown

– ”medium”: somewhere in the middle; see actual show-methods for details.

The default value is ”maximal”.

5.4 Options for "distrSim"

Just as with to the distroptions/getdistrOption commands you may specify certain global out-
put options to be used within the package with distrSimoptions/
getdistrSimOption. These include

• MaxNumberofPlottedObs the maximal number of observation plotted in a plot of an
object of class Dataclass; defaults to 4000

• MaxNumberofPlottedObsDims: the maximum number of observations to be plotted in a
plot of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofPlottedRuns: the maximum number of runs to be plotted in a plot of an
object of class Dataclass and descendants (one run/panel); defaults to 6.

• MaxNumberofSummarizedObsDims: the maximum number of observations to be summa-
rized of an object of class Dataclass and descendants; defaults to 6.

• MaxNumberofSummarizedRuns: the maximum number of runs to be summarized of an
object of class Dataclass and descendants; defaults to 6.

89

5.5 Options for "distrTEst"

Just as with to the distroptions/getdistrOption commands you may specify certain global out-
put options to be used within the package with distrTEstoptions/
getdistrTEstOption. These include

• MaxNumberofPlottedEvaluations: the maximal number of evaluations to be plotted in a
plot of an object of class EvaluationList; defaults to 6

• MaxNumberofPlottedEvaluationDims: the maximal number of evaluation dimensions to
be plotted in a plot of an object of class Evaluation; defaults to 6

• MaxNumberofSummarizedEvaluations: the maximal number of evaluations to be summa-
rized of an object of class EvaluationList; defaults to 15

• MaxNumberofPrintedEvaluations: the maximal number of evaluations printed of an object
of class EvaluationList; defaults to 15

6 Further Documentation

6.1 Help pages

Additional information can be obtained during an R session, using help files and startup
messages.

Startup messages Upon loading packages from the distrXXX family of packages with
require or library, by default startup messages pop up giving some starting points where to
look for further information; howto scale/switch off these startup messages will be discussed
in the next section.

Package help file A starting point is doubtless the package help files, called e.g. by
?distr . We give an ASCII form of a class graph with all the S4 classes in the corresponding
package, and indicate the implemented methods and functions. From version 2.1 this help
file for "distr" has a new section ”Extension packages” pointing to the various extensions
of this package.

Individual help files Of course, for looking up the syntax of a function the help pages
available with ? / help are extremely useful. Note that for our packages, help pages are
also available for internal (i.e.; non exported) functions.

90

6.2 NEWS file

To get more details on the implementation process you may also consult a corresponding
NEWS file where all relevant changes are listed at the package version where they have been
implemented. You may inspect this NEWS file with NEWS(<pkgname>).

6.3 Vignettes

Besides this large (or huge) vignette, there are also some minor vignettes available, assem-
bling documentation somewhat more coherent than in the help pages. From version 2.1 on,
e.g., there is a new vignette “How to generate new distributions in packages distr, distrEx”
in package "distr" which is to encourage the implementation of new distributions and
distribution classes by third parties.

6.4 Articles

Of course we plan to publish some of our findings in peer-reviewed journals; so the part
of this vignette dealing with package "distrMod" will form the basis for an article on this
package by the present authors.

7 Startup Messages

For the management of startup messages, from version 1.7, we use package "startupmsg":
When loading/attaching packages "distr", "distrEx", "distrSim", or "distrTEst" for
each package a disclaimer is displayed.

You may suppress these start-up banners/messages completely by setting
options(”StartupBanner”=”off”) somewhere before loading this package by library or require

in your R-code / R-session.
If option ”StartupBanner” is not defined (default) or setting

options(”StartupBanner”= NULL) or options(”StartupBanner”= ”complete”) the complete start-
up banner is displayed.

For any other value of option ”StartupBanner” (i.e., not in c(NULL, ”off”, ”complete”)) only
the version information is displayed.

The same can be achieved by wrapping the library or require call into either
onlytypeStartupMessages(<code>, atypes=”version”) or
suppressStartupMessages(<code>).

91

8 System/version requirements, license, etc.

8.1 System requirements

As our package is completely written in R, there are no dependencies on the underlying
OS; of course, there is the usual speed gain possible on recent machines. We have tested
our package on a Pentium II with 233 MHz, on Pentium III’s with 0.8–2.1 GHz, and on an
Athlon with 2.5 GHz giving a reasonable performance.

8.2 Required version of R

Contrary to the hardware required, if you want to use library or require to use "distr"

within R code, you need at least R Version 1.8.1, as we make use of name space operations
only available from that version on; also, the command setClassUnion, which is used in some
sources, is only available from that version on.
On the other hand, if the package may be pasted in by source, the code works with R from
version 1.7.0 on —but without using name-spaces, which is only available from 1.8.0 on.
Due to some changes in R from version 1.8.1 to 1.9.0 and from 1.9.1 to 2.0.0, we have
to provide different zip/tar.gz-Files for these versions.
Versions of "distr" from version number 1.5 onwards are only supplied for R Version
2.0.1 patched and later. After a reorganization, versions of "distr" from version number
1.6 onwards are only supplied for R Version 2.2.0 patched and later.

8.3 Dependencies

In package "distr", from version 2.0, we make use of D1ss from Martin Mächler’s package
"sfsmisc". In package "distrEx", up to version 2.4, we needed Alec Stephenson’s package
"evd" for the extreme value distributions implemented therein, as well as Vincent Goulet’s
and Mathieu Pigeon’s package "actuar" for the (single parameter) Pareto distribution
(from "distrEx" version 2.1 on) which has been ported to our framework by Nataliya
Horbenko. From version 2.4 on, this infrastructure has moved to package "RobExtremes".

In package "distrSim", and conseqently also in package "distrTEst" we use Paul
Gilbert’s package "setRNG" to be installed from CRAN for the control of the seed of the
random number generator in our simulation classes. More precisely, for our version ≤
1.6 we need his version < 2006.2-1, and for our version ≥ 1.7 we need his version ≥
2006.2-1.

From package version 1.7/0.4-3 on, we also need package "startupmsg" by the first
of the present authors, which also is available on CRAN.

92

mailto:maechler@stat.math.ethz.ch
mailto:alec_stephenson@hotmail.com
mailto:Vincent.Goulet@act.ulaval.ca
mailto:nhorbenko@kpmg.de
mailto:nhorbenko@kpmg.de
mailto:pgilbert@bank-banque-canada.ca
mailto:pgilbert@bank-banque-canada.ca
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/mirrors.html

8.4 License

This software is distributed under the terms of the GNU GENERAL PUBLIC LICENSE
Version 2, June 1991, more specifically under LGPL-3 confer
https://www.gnu.org/copyleft/gpl.html, https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_
License

9 Details to the implementation

• As the normal distribution is closed under affine transformations, we have overloaded
the corresponding methods.

• For the general convolution algorithm for univariate probability distribution function-
s/densities by means of FFT, which we use in the overloaded "+"-operator, confer [5].

• Exact convolution methods are implemented for the normal, the Poisson, the bino-
mial, the negative binomial, the Gamma (and the Exp), and the χ2 distribution

• Exact formulae for scale transformations are implemented for the Exp-/Gamma-
distribution, the Weibull and the log-normal distribution (the latter two from version
1.9 on).

• Exact formulae for affine linear transformations are available for the normal, the
logistic and the Cauchy distribution (the latter two from version 1.9 on).

• Instances of any class transparent to the user are initialized by
<classname>([<slotname>=<value>,...]) where except for class DataClass in pack-
age "distrSim" all classes have default values for all their slots; in DataClass, the slot
Data has to be specified.

• Multiplication (and Division) is implemented as corresponding exponentials of the
convolution of the logarithms (evaluated separately for positive and negative parts).

• Exponentiation also uses the exp-log trick.

• Multiplication, Exponentation, and Min/Maximum of an AbscontDistribution and a
DiscreteDistribution as an intermediate step produce a UnivarMixingDistribution, with one
mixing component for each element of the support of the DiscreteDistribution. As a
last step, this UnivarMixingDistribution is then “flattened”.

• As suggested in [3] all slots are accessed and modified by corresponding accessor- and
replacement functions —templates for which were produced by standardMethods.

We strongly discourage the use of the @-operator to modify or even access
slots r, d, p, and q, confer Example 13.7.

93

https://www.gnu.org/copyleft/gpl.html
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

10 A general utility

Following [3], the programmer of S4-classes should provide accessor and replacement func-
tions for the inspection/modification of any newly introduced slot. This can be quite a
task when you have a lot of classes/slots. As these functions all have the same structure,
it would be nice to automatically generate templates for them. Faced with this problem in
developing this package, Thomas Stabla has written such a utility, standardMethods —which
the authors of this package recommend for any developer of S4-classes. For more details,
see ?standardMethods.

11 Odds and Ends

11.1 What should be done and what we could do —for version >2.7

• application of analytic FourierTransforms instead of FFT where appropriate —perhaps
also to be controlled by a parameter/option

• use the q-slot applied to runif in simplifyr for continuous distributions

• further exact formulae for binary arithmetic operations like ”∗”

• goodness of fit tests for distribution-objects

• defining a subgroup of Math2 of invertible binary operators

11.2 What should be done but for which we lack the know-how

• multivariate distributions

• conditional distributions

• copula

12 Acknowledgement

In order to give our acknowledgements their due place in the manual, we insert them before
some rather extensive presentation of examples, because otherwise they would probably
get lost or overseen by most of the readers.

We thank Martin Mächler and Josef Leydold for their helpful suggestions in conceiving
the package. John Chambers also gave several helpful hints and insights when responding
to our requests concerning the S4-class concept in r-devel/ r-help. We got stimulating
replies to an RFC on r-devel by Duncan Murdoch and Gregory Warnes. We also thank
Paul Gilbert for drawing our attention to his package setRNG and making it available as

94

stand-alone version. In the last few days before the release on CRAN, Kurt Hornik and Uwe
Ligges were very kind, helping us to find the clue how to pass all necessary checks by R CMD

check. We also thank G. Jay Kerns for contributing code for the skewness and kurtosis
functionals.

Last not least a big ”thank you” to Torsten Hothorn as editor of R-News, for his patience
with our endless versions until we finally came to a publishable version.

13 Examples

13.1 12-fold convolution of uniform (0, 1) variables

This example shows how easily we may get the distribution of the sum of 12 i.i.d. ufo(0, 1)–variables

minus 6— which was used as a fast generator of N (0, 1)–variables in times when evaluations of exp,

log, sin and tan were expensive, confer [7], example C, p. 163. The user should not be confused by

expressions like U+U: this does not mean 2U but rather convolution of two independent identically

distributed random variables.

require(distr)

N <- Norm(0,1)

U <- Unif(0,1)

U2 <- U + U

U4 <- U2 + U2

U8 <- U4 + U4

U12 <- U4 + U8

NormApprox <- U12 - 6

x <- seq(-4,4,0.001)

opar <- par(no.readonly = TRUE)

par(mfrow = c(2,1))

plot(x, d(NormApprox)(x),

type = "l",

xlab = "",

ylab = "Density",

main = "Exact and approximated density")

lines(x, d(N)(x),

col = "red")

legend("topleft",

legend = c("NormApprox", "Norm(0,1)"),

95

fill = c("black", "red"))

plot(x, d(NormApprox)(x) - d(N)(x),

type = "l",

xlab = "",

ylab = "\"black\" - \"red\"",
col = "darkgreen",

main = "Error")

lines(c(-4,4), c(0,0))

96

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Exact and approximated density
D

en
si

ty

NormApprox
Norm(0,1)

−4 −2 0 2 4

−
0.

00
4

0.
00

0

Error

"b
la

ck
"

−
 "

re
d"

par(opar)

13.2 Comparison of exact convolution to FFT for normal distributions

This example illustrates the exactness of the numerical algorithm used to compute the convolution:

We know that L(A + B) = N (5, 13) — if the second argument of N is the variance

97

require(distr)

initialize two normal distributions

A <- Norm(mean=1, sd=2)

B <- Norm(mean=4, sd=3)

convolution via addition of moments

AB <- A+B

casting of A,B as absolutely continuous distributions

that is, ``forget'' that A,B are normal distributions

A1 <- as(A, "AbscontDistribution")

B1 <- as(B, "AbscontDistribution")

for higher precision we change the global variable

"TruncQuantile" from 1e-5 to 1e-8

oldeps <- getdistrOption("TruncQuantile")

eps <- 1e-8

distroptions("TruncQuantile" = eps)

support of A1+B1 for FFT convolution is

[q(A1)(TruncQuantile),

q(B1)(TruncQuantile, lower.tail = FALSE)]

convolution via FFT

AB1 <- A1+B1

#############################

plots of the results

#############################

par(mfrow=c(1,3))

low <- q(AB)(1e-15)

upp <- q(AB)(1e-15, lower.tail = FALSE)

x <- seq(from = low, to = upp, length = 10000)

densities

plot(x, d(AB)(x), type = "l", lwd = 5)

lines(x , d(AB1)(x), col = "orange", lwd = 1)

title("Densities")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

98

cdfs

plot(x, p(AB)(x), type = "l", lwd = 5)

lines(x , p(AB1)(x), col = "orange", lwd = 1)

title("CDFs")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

quantile functions

x <- seq(from = eps, to = 1-eps, length = 1000)

plot(x, q(AB)(x), type = "l", lwd = 5)

lines(x , q(AB1)(x), col = "orange", lwd = 1)

title("Quantile functions")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

99

−20 0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x

d(
A

B
)(

x)
Densities

exact
FFT

−20 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
A

B
)(

x)

CDFs

exact
FFT

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

x

q(
A

B
)(

x)

Quantile functions

exact
FFT

Since the plots of the results show no

recognizable differencies, we also compute

the total variation distance of the densities

and the Kolmogorov distance of the cdfs

total variation distance of densities

total.var <- function(z, N1, N2){
0.5*abs(d(N1)(z) - d(N2)(z))

100

}
dv <- integrate(total.var, lower=-Inf, upper=Inf, rel.tol=1e-8, N1=AB, N2=AB1)

cat("Total variation distance of densities:\t")

Total variation distance of densities:

print(dv) # 4.25e-07

4.250016e-07 with absolute error < 1.8e-09

meanwhile realized in package "distrEx"

as TotalVarDist(N1,N2)

Kolmogorov distance of cdfs

the distance is evaluated on a random grid

z <- r(Unif(Min=low, Max=upp))(1e5)

dk <- max(abs(p(AB)(z)-p(AB1)(z)))

cat("Kolmogorov distance of cdfs:\t", dk, "\n")

Kolmogorov distance of cdfs: 7.26889e-07

2.03e-07

meanwhile realized in package "distrEx"

as KolmogorovDist(N1,N2)

old distroptions

distroptions("TruncQuantile" = oldeps)

13.3 Comparison of FFT to RtoDPQ

This example illustrates the exactness (or rather not–so–exactness) of the simulational default

algorithm used to compute the distribution of transformations of group math.

require(distr)

################################

Comparison 1 - FFT and RtoDPQ

################################

101

N1 <- Norm(0,3)

N2 <- Norm(0,4)

rnew1 <- function(n) r(N1)(n) + r(N2)(n)

X <- N1 + N2

exact formula -> N(0,5)

Y <- N1 + as(N2, "AbscontDistribution")

appoximated with FFT

Z <- new("AbscontDistribution", r = rnew1)

appoximated with RtoDPQ

density-plot

x <- seq(-15,15,0.01)

plot(x, d(X)(x),

type = "l",

lwd = 3,

xlab = "",

ylab = "density",

main = "Comparison 1",

col = "black")

lines(x, d(Y)(x),

col = "yellow")

lines(x, d(Z)(x),

col = "red")

legend("topleft",

legend = c("Exact", "FFT-Approximation",

"RtoDPQ-Approximation"),

fill = c("black", "yellow", "red"))

102

−15 −10 −5 0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

Comparison 1
de

ns
ity

Exact
FFT−Approximation
RtoDPQ−Approximation

##

Comparison 2 - "Exact" Formula and RtoDPQ

##

B <- Binom(size = 6, prob = 0.5) * 10

N <- Norm()

rnew2 <- function(n) r(B)(n) + r(N)(n)

103

Y <- B + N

"exact" formula

Z <- new("AbscontDistribution", r = rnew2)

appoximated with RtoDPQ

density-plot

x <- seq(-5,65,0.01)

plot(x, d(Y)(x),

type = "l",

xlab = "",

ylab = "density",

main = "Comparison 2",

col = "black")

lines(x, d(Z)(x),

col = "red")

legend("topleft",

legend = c("Exact", "RtoDQP-Approximation"),

fill = c("black", "red"))

104

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Comparison 2
de

ns
ity

Exact
RtoDQP−Approximation

13.4 Comparison of exact and approximate stationary regressor distri-
bution

Another illustration for the use of package "distr". In case of a stationary AR(1)–model, for

non–normal innovation distribution, the stationary distribution of the observations must be ap-

proximated by finite convolutions. That these approximations give fairly good results for approx-

imations down to small orders is exemplified by the Gaussian case where we may compare the

approximation to the exact stationary distribution.

105

require(distr)

Approximation of the stationary regressor

distribution of an AR(1) process

X_t = phi X_{t-1} + V_t

where V_t i.i.d N(0,1) and phi\in(0,1)
We obtain

X_t = \sum_{j=1}^\infty phi^j V_{t-j}
i.e., X_t \sim N(0,1/(1-phi^2))

phi <- 0.5

casting of V as absolutely continuous distributions

that is, ``forget'' that V is a normal distribution

V <- as(Norm(), "AbscontDistribution")

for higher precision we change the global variable

"TruncQuantile" from 1e-5 to 1e-8

oldeps <- getdistrOption("TruncQuantile")

eps <- 1e-8

distroptions("TruncQuantile" = eps)

Computation of the approximation

H=\sum_{j=1}^n phi^j V_{t-j}
of the stationary regressor distribution

(via convolution using FFT)

H <- V

n <- 15

may take some time

switch off warnings [would be issued due to

very unequal variances...]

old.warn <- getOption("warn")

options("warn" = -1)

for(i in 1:n){Vi <- phi^i*V; H <- H + Vi }
options("warn" = old.warn)

the stationary regressor distribution (exact)

X <- Norm(sd=sqrt(1/(1-phi^2)))

#############################

plots of the results

106

#############################

par(mfrow=c(1,3))

low <- q(X)(1e-15)

upp <- q(X)(1e-15, lower.tail = FALSE)

x <- seq(from = low, to = upp, length = 10000)

densities

plot(x, d(X)(x),type = "l", lwd = 5)

lines(x , d(H)(x), col = "orange", lwd = 1)

title("Densities")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

cdfs

plot(x, p(X)(x),type = "l", lwd = 5)

lines(x , p(H)(x), col = "orange", lwd = 1)

title("CDFs")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

quantile functions

x <- seq(from = eps, to = 1-eps, length = 1000)

plot(x, q(X)(x),type = "l", lwd = 5)

lines(x , q(H)(x), col = "orange", lwd = 1)

title("Quantile functions")

legend("topleft",

legend=c("exact", "FFT"),

fill=c("black", "orange"))

107

−5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

x

d(
X

)(
x)

Densities

exact
FFT

−5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
X

)(
x)

CDFs

exact
FFT

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

x

q(
X

)(
x)

Quantile functions

exact
FFT

Since the plots of the results show no

recognizable differencies, we also compute

the total variation distance of the densities

and the Kolmogorov distance of the cdfs

total variation distance of densities

total.var <- function(z, N1, N2){
0.5*abs(d(N1)(z) - d(N2)(z))

108

}
dv <- integrate(f = total.var, lower = -Inf,

upper = Inf, rel.tol = 1e-7,

N1=X, N2=H)

cat("Total variation distance of densities:\t")

Total variation distance of densities:

print(dv) # ~ 5.0e-06

2.091529e-05 with absolute error < 5.9e-08

meanwhile realized in package "distrEx"

as TotalVarDist(N1,N2)

Kolmogorov distance of cdfs

the distance is evaluated on a random grid

z <- r(Unif(Min=low, Max=upp))(1e5)

dk <- max(abs(p(X)(z)-p(H)(z)))

cat("Kolmogorov distance of cdfs:\t", dk, "\n")

Kolmogorov distance of cdfs: 1.10272e-05

~2.5e-06

meanwhile realized in package "distrEx"

as KolmogorovDist(N1,N2)

old distroptions

distroptions("TruncQuantile" = oldeps)

13.5 Truncation and Huberization/winsorization

has been integrated to the package itself, see section 3.8

13.6 Distribution of minimum and maximum of two independent random
variables

has been integrated to the package itself, see section 3.8

109

13.7 Instructive destructive example

##

Demo: Instructive destructive example

##

require(distr)

package "distr" encourages

consistency but does not

enforce it---so in general

d o n o t m o d i f y

slots d,p,q,r!

N <- Norm()

B <- Binom()

N@d <- B@d

plot(N, lwd = 3)

110

−4 −2 0 2 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

d(
x)

Density of Norm(0, 1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

p(
q)

CDF of Norm(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

p

q(
p)

Quantile function of Norm(0, 1)

13.8 A simulation example

needs packages "distrSim"/"distrTEst"

require(distrTEst)

also loads distrSim

sim <- new("Simulation",

111

seed = setRNG(),

distribution = Norm(mean = 0, sd = 1),

filename="sim_01",

runs = 1000,

samplesize = 30)

contsim <- new("Contsimulation",

seed = setRNG(),

distribution.id = Norm(mean = 0, sd = 1),

distribution.c = Norm(mean = 0, sd = 9),

rate = 0.1,

filename="contsim_01",

runs = 1000,

samplesize = 30)

simulate(sim)

simulate(contsim)

sim

filename of Simulation: sim_01

Seed: Kind: Mersenne-Twister

Normal Kind: Inversion

first 6 numbers: -0389363363 0850082084 -1226019697

-0599765454 -0379619375 -1103098716

number of runs: 1000

dimension of the observations: 1

size of sample: 30

object was generated by version: 1.9

Distribution:

Distribution Object of Class: Norm

mean: 0

sd: 1

summary(contsim)

name of simulation: contsim_01

rate of contamination: 0.100000

real Data:

dimension of the observations: 1

number of runs: 1000

112

size of sample: 30

, , 1

##

[,1]

Min. -2.33653712

1st Qu. -0.88422755

Median -0.08545112

Mean 0.30888133

3rd Qu. 0.66490292

Max. 7.36461912

##

, , 2

##

[,1]

Min. -3.4141891

1st Qu. -0.9002957

Median -0.1397413

Mean 0.0230223

3rd Qu. 0.6146120

Max. 9.0219574

##

, , 3

##

[,1]

Min. -2.0086545

1st Qu. -0.5478159

Median 0.1515300

Mean 0.7377169

3rd Qu. 0.6945067

Max. 16.5871009

##

, , 4

##

[,1]

Min. -4.61269357

1st Qu. -0.87213899

Median 0.17070796

Mean -0.03209197

3rd Qu. 0.47466974

Max. 4.32216887

113

##

, , 5

##

[,1]

Min. -2.78195041

1st Qu. -0.95992099

Median -0.03409165

Mean -0.08187346

3rd Qu. 0.74824274

Max. 2.36619347

##

, , 6

##

[,1]

Min. -13.62790113

1st Qu. -0.51659510

Median 0.43284614

Mean -0.07329117

3rd Qu. 0.74732946

Max. 7.17196684

plot(contsim)

*
*

**

*

*
*
**
**
*

*

*

*

*

*

*

*

*

0 10 25

−
5

0
5

observation−index

da
ta

x

x

**
*

*

*
**
*

*
**

*

*

*
**
*

*
*
*

*

0 10 25

−
5

0
5

observation−index

da
ta

x

x

**

**

*

**
*

*

*

*

*
*

*

*
**
**
**
*

*

*

0 10 25

−
5

0
5

observation−index

da
ta

x

*

*
**

*
*
**

*

*

**
*
*
*

*
*

*

*

0 10 25

−
5

0
5

observation−index

da
ta

x

x

*

**

*
*

*

*
*

*

**
*
*

*

*

*
**

0 10 25

−
5

0
5

observation−index

da
ta x

*

*

*
*
**
*

*
**

*

*

*

*

*
*
*
*
*
*
*
*

0 10 25

−
5

0
5

observation−index

da
ta

x

x

require(distrTEst)

psim <- function(theta,y,m0){
mean(pmin(pmax(-m0, y - theta), m0))

114

}
mestimator <- function(x, m = 0.7) {
uniroot(f = psim,

lower = -20,

upper = 20,

tol = 1e-10,

y = x,

m0 = m,

maxiter = 20)$root

}

result.id.mean <- evaluate(sim, mean)

result.id.mest <- evaluate(sim, mestimator)

result.id.median <- evaluate(sim, median)

result.cont.mean <- evaluate(contsim, mean)

result.cont.mest <- evaluate(contsim, mestimator)

result.cont.median <- evaluate(contsim, median)

elist <- EvaluationList(result.cont.mean,

result.cont.mest,

result.cont.median)

elist

An EvaluationList Object

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

An Evaluation Object

estimator: mean

Result: 'data.frame': 1000 obs. of 2 variables:

$ mean.id: num -0.1342 -0.1564 -0.021 -0.0722 -0.078 ...

$ mean.re: num 0.3089 0.023 0.7377 -0.0321 -0.0819 ...

An Evaluation Object

estimator: mestimator

Result: 'data.frame': 1000 obs. of 2 variables:

$ mstm.id: num -0.2308 -0.1202 0.0288 -0.0801 -0.0186 ...

115

$ mstm.re: num -0.0839 -0.1553 0.1994 -0.0153 -0.0275 ...

An Evaluation Object

estimator: median

Result: 'data.frame': 1000 obs. of 2 variables:

$ medn.id: num -0.1623 -0.1397 0.0348 0.0584 -0.0112 ...

$ medn.re: num -0.0855 -0.1397 0.1515 0.1707 -0.0341 ...

summary(elist)

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

name of Evaluation: object

estimator: mean

Result:

mean.id mean.re

Min. :-0.589662 Min. :-2.048397

1st Qu.:-0.117384 1st Qu.:-0.335711

Median : 0.002348 Median :-0.003919

Mean :-0.002694 Mean : 0.009400

3rd Qu.: 0.108640 3rd Qu.: 0.372806

Max. : 0.768604 Max. : 2.462496

name of Evaluation: object

estimator: mestimator

Result:

mstm.id mstm.re

Min. :-0.636670 Min. :-0.731594

1st Qu.:-0.127130 1st Qu.:-0.146029

Median :-0.003956 Median :-0.007322

Mean :-0.003831 Mean :-0.002743

3rd Qu.: 0.122138 3rd Qu.: 0.147472

Max. : 0.730241 Max. : 0.842396

name of Evaluation: object

estimator: median

Result:

medn.id medn.re

Min. :-0.8041779 Min. :-0.873215

116

1st Qu.:-0.1501175 1st Qu.:-0.169997

Median :-0.0000101 Median :-0.002162

Mean :-0.0030775 Mean :-0.003911

3rd Qu.: 0.1552393 3rd Qu.: 0.164322

Max. : 0.6484906 Max. : 0.734665

plot(elist, cex = 0.7, las = 2)

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●●

●

●

●

●

●

●

●
●

●

●

m
ea

n.
id

m
st

m
.id

m
ed

n.
id

m
ea

n.
re

m
st

m
.r

e

m
ed

n.
re

−2

−1

0

1

2

1. coordinate

Output by plot/show-method for an object of class Evaluation

117

result.cont.mest

An Evaluation Object

name of Dataobject: object

name of Datafile: contsim_01

estimator: mestimator

Result: 'data.frame': 1000 obs. of 2 variables:

$ mstm.id: num -0.2308 -0.1202 0.0288 -0.0801 -0.0186 ...

$ mstm.re: num -0.0839 -0.1553 0.1994 -0.0153 -0.0275 ...

Output by summary-method for an object of class EvaluationList

summary(elist)

name of Evaluation List: a list of "Evaluation" objects

name of Dataobject: object

name of Datafile: contsim_01

name of Evaluation: object

estimator: mean

Result:

mean.id mean.re

Min. :-0.589662 Min. :-2.048397

1st Qu.:-0.117384 1st Qu.:-0.335711

Median : 0.002348 Median :-0.003919

Mean :-0.002694 Mean : 0.009400

3rd Qu.: 0.108640 3rd Qu.: 0.372806

Max. : 0.768604 Max. : 2.462496

name of Evaluation: object

estimator: mestimator

Result:

mstm.id mstm.re

Min. :-0.636670 Min. :-0.731594

1st Qu.:-0.127130 1st Qu.:-0.146029

Median :-0.003956 Median :-0.007322

Mean :-0.003831 Mean :-0.002743

3rd Qu.: 0.122138 3rd Qu.: 0.147472

Max. : 0.730241 Max. : 0.842396

name of Evaluation: object

estimator: median

Result:

medn.id medn.re

Min. :-0.8041779 Min. :-0.873215

1st Qu.:-0.1501175 1st Qu.:-0.169997

Median :-0.0000101 Median :-0.002162

Mean :-0.0030775 Mean :-0.003911

3rd Qu.: 0.1552393 3rd Qu.: 0.164322

Max. : 0.6484906 Max. : 0.734665

118

In this example we present a standard robust simulation study that — in variations — arises

in almost every paper on Robust Statistics. We do this with the tools provided by our package. . .

13.9 Expectation of a given function under a given distribution

This code is for illustration only; in the mean-time, the expectation- and variance operators implemented in

this example have been included to package "distrEx" where their functionality has further been extended.

As in examples 13.5 and 13.6, we illustrate the use of package "distr" by implementing a general

evaluation of expectation and variance under a given distribution.

require("distrEx")

Example

id <- function(x) x

sq <- function(x) x^2

Expectation and Variance of Binom(6,0.5)

B <- Binom(6, 0.5)

E(B, id)

[1] 3

E(B, sq) - E(B, id)^2

[1] 1.5

Expectation and Variance of Norm(1,1)

N <- Norm(1, 1)

E(N, id)

[1] 0.9999998

E(N, sq) - E(N, id)^2

[1] 0.9999944

13.10 n-fold convolution of absolutely continuous distributions

Might be useful for teaching the CLT: a straightforward implementation of the n–fold convolution

of an arbitrary implemented absolutely continuous distribution — to show accuracy of our method

we compare it to the exact formula valid for n-fold convolution of normal distributions.

From version 1.9 this is integrated to package "distr".

119

##

Demo: n-fold convolution of absolutely continuous

probability distributions

##

require(distr)

if(!isGeneric("convpow"))

setGeneric("convpow",

function(D1,...) standardGeneric("convpow"))

##

Function for n-fold convolution

-- absolute continuous distribution --

##

##implentation of Algorithm 3.4. of

Kohl, M., Ruckdeschel, P., Stabla, T. (2005):

General purpose convolution algorithm for distributions

in S4-Classes by means of FFT.

Technical report, Feb. 2005. Also available in

http://www.uni-bayreuth.de/departments/math/org/mathe7/

/RUCKDESCHEL/pubs/comp.pdf

setMethod("convpow",

signature(D1 = "AbscontDistribution"),

function(D1, N){
if((N < 1)||(!identical(floor(N), N)))

stop("N has to be a natural greater than 0")

m <- getdistrOption("DefaultNrFFTGridPointsExponent")

##STEP 1

lower <- ifelse((q(D1)(0) > - Inf), q(D1)(0),

q(D1)(getdistrOption("TruncQuantile")))

upper <- ifelse((q(D1)(1) < Inf), q(D1)(1),

q(D1)(getdistrOption("TruncQuantile"), lower.tail = FALSE))

##STEP 2

120

M <- 2^m

h <- (upper-lower)/M

if(h > 0.01)

warning(paste("Grid for approxfun too wide, ",

"increase DefaultNrFFTGridPointsExponent", sep=""))

x <- seq(from = lower, to = upper, by = h)

p1 <- p(D1)(x)

##STEP 3

p1 <- p1[2:(M + 1)] - p1[1:M]

##STEP 4

computation of DFT

pn <- c(p1, numeric((N-1)*M))

fftpn <- fft(pn)

##STEP 5

convolution theorem for DFTs

pn <- Re(fft(fftpn^N, inverse = TRUE)) / (N*M)

pn <- (abs(pn) >= .Machine$double.eps)*pn

i.max <- N*M-(N-2)

pn <- c(0,pn[1:i.max])

dn <- pn / h

pn <- cumsum(pn)

##STEP 6(density)

density

x <- c(N*lower,seq(from = N*lower+N/2*h,

to = N*upper-N/2*h, by=h),N*upper)

dnfun1 <- approxfun(x = x, y = dn, yleft = 0, yright = 0)

##STEP 7(density)

standardizer <- sum(dn[2:i.max]) + (dn[1]+dn[i.max+1]) / 2

dnfun2 <- function(x) dnfun1(x) / standardizer

121

##STEP 6(cdf)

cdf with continuity correction h/2

pnfun1 <- approxfun(x = x+0.5*h, y = pn,

yleft = 0, yright = pn[i.max+1])

##STEP 7(cdf)

pnfun2 <- function(x) pnfun1(x) / pn[i.max+1]

quantile with continuity correction h/2

yleft <- ifelse(((q(D1)(0) == -Inf)|

(q(D1)(0) == -Inf)),

-Inf, N*lower)

yright <- ifelse(((q(D1)(1) == Inf)|

(q(D1)(1) == Inf)),

Inf, N*upper)

w0 <- options("warn")

options(warn = -1)

qnfun1 <- approxfun(x = pnfun2(x+0.5*h),

y = x+0.5*h, yleft = yleft, yright = yright)

qnfun2 <- function(x){
ind1 <- (x == 0)*(1:length(x))

ind2 <- (x == 1)*(1:length(x))

y <- qnfun1(x)

y <- replace(y, ind1[ind1 != 0], yleft)

y <- replace(y, ind2[ind2 != 0], yright)

return(y)

}
options(w0)

rnew = function(N) apply(matrix(r(e1)(n*N),

ncol=N), 1, sum)

return(new("AbscontDistribution", r = rnew,

d = dnfun1, p = pnfun2, q = qnfun2))

})

122

initialize a normal distribution

A <- Norm(mean=0, sd=1)

convolution power

N <- 10

convolution via FFT

AN <- convpow(as(A,"AbscontDistribution"), N)

... for the normal distribution , 'convpow' has an "exact"

method by version 1.9 so the as(.,.) is needed to

see how the algorithm above works

convolution exact

AN1 <- Norm(mean=0, sd=sqrt(N))

plots of the results

eps <- getdistrOption("TruncQuantile")

par(mfrow=c(1,3))

low <- q(AN1)(eps)

upp <- q(AN1)(eps, lower.tail = FALSE)

x <- seq(from = low, to = upp, length = 10000)

densities

plot(x, d(AN1)(x), type = "l", lwd = 5)

lines(x , d(AN)(x), col = "orange", lwd = 1)

title("Densities")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

cdfs

plot(x, p(AN1)(x), type = "l", lwd = 5)

lines(x , p(AN)(x), col = "orange", lwd = 1)

title("CDFs")

legend("topleft", legend=c("exact", "FFT"),

fill=c("black", "orange"))

quantile functions

x <- seq(from = eps, to = 1-eps, length = 1000)

plot(x, q(AN1)(x), type = "l", lwd = 5)

lines(x , q(AN)(x), col = "orange", lwd = 1)

123

title("Quantile functions")

legend("topleft",

legend = c("exact", "FFT"),

fill = c("black", "orange"))

−10 −5 0 5 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

x

d(
A

N
1)

(x
)

Densities

exact
FFT

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

p(
A

N
1)

(x
)

CDFs

exact
FFT

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

x

q(
A

N
1)

(x
)

Quantile functions

exact
FFT

124

References

[1] Bengtsson H. (2003): The R.oo package - object-oriented programming with references
using standard R code. In: Hornik K., Leisch F. and Zeileis A. (Eds.) Proceedings of the
3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna,
Austria. Published as http://www.ci.tuwien.ac.at/Conferences/DSC-2003/ 10

[2] Chambers J.M. (1998): Programming with data. A guide to the S language. Springer.
https://statweb.stanford.edu/ jmc4/Sbook/ 10

[3] Gentleman R. (2003): Object Orientated Programming. Slides of a Short Course held in
Auckland . http://www.stat.auckland.ac.nz/S-Workshop/Gentleman/Methods.pdf 93,
94

[4] Kohl M. (2005): Numerical Contributions to the Asymptotic Theory of Robustness.
Dissertation, Universität Bayreuth. See also http://stamats.de/ThesisMKohl.pdf 74,
76

[5] Ruckdeschel P. and Kohl, M. (2014): General Purpose Convolution Algorithm for
Distributions in S4-Classes by means of FFT. J. Statist. Software, 59(4): 1–25. 10, 33,
93

[6] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. (1992): Numerical
recipes in C. The art of scientific computing. Cambridge Univ. Press, 2. Aufl. 66

[7] Rice J.A. (1988): Mathematical statistics and data analysis. The Wadsworth & Brook-
s/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books &
Software, Pacific Grove, California. 95

[8] Ruckdeschel P., Kohl M., Stabla T., and Camphausen F. (2006): S4 Classes for Distri-
butions. R-News, 6(2): 10–13. https://CRAN.R-project.org/doc/Rnews/Rnews 2006-
2.pdf 4

125

	Motivation
	Concept
	Organization in classes
	Distribution classes
	Subclasses
	Classes for Mixture Distributions
	Classes for multivariate distributions and for conditional distributions
	Parameter classes

	Simulation classes
	Evaluation class
	EvaluationList class

	Methods
	Arithmetics
	Affine linear transformations
	Decompositions, Flattening and Other Simplifications
	The group math of unary mathematical operations
	Construction of d, p, and q from r
	Convolution
	Further Binary Operators
	Truncation, Pairwise Minimum/Maximum, Huberization
	Additional helper functions
	Overloaded generic functions
	Plotting
	Plotting for Distribution objects
	Plotting for Dataclass objects
	Plotting for Evaluation objects
	Plotting for L2paramFamily objects

	liesInSupport
	Simulation (in package distrSim)
	Evaluate (in package distrTEst)
	Is-Relations
	Further methods
	Functionals (in package distrEx)
	Expectation
	Variance
	Further functionals

	Truncated moments (in package distrEx)
	Distances (in package distrEx)
	Functions for demos (in package distrEx)
	CLT for arbitrary summand distribution
	LLN for arbitrary summand distribution
	Deconvolution example

	Package distrMod
	Symmetry Classes
	Model Classes
	Parameter in a parametric family
	Risk Classes
	Minimum Criterion Estimation

	Options
	Options for distr
	Options for distrEx
	Options for distrMod
	Options for distrSim
	Options for distrTEst

	Further Documentation
	Help pages
	NEWS file
	Vignettes
	Articles

	Startup Messages
	System/version requirements
	System requirements
	Required version of R
	Dependencies
	License

	Details to the implementation
	A general utility
	Odds and Ends
	What should be done and what we could do
	What should be done but for which we lack the know-how

	Acknowledgement
	Examples
	12-fold convolution of uniform (0,1) variables
	Comparison of exact convolution to FFT for normal distributions
	Comparison of FFT to RtoDPQ
	Comparison of exact and approximate stationary regressor distribution
	Truncation and Huberization/winsorization
	Distribution of minimum and maximum of two independent random variables
	Instructive destructive example
	A simulation example
	Expectation of a given function under a given distribution
	n-fold convolution of absolutely continuous distributions

