
DRAFT

diveMove: dive analysis in R

Sebastián P. Luque∗

Contents

1 Introduction 1

2 Starting up 2

3 Reading Input Files 2

4 Extracting Information from TDR and TDRspeed Objects 3

5 ZOC and Wet/Dry period detection 4

6 Access to Elements from TDRcalibrate Objects 5

7 Speed Calibration 7

8 TDR dive and postdive statistics 8

9 Miscellaneous functions 9

10 Acknowledgements 10

1 Introduction

Dive analysis usually involves handling of large amounts of data, as new instruments
allow for frequent sampling of variables over long periods of time. The aim of this
package is to make this process more efficient for summarizing and extracting infor-
mation gathered by time-depth recorders (TDRs, hereafter). The principal motivation

∗Contact: spluque@gmail.com. Comments for improvement are very welcome!

1



DRAFT

3 Reading Input Files

Table 1. Sample TDR file structure.

date time depth light temperature speed

16/02/2004 14:30:00 12 200 8.4 1.44
16/02/2004 14:30:05 15 180 8.0 1.75
16/02/2004 14:30:10 19 170 7.6 1.99

. . . . . . . . . . . . . . . . . .

for developing diveMove was to provide more flexibility during the various stages of
analysis than that offered by popular commercial software. This is achieved by making
the results from intermediate calculations easily accessible, allowing the user to make
his/her own summaries beyond the default choices the package provides. The following
sections of this vignette illustrate a typical work flow during analysis of TDR data,
using the dives data available in diveMove as an example.

2 Starting up

As with other packages in R, to use the package we load it with the funtion library:

> library(diveMove)

This makes the objects in the package available in the current R session. A short
overview of the most important functions can be seen by running the examples in the
package’s help page:

> example(diveMove)

3 Reading Input Files

Input files must be simple, comma-delimited text files1. The order of columns is not
significant, as the column numbers indicating the variables of interest can be supplied
as arguments. Table 1 shows the file structure that readTDR assumes by default, which
is a standard structure of files from common TDR models.

Depending on the TDR model, speed may be omitted.

To read the file into R , use the function readTDR:

> sealX <- readTDR(system.file(file.path("data",

+ "dives.csv"), package = "diveMove"), speed = TRUE)

Read the help page for readTDR using ?readTDR following common R help facilities.

1The extension does not matter, but conventionally these files have a .csv extension

2



DRAFT

4 Extracting Information from TDR and TDRspeed Objects

Thus, data could have been subsampled at a larger interval than that in the original
file, so that the time interval between readings is 10 s:

> sealX <- readTDR(system.file(file.path("data",

+ "dives.csv"), package = "diveMove"), speed = TRUE,

+ subsamp = 10)

But since the original 5 s interval (which is the default value for subsamp) is what will
be used for the subsequent sections, it is recreated it here:

> sealX <- readTDR(system.file(file.path("data",

+ "dives.csv"), package = "diveMove"), speed = TRUE)

The format in which date and time should be interpreted can be controlled with the
argument dtformat . If the data are already available in the R session, e.g. as a data

frame, then the function createTDR can be used to convert it to a form that facilitates
further analyses.

Both of these functions store the data in an object of class TDR or TDRspeed , which
hold information on the source file and sampling interval, in addition to the variables
described above. Which of these objects is created is determined by the speed .

4 Extracting Information from TDR and TDRspeed
Objects

For convenience, extractor methods are available to access the different slots from ob-
jects of these classes. The standard show method will display the usual overview infor-
mation on the object:

> sealX

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv

Sampling Interval (s): 5

Number of Samples : 34199

Sampling Begins : 2002-01-05 11:32:00

Sampling Ends : 2002-01-07 11:01:50

Total Duration (d) : 1.979

Measured depth range : [ -4 , 91 ]

Other variables : light temperature speed

Other extractor methods are named after the component they extract: getTime, get-
Depth, getSpeed , and getDtime, where the latter extracts the sampling interval. The
plotTDR method brings up a plot of the data covering the entire record, although a
tcltk widget provides controls for zooming and panning to any particular time window.

3



DRAFT

5 ZOC and Wet/Dry period detection

Alernatively, the underlying function plotTD provides the same functionality, but takes
separate time and depth arguments, rather than a TDR object.

At any time, TDR objects can be coerced to a simple data frame, which can later be
exported or manipulated any other way:

> sealX.df <- as.data.frame(sealX)

> head(sealX.df)

time depth light temperature speed

1 2002-01-05 11:32:00 NA NA NA NA

2 2002-01-05 11:32:05 NA NA NA NA

3 2002-01-05 11:32:10 NA NA NA NA

4 2002-01-05 11:32:15 NA NA NA NA

5 2002-01-05 11:32:20 NA NA NA NA

6 2002-01-05 11:32:25 NA NA NA NA

5 Zero-Offset Depth Correction and Summary of
Wet/Dry Periods

One the first steps of dive analysis involves correcting depth for shifts in the pressure
transducer, so that surface readings correspond to the value zero. Although some
complex algorithms exist for detecting where these shifts occur in the record, the shifts
remain difficult to detect and dives are often missed, which a visual examination of the
data would have exposed. The trade off is that visually zero-adjusting depth is tedious,
but the advantages of this approach far outweigh this cost, as much insight is gained
by visually exploring the data. Not to mention the fact that obvious problems in the
records are more effectively dealt with in this manner.

That personal rant aside, zero offset correction (ZOC) is done in diveMove using the
function zoc. However, a more efficient method of doing this is by using the calibrat-

eDepth function, which takes a TDR object (or inheriting from it) to perform three
basic tasks. The first is to ZOC the data, using the tcltk package to be able to do it
interactively:

> dcalib <- calibrateDepth(sealX)

This command brings up a plot with tcltk controls allowing to pan and zoom in or
out of the data, as well as adjustment of the depth scale. Thus, an appropriate time
window with a unique surface depth value can be displayed. It is important to make
the display such that the depth scale is small enough to allow the resolution of the
surface value with the mouse. Clicking on the ZOC button waits for two clicks:

1. the coordinates of the first click define the starting time for the window to be
ZOC’ed, and the depth corresponding to the surface,

4



DRAFT

6 Access to Elements from TDRcalibrate Objects

2. the second click defines the end time for the window (only the x coordinate has
any meaning).

This procedure can be repeated as many times as needed. If there is any overlap
between time windows, then the last one prevails. However, if the offset is known a
priori, there is no need to go through all this procedure, and the value can be provided
as the argument offset to calibrateDepth.

Once depth has been ZOC’ed, calibrateDepth will identify dry and wet periods in the
record. Wet periods are those where a depth reading is available, dry periods are those
without a depth reading. Records often have abherrant missing depth that should not
be considered dry periods, as they are often of very short duration. Likewise, there may
be periods of wet activity that are too short to be compared with other wet periods.
This can be controlled by setting the arguments dry.thr and wet.thr .

Finally, calibrateDepth identifies all dives in the record, according to a minimum
depth criteria given as its divethres argument. The result (value) of this function is
an object of class TDRcalibrate, where all the information obtained during the tasks
described above are stored. Again, an appropriate show method is available to display
a short overview of such objects:

> dcalib

Depth calibration -- Class TDRcalibrate object

Source file : dives.csv

Containing TDR of class : TDRspeed

Number of dry phases : 4

Number of aquatic phases : 3

Number of dives detected : 317

Dry threshold used (s) : 70

Aquatic theshold used (s) : 3610

Dive threshold used (s) : 4

Speed calibration coefficients: a = 0 ; b = 1

6 Access to Elements from TDRcalibrate Objects

Extractor methods are also available to access the information stored in TDRcalibrate
objects. These include: getTDR, getGAct , getDAct , getDPhaseLab, and getSpeedCoefs .
These are all generic functions2 that access the (depth) calibrated TDR object, details
from wet/dry periods, dives, dive phases, and speed calibration coefficients (see Sec-
tion 7), respectively. Below is a short explanation of these methods.

getTDR This method simply takes the TDRcalibrate object as its single argument and

2A few of them with more than one method

5



DRAFT

6 Access to Elements from TDRcalibrate Objects

extracts the TDR object3:

> getTDR(dcalib)

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv

Sampling Interval (s): 5

Number of Samples : 34199

Sampling Begins : 2002-01-05 11:32:00

Sampling Ends : 2002-01-07 11:01:50

Total Duration (d) : 1.979

Measured depth range : [ 0 , 88 ]

Other variables : light temperature speed

getGAct There are two methods for this generic, allowing access to a list with details
about all wet/dry periods found. One of these extracts the entire list (output
omitted for brevity):

> getGAct(dcalib)

The other provides access to particular elements of the list , by their name. For
example, if we are interested in extracting only the vector that tells us to which
period number every row in the record belongs to, we would issue the command:

> getGAct(dcalib, "phase.id")

Other elements that can be extracted are named “activity”, “begin”, and “end”,
and can be extracted in a similar fashion. These elements correspond to the
activity performed for each reading (see ?detPhase for a description of the labels
for each activity), the beginning and ending time for each period, respectively.

getDAct This generic also has two methods; one to extract an entire data frame with
details about all dive and postdive periods found (output omitted):

> getDAct(dcalib)

The other method provides access to the columns of this data frame, which are
named “dive.id”, “dive.activity”, and “postdive.id”. Thus, providing any one of
these strings to getDAct, as a second argument will extract the corresponding
column.

getDPhaseLab This generic function extracts a factor identifying each row of the record
to a particular dive phase (see ?detDive for a description of the labels of the
factor identifying each dive phase). Two methods are available; one to extract
the entire factor, and the other to select particular dive(s), by its (their) number,
respectively (output omitted):

> getDPhaseLab(dcalib)

> getDPhaseLab(dcalib, 20)

3In fact, a TDRspeed object in this example

6



DRAFT

7 Speed Calibration

> dphases <- getDPhaseLab(dcalib, c(100:300))

The latter method is useful for visually inspecting the assignment of points to
particular dive phases. Before doing that though, this is a good time to introduce
another generic function that allows the subsetting of the original TDR object to
a single a dive or group of dives’ data:

> subSealX <- extractDive(dcalib, diveNo = c(100:300))

> subSealX

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv

Sampling Interval (s): 5

Number of Samples : 2410

Sampling Begins : 2002-01-06 00:45:15

Sampling Ends : 2002-01-07 03:27:10

Total Duration (d) : 1.112

Measured depth range : [ 0 , 88 ]

Other variables : light temperature speed

As can be seen, the function takes a TDRcalibrate object and a vector indicating
the dive numbers to extract, and returns a TDR object containing the subsetted
data. Once a subset of data has been selected, it is possible to plot them and
pass the factor labelling dive phases as the argument phaseCol to the plotTDR
method4:

> plotTDR(subSealX, phaseCol = dphases)

7 Speed Calibration

Calibration of speed readings is done using the principles described in Blackwell et al.
(1999) and Hindell et al. (1999). The function calibrateSpeed performs this operation,
and allows the selection of the particular subset of the data that should be used for the
calibration:

> vcalib <- calibrateSpeed(dcalib, z = 1)

> vcalib

Depth calibration -- Class TDRcalibrate object

Source file : dives.csv

Containing TDR of class : TDRspeed

Number of dry phases : 4

4The function that the method uses is actually plotTD, so all the possible arguments can be studied
by reading the help page for plotTD

7



DRAFT

8 TDR dive and postdive statistics

Number of aquatic phases : 3

Number of dives detected : 317

Dry threshold used (s) : 70

Aquatic theshold used (s) : 3610

Dive threshold used (s) : 4

Speed calibration coefficients: a = -0.44 ; b = 1.1

1 2 3 4

1

2

3

4

dives.csv

rate of depth change (m/s)

sp
ee

d 
(m

/s
)

y == −0.438 ++ 1.121x

Figure 1. Example speed calibration line from a TDR record.

Using plot=FALSE it is possible to turn off the default side effect of producing a plot
displaying the quantile regression fit (Figure 1).

Control is possible by the use of arguments bad , which controls minimum rates of depth
change and speeds through which the calibration line should be drawn. To control for
the resolution of the TDR, z can be used to include only changes in depth greater than
a given value for the construction of the calibration line.

If the calibration coefficients from the implicit quantile regression are known a priori,
then these can be supplied to the function via its coefs argument. In this case, no plots
are created.

8 TDR dive and postdive statistics

Once data have been calibrated and the record broken up at “trip” and “dive” scales,
obtaining dive statistics is a trivial call to function diveStats:

8



DRAFT

9 Miscellaneous functions

> dives <- diveStats(vcalib)

> head(dives, 3)

begdesc enddesc

1 2002-01-05 12:20:10 2002-01-05 12:20:10

2 2002-01-05 21:19:40 2002-01-05 21:20:10

3 2002-01-05 21:22:10 2002-01-05 21:23:05

begasc desctim botttim asctim descdist

1 2002-01-05 12:20:25 2.5 15 2.5 3

2 2002-01-05 21:20:50 32.5 40 37.5 24

3 2002-01-05 21:23:50 57.5 45 72.5 61

bottdist ascdist desc.tdist desc.mean.speed desc.angle

1 6 3 NA NA NA

2 9 25 63.62 2.121 22.16

3 10 67 98.08 1.783 38.46

bott.tdist bott.mean.speed asc.tdist asc.mean.speed

1 42.87 2.858 NA NA

2 87.59 2.190 55.67 1.591

3 69.92 1.554 108.13 1.545

asc.angle divetim maxdep postdive.dur postdive.tdist

1 NA 20 6 32345 52784.67

2 26.69 110 29 35 35.78

3 38.29 175 67 75 89.21

postdive.mean.speed

1 1.638

2 1.022

3 1.189

The function takes a single argument: an object of class TDRcalibrate, and returns a
data frame with one row per dive in the record, with a suite of basic dive statistics in
each column. Please consult ?diveStats for an explanation of each of the variables
estimated, although the names of the output data frame should be self explanatory.
These variables are thus available for calculating any other derived values, by extracting
them using the standard R subscripting facilities.

9 Miscellaneous functions

Other functions are included for handling location data, and these are readLocs, aust-
Filter, and distSpeed. These are useful for reading, filtering, and summarizing travel
information. For extensive animal movement analyses, refer to package trip.

9



DRAFT

References

10 Acknowledgements

Invaluable input and help during development of this package has been offered by my
mentors John P.Y. Arnould, Christophe Guinet, and Edward H. Miller. I also thank
the regular contributors to R-help for their help during development.

References

Blackwell, S., Haverl, C. A., Le Boeuf, B. J., and Costa, D. P. (1999). A method for
calibrating swim-speed recorders. Mar. Mamm. Sci., 15(3):894–905.

Hindell, M. A., McConnell, B. J., Fedak, M. A., Slip, D. J., Burton, H. R., Reijnders,
P. J. H., and McMahon, C. R. (1999). Environmental and physiological determinants
of successful foraging by naive southern elephant seal pups during their first trip to
sea. Can. J. Zool., 77:1807–1821.

10



DRAFT
diveMove
October 18, 2007

R topics documented:

austFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bout-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
bout-misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
bouts2MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
bouts2NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
calibrateDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
calibrateSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
detDive-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
detPhase-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
distSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
diveMove-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
diveMove-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
dives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
diveStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
extractDive-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
labDive-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
plotTDR-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
readLocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
readTDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
rqPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
sealLocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
TDR-accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TDRcalibrate-accessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TDRcalibrate-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
TDR-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
timeBudget-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
zoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 41

1



DRAFT

2 austFilter

austFilter Filter satellite locations

Description

Apply a three stage algorithm to eliminate erroneous locations, based on the procedure outlined in
Austin et al. (2003).

Usage

austFilter(time, lon, lat, id=gl(1, 1, length(time)),
speed.thr, dist.thr, window=5)

grpSpeedFilter(x, speed.thr, window=5)
rmsDistFilter(x, speed.thr, window=5, dist.thr)

Arguments

time POSIXct object with dates and times for each point.

lon Numeric vectors of longitudes, in decimal degrees.

lat Numeric vector of latitudes, in decimal degrees.

id A factor grouping points in different categories (e.g. individuals).

speed.thr Speed threshold (m/s) above which filter tests should fail any given point.

dist.thr Distance threshold (km) above which the last filter test should fail any given
point.

window Integer indicating the size of the moving window over which tests should be
carried out.

x 3-column matrix with column 1: POSIXct vector; column 2: numeric longi-
tude vector; column 3: numeric latitude vector.

Details

These functions implement the location filtering procedure outlined in Austin et al. (2003). grpSpeedFilter
and rmsDistFilter can be used to perform only the first stage or the second and third stages
of the algorithm on their own, respectively. Alternatively, the three filters can be run sequentially
using austFilter.

The first stage of the filter is an iterative process which tests every point, except the first and last
(w/2) - 1 (where w is the window size) points, for travel velocity relative to the preceeding/following
(w/2) - 1 points. If all w - 1 speeds are greater than the specified threshold, the point is marked as
failing the first stage. In this case, the next point is tested, removing the failing point from the set of
test points.

The second stage runs McConnell et al. (1992) algorithm, which tests all the points that passed the
first stage, in the same manner as above. The root mean square of all w - 1 speeds is calculated, and
if it is greater than the specified threshold, the point is marked as failing the second stage.



DRAFT

austFilter 3

The third stage is run simultaneously with the second stage, but if the mean distance of all w - 1
pairs of points is greater than the specified threshold, then the point is marked as failing the third
stage.

The speed and distance threshold should be obtained separately (see distSpeed).

Value

grpSpeedFilter returns a logical vector indicating those lines that passed the test.

rmsDistFilter and austFilter return a matrix with 2 or 3 columns, respectively, of logical
vectors with values TRUE for points that passed each stage. For the latter, positions that fail the
first stage fail the other stages too. The second and third columns returned by austFilter, as
well as those returned by rmsDistFilter are independent of one another; i.e. positions that fail
stage 2 do not necessarily fail stage 3.

Warning

This function applies McConnell et al.’s filter as described in Austin et al. (2003), but other authors
may have used the filter differently. Austin et al. (2003) have apparently applied the filter in a
vectorized manner. It is not clear from the original paper whether the filter is applied iteratively or
in a vectorized fashion, so it seems to be used inconsistently.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉 and Andy Liaw.

References

McConnell BJ, Chambers C, Fedak MA. 1992. Foraging ecology of southern elephant seals in
relation to bathymetry and productivity of the Southern Ocean. Antarctic Science 4:393-398.

Austin D, McMillan JI, Bowen D. 2003. A three-stage algorithm for filtering erroneous Argos
satellite locations. Marine Mammal Science 19: 371-383.

See Also

distSpeed

Examples

locs <- readLocs(system.file(file.path("data", "sealLocs.csv"),
package="diveMove"), idCol=1, dateCol=2,

dtformat="%Y-%m-%d %H:%M:%S", classCol=3, lonCol=4,
latCol=5)

ringy <- subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

## Austin et al.'s group filter alone
grp <- grpSpeedFilter(ringy[, 3:5], speed.thr=1.1)

## McConnell et al.'s filter (root mean square test), and distance test alone
rms <- rmsDistFilter(ringy[, 3:5], speed.thr=1.1, dist.thr=300)



DRAFT

4 bout-methods

## Show resulting tracks
n <- nrow(ringy)
plot.nofilter <- function(main) {

plot(lat ~ lon, ringy, type="n", main=main)
with(ringy, segments(lon[-n], lat[-n], lon[-1], lat[-1]))

}
layout(matrix(1:4, ncol=2, byrow=TRUE))
plot.nofilter(main="Unfiltered Track")
plot.nofilter(main="Group Filter")
n1 <- length(which(grp))
with(ringy[grp, ], segments(lon[-n1], lat[-n1], lon[-1], lat[-1],

col="blue"))
plot.nofilter(main="Root Mean Square Filter")
n2 <- length(which(rms[, 1]))
with(ringy[rms[, 1], ], segments(lon[-n2], lat[-n2], lon[-1], lat[-1],

col="red"))
plot.nofilter(main="Distance Filter")
n3 <- length(which(rms[, 2]))
with(ringy[rms[, 2], ], segments(lon[-n3], lat[-n3], lon[-1], lat[-1],

col="green"))

## All three tests in sequence (Austin et al. procedure)
austin <- with(ringy, austFilter(time, lon, lat, speed.thr=1.1,

dist.thr=300))
layout(matrix(1:4, ncol=2, byrow=TRUE))
plot.nofilter(main="Unfiltered Track")
plot.nofilter(main="Stage 1")
n1 <- length(which(austin[, 1]))
with(ringy[austin[, 1], ], segments(lon[-n1], lat[-n1], lon[-1], lat[-1],

col="blue"))
plot.nofilter(main="Stage 2")
n2 <- length(which(austin[, 2]))
with(ringy[austin[, 2], ], segments(lon[-n2], lat[-n2], lon[-1], lat[-1],

col="red"))
plot.nofilter(main="Stage 3")
n3 <- length(which(austin[, 3]))
with(ringy[austin[, 3], ], segments(lon[-n3], lat[-n3], lon[-1], lat[-1],

col="green"))

bout-methods Methods for Plotting and Extracting the Bout Ending Criterion

Description

Plot results from fitted mixture of 2-process Poisson models, and calculate the bout ending criterion.

Usage

## S4 method for signature 'nls':



DRAFT

bout-methods 5

plotBouts(fit, ...)
## S4 method for signature 'mle':
plotBouts(fit, x, ...)
## S4 method for signature 'nls':
bec2(fit)
## S4 method for signature 'mle':
bec2(fit)

Arguments

fit nls or mle object.

x Numeric object with variable modelled.

... Arguments passed to the underlying plotBouts2.nls and plotBouts2.mle.

General Methods

plotBouts signature(fit="nls"): Plot fitted 2-process model of log frequency vs the in-
terval mid points, including observed data.

plotBouts signature(x="mle"): As the nls method, but models fitted through maximum
likelihood method. This plots the fitted model and a density plot of observed data.

bec2 signature(fit="nls"): Extract the estimated bout ending criterion from a fitted 2-
process model.

bec2 signature(fit="mle"): As the nls method, but extracts the value from a maximum
likelihood model.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

References

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S. P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts
improves accuracy, precision, and objectivity. Behaviour, in press.

Mori, Y.; Yoda, K. and Sato, K. (2001) Defining dive bouts using a sequential differences analysis.
Behaviour 138, 1451-1466.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

See Also

bouts.mle, bouts2.nls for examples.



DRAFT

6 bout-misc

bout-misc Fit a Broken Stick Model on Log Frequency Data for identification of
bouts of behaviour

Description

Application of methods described by Sibly et al. (1990) and Mori et al. (2001) for the identification
of bouts of behaviour, based on sequential differences of a variable.

Usage

boutfreqs(x, bw, method=c("standard", "seq.diff"), plot=TRUE)
boutinit(lnfreq, x.break, plot=TRUE)
labelBouts(x, bec, bec.method=c("standard", "seq.diff"))
logit(p)
unLogit(logit)

Arguments

x numeric vector on which bouts will be identified based on “method”. For labelBouts
it can also be a matrix with different variables for which bouts should be identi-
fied.

bw bin width for the histogram.
method, bec.method

method used for calculating the frequencies: “standard” simply uses x, while
“seq.diff” uses the sequential differences method.

plot logical, whether to plot results or not.

lnfreq data frame with components lnfreq (log frequencies) and corresponding x (mid
points of histogram bins).

x.break x value defining the break point for broken stick model, such that x < xlim is 1st
process, and x >= xlim is 2nd one.

bec numeric vector or matrix with values for the bout ending criterion which should
be compared against the values in x for identifying the bouts.

p vector of proportions (0-1) to transform to the logit scale.

logit Logit value to transform back to original scale.

Details

This follows the procedure described in Mori et al. (2001), which is based on Sibly et al. 1990.
Currently, only a two process model is supported.

boutfreqs creates a histogram with the log transformed frequencies of x with a chosen bin
width and upper limit. Bins following empty ones have their frequencies averaged over the number
of previous empty bins plus one.



DRAFT

bout-misc 7

boutinit fits a "broken stick" model to the log frequencies modelled as a function of x (well, the
midpoints of the binned data), using a chosen value to separate the two processes.

labelBouts labels each element (or row, if a matrix) of x with a sequential number, identifying
which bout the reading belongs to.

logit and unLogit are useful for reparameterizing the negative maximum likelihood function,
if using Langton et al. (1995).

Value

boutfreqs returns a data frame with components lnfreq containing the log frequencies and x,
containing the corresponding mid points of the histogram. Empty bins are excluded. A plot is
produced as a side effect if argument plot is TRUE. See the Details section.

boutinit returns a list with components a1, lambda1, a2, and lambda2, which are starting values
derived from broken stick model. A plot is produced as a side effect if argument plot is TRUE.

labelBouts returns a numeric vector sequentially labelling each row or element of x , which
associates it with a particular bout.

unLogit and logit return a numeric vector with the (un)transformed arguments.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

References

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts im-
proves accuracy, precision, and objectivity. Behaviour, in press.

Mori, Y.; Yoda, K. and Sato, K. (2001) Defining dive bouts using a sequential differences analysis.
Behaviour, 2001 138, 1451-1466.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

See Also

bouts2.nls, bouts.mle.

Examples

data(divesSummary)
postdives <- divesSummary$postdive.dur[divesSummary$trip.no == 2]
## Remove isolated dives
postdives <- postdives[postdives < 2000]
lnfreq <- boutfreqs(postdives, bw=0.1, method="seq.diff", plot=FALSE)
boutinit(lnfreq, 50)



DRAFT

8 bouts2MLE

bouts2MLE Maximum Likelihood Model of mixture of 2 Poisson Processes

Description

Functions to model a mixture of 2 random Poisson processes to identify bouts of behaviour. This
follows Langton et al. (1995).

Usage

bouts2.mleFUN(x, p, lambda1, lambda2)
bouts2.ll(x)
bouts2.LL(x)
bouts.mle(ll.fun, start, x, ...)
bouts2.mleBEC(fit)
plotBouts2.mle(fit, x, xlab="x", ylab="Log Frequency", bec.lty=2, ...)
plotBouts2.cdf(fit, x, draw.bec=FALSE, bec.lty=2, ...)

Arguments

x Numeric vector with values to model.
p, lambda1, lambda2

Parameters of the mixture of Poisson processes.

ll.fun function returning the negative of the maximum likelihood function that should
be maximized. This should be a valid minuslogl argument to mle.

start, ... Arguments passed to mle. For plotBouts2.cdf, arguments passed to plot.ecdf.
For plotBouts2.mle, arguments passed to curve.

fit mle object.

xlab, ylab Titles for the x and y axes.

bec.lty Line type specification for drawing the BEC reference line.

draw.bec Logical; do we draw the BEC?

Details

For now only a mixture of 2 Poisson processes is supported. Even in this relatively simple case, it
is very important to provide good starting values for the parameters.

One useful strategy to get good starting parameter values is to proceed in 4 steps. First, fit a broken
stick model to the log frequencies of binned data (see boutinit), to obtain estimates of 4 param-
eters corresponding to a 2-process model (Sibly et al. 1990). Second, calculate parameter p from
the 2 alpha parameters obtained from the broken stick model, to get 3 tentative initial values for the
2-process model from Langton et al. (1995). Third, obtain MLE estimates for these 3 parameters,
but using a reparameterized version of the -log L2 function. Lastly, obtain the final MLE estimates
for the 3 parameters by using the estimates from step 3, un-transformed back to their original scales,
maximizing the original parameterization of the -log L2 function.



DRAFT

bouts2MLE 9

boutinit can be used to perform step 1. Calculation of the mixing parameter p in step 2 is
trivial from these estimates. Function bouts2.LL is a reparameterized version of the -log L2
function given by Langton et al. (1995), so can be used for step 3. This uses a logit (see logit)
transformation of the mixing parameter p , and log transformations for both density parameters
lambda1 and lambda2 . Function bouts2.ll is the -log L2 function corresponding to the un-
transformed model, hence can be used for step 4.

bouts.mle is the function performing the main job of maximizing the -log L2 functions, and is
essentially a wrapper around mle. It only takes the -log L2 function, a list of starting values, and
the variable to be modelled, all of which are passed to mle for optimization. Additionally, any
other arguments are also passed to mle, hence great control is provided for fitting any of the -log
L2 functions.

In practice, step 3 does not pose major problems using the reparameterized -log L2 function, but it
might be useful to use method “L-BFGS-B” with appropriate lower and upper bounds. Step 4 can
be a bit more problematic, because the parameters are usually on very different scales. Therefore,
it is almost always the rule to use method “L-BFGS-B”, again with bounding the parameter search,
as well as passing a control list with proper parscale for controlling the optimization. See
Note below for useful constraints which can be tried.

Value

bouts.mle returns an object of class mle.

bouts2.mleBEC and bouts2.mleFUN return a numeric vector.

bouts2.LL and bouts2.ll return a function.

plotBouts2.mle and plotBouts2.cdf return nothing, but produce a plot as side effect.

Note

In the case of a mixture of 2 Poisson processes, useful values for lower bounds for the bouts.LL
reparameterization are c(-2, -5, -10). For bouts2.ll, useful lower bounds are rep(1e-
08, 3). A useful parscale argument for the latter is c(1, 0.1, 0.01). However, I have only
tested this for cases of diving behaviour in pinnipeds, and may with other cases.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

References

Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood
approach. Behaviour 132, 9-10.

Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts im-
proves accuracy, precision, and objectivity. Behaviour, in press.

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts. Animal Behaviour 39,
63-69.

See Also

mle, optim, logit, unLogit for transforming and fitting a reparameterized model.



DRAFT

10 bouts2NLS

Examples

data(divesSummary)
postdives <- divesSummary$postdive.dur[divesSummary$trip.no == 2]
postdives.diff <- abs(diff(postdives))

## Remove isolated dives
postdives.diff <- postdives.diff[postdives.diff < 2000]
lnfreq <- boutfreqs(postdives.diff, bw=0.1, plot=FALSE)
startval <- boutinit(lnfreq, 50)
p <- startval$a1 / (startval$a1 + startval$a2)

## Fit the reparameterized (transformed parameters) model
init.parms <- list(p=logit(p), lambda1=log(startval$lambda1),

lambda2=log(startval$lambda2))
bout.fit1 <- bouts.mle(bouts2.LL, start=init.parms, x=postdives.diff,

method="L-BFGS-B", lower=c(-2, -5, -10))
coefs <- as.vector(coef(bout.fit1))

## Un-transform and fit the original parameterization
init.parms <- list(p=unLogit(coefs[1]), lambda1=exp(coefs[2]),

lambda2=exp(coefs[3]))
bout.fit2 <- bouts.mle(bouts2.ll, x=postdives.diff, start=init.parms,

method="L-BFGS-B", lower=rep(1e-08, 3),
control=list(parscale=c(1, 0.1, 0.01)))

plotBouts(bout.fit2, postdives.diff)

## Plot cumulative frequency distribution
plotBouts2.cdf(bout.fit2, postdives.diff)

## Estimated BEC
bec2(bout.fit2)

bouts2NLS Fit mixture of 2 Poisson Processes to Log Frequency data

Description

Functions to model a mixture of 2 random Poisson processes to histogram-like data of log frequency
vs interval mid points. This follows Sibly et al. (1990) method.

Usage

bouts2.nlsFUN(x, a1, lambda1, a2, lambda2)
bouts2.nls(lnfreq, start, maxiter)
bouts2.nlsBEC(fit)
plotBouts2.nls(fit, lnfreq, bec.lty, ...)



DRAFT

bouts2NLS 11

Arguments

x Numeric vector with values to model.
a1, lambda1, a2, lambda2

Parameters from the mixture of Poisson processes.

lnfreq data frame with named components lnfreq (log frequencies) and corresponding
x (mid points of histogram bins).

start, maxiter
Arguments passed to nls.

fit nls object.

bec.lty Line type specification for drawing the BEC reference line.

... Arguments passed to plot.default.

Details

Value

bouts2.nlsFUN returns a numeric vector evaluating the mixture of 2 Poisson process.

bouts2.nls returns an nls object resulting from fitting this model to data.

bouts2.nlsBEC returns a number corresponding to the bout ending criterion derived from the
model.

plotBouts2.nls plots the fitted model with the corresponding data.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

References

Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts Animal Behaviour 39,
63-69.

See Also

bouts.mle for a better approach.

Examples

data(divesSummary)
## Postdive durations
postdives <- divesSummary$postdive.dur[divesSummary$trip.no == 2]
postdives.diff <- abs(diff(postdives))
## Remove isolated dives
postdives.diff <- postdives.diff[postdives.diff < 2000]

## Construct histogram



DRAFT

12 calibrateDepth

lnfreq <- boutfreqs(postdives.diff, bw=0.1, plot=FALSE)
startval <- boutinit(lnfreq, 50)

## Fit the 2 process model
bout.fit1 <- bouts2.nls(lnfreq, start=startval, maxiter=500)
summary(bout.fit1)
plotBouts(bout.fit1)

## Estimated BEC
bec2(bout.fit1)

calibrateDepth Calibrate Depth and Generate a "TDRcalibrate" object

Description

Detect periods of major activities in a TDR record, calibrate depth readings, and generate a "TDR-
calibrate" object essential for subsequent summaries of diving behaviour.

Usage

calibrateDepth(x, dry.thr=70, wet.thr=3610, dive.thr=4, offset,
descent.crit.q=0.1, ascent.crit.q=0.1, wiggle.tol=0.8)

Arguments

x An object of class TDR for calibrateDepth or an object of class TDRcalibrate
for calibrateSpeed.

dry.thr Dry error threshold in seconds. Dry phases shorter than this threshold will be
considered as wet.

wet.thr Wet threshold in seconds. At-sea phases shorter than this threshold will be con-
sidered as trivial wet.

dive.thr Threshold depth below which an underwater phase should be considered a dive.

offset Argument to zoc. If not provided, the offset is obtained using an interactive
plot of the data.

descent.crit.q
Critical quantile of rates of descent below which descent is deemed to have
ended.

ascent.crit.q
Critical quantile of rates of ascent above which ascent is deemed to have started.

wiggle.tol Proportion of maximum depth above which wiggles should not be allowed to
define the end of descent. It’s also the proportion of maximum depth below
which wiggles should be considered part of bottom phase.



DRAFT

calibrateDepth 13

Details

This function is really a wrapper around .detPhase and .detDive, which perform the work
on simplified objects. It performs zero-offset correction of depth, wet/dry phase detection, and
detection of dives, as well as proper labelling of the latter.

The procedure starts by first creating a factor with value ‘L’ (dry) for rows with NAs for depth
and value ‘W’ (wet) otherwise. It subsequently calculates the duration of each of these phases of
activity. If the duration of an dry phase (‘L’) is less than dry.thr, then the values in the factor for
that phase are changed to ‘W’ (wet). The duration of phases is then recalculated, and if the duration
of a phase of wet activity is less than wet.thr, then the corresponding value for the factor is
changed to ‘Z’ (trivial wet). The durations of all phases are recalculated a third time to provide final
phase durations.

The next step is to detect dives whenever the zero-offset corrected depth in an underwater phase
is below the supplied dive threshold. A new factor with finer levels of activity is thus generated,
including ‘U’ (underwater), and ‘D’ (diving) in addition to the ones described above.

Once dives have been detected and assigned to a period of wet activity, phases within dives are
detected using the descent, ascent and wiggle criteria. This procedure generates a factor with lev-
els “D”, “DB”, “B”, “BA”, “A”, “DA”, and “X”, breaking the input into descent, descent/bottom,
bottom, bottom/ascent, ascent, and non-dive, respectively.

Value

An object of class TDRcalibrate.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

TDRcalibrate, zoc

Examples

data(divesTDR)
divesTDR

## Consider a 3 m offset, and a dive threshold of 3 m
dcalib <- calibrateDepth(divesTDR, dive.thr=3, offset=3)
if (dev.interactive(orNone=TRUE)) {

plotTDR(dcalib, labels="dive.phase", surface=TRUE)
}



DRAFT

14 calibrateSpeed

calibrateSpeed Calibrate and build a "TDRcalibrate" object

Description

These functions create a "TDRcalibrate" object which is necessary to obtain dive summary statistics.

Usage

calibrateSpeed(x, tau=0.1, contour.level=0.1, z=0, bad=c(0, 0),
main=slot(getTDR(x), "file"), coefs, plot=TRUE,
postscript=FALSE, ...)

Arguments

x An object of class TDR for calibrateDepth or an object of class TDRcalibrate
for calibrateSpeed.

tau Quantile on which to regress speed on rate of depth change; passed to rq.
contour.level

The mesh obtained from the bivariate kernel density estimation corresponding
to this contour will be used for the quantile regression to define the calibration
line.

z Only changes in depth larger than this value will be used for calibration.

bad Length 2 numeric vector indicating that only rates of depth change and speed
greater than the given value should be used for calibration, respectively.

coefs Known speed calibration coefficients from quantile regression as a vector of
length 2 (intercept, slope). If provided, these coefficients are used for calibrating
speed, ignoring all other arguments, except x.

main, ... Arguments passed to rqPlot.

plot Logical indicating whether to plot the results.

postscript Logical indicating whether to produce postscript file output.

Details

This calibrates speed readings following the procedure outlined in Blackwell et al. (1999).

Value

An object of class TDRcalibrate.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉



DRAFT

detDive-internal 15

References

Blackwell S, Haverl C, Le Boeuf B, Costa D (1999). A method for calibrating swim-speed recorders.
Marine Mammal Science 15(3):894-905.

See Also

TDRcalibrate

Examples

data(divesTDRcalibrate)
divesTDRcalibrate

## Calibrate speed using only changes in depth > 2 m
vcalib <- calibrateSpeed(divesTDRcalibrate, z=2)
vcalib

detDive-internal Detect dives from depth readings

Description

Identify dives in TDR records based on a dive threshold.

Usage

.detDive(zdepth, act, dive.thr=4, ...)

Arguments

zdepth Vector of zero-offset corrected depths.

act Factor as long as depth coding activity, with levels specified as in .detPhase.

dive.thr Threshold depth below which an underwater phase should be considered a dive.

... The sampling interval in seconds.

Value

A data frame with the following elements for .detDive

dive.id Numeric vector numbering each dive in the record.
dive.activity

Factor with levels ‘L’, ‘W’, ‘U’, ‘D’, and ‘Z’, see .detPhase. All levels may
be represented.

postdive.id Numeric vector numbering each postdive interval with the same value as the
preceding dive.



DRAFT

16 detPhase-internal

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

.detPhase, zoc

detPhase-internal Detect phases of activity from depth readings

Description

Functions to identify sections of a TDR record displaying one of three possible activities: dry, wet,
and trivial wet.

Usage

.detPhase(time, depth, dry.thr, wet.thr, ...)

Arguments

time POSIXct object with date and time for all depths.

depth Numeric vector with depth readings.
dry.thr, wet.thr

Passed from calibrateDepth.

... Passed from calibrateDepth; sampling interval in seconds.

Details

.detPhase first creates a factor with value ‘L’ (dry) for rows with NAs for depth and value ‘W’
(wet) otherwise. It subsequently calculates the duration of each of these phases of activity. If the
duration of an dry phase (‘L’) is less than dry.thr, then the values in the factor for that phase are
changed to ‘W’ (wet). The duration of phases is then recalculated, and if the duration of a phase
of wet activity is less than wet.thr, then the corresponding value for the factor is changed to
‘Z’ (trivial wet). The durations of all phases are recalculated a third time to provide final phase
durations.

Value

A list with components:

phase.id Numeric vector identifying each activity phase, starting from 1 for every input
record.

activity Factor with levels ‘L’ indicating dry, ‘W’ indicating wet, ‘U’ for underwater
(above dive criterion), ‘D’ for diving, ‘Z’ for trivial wet animal activities. Only
‘L’, ‘W’, and ‘Z’ are actually represented.



DRAFT

distSpeed 17

begin A POSIXct object as long as the number of unique activity phases identified,
indicating the start times for each activity phase.

end A POSIXct object as long as the number of unique activity phases identified,
indicating the end times for each activity phase.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉 and Andy Liaw.

See Also

.detDive

distSpeed Calculate distance and speed between locations

Description

Calculate distance, time difference, and speed between pairs of points defined by latitude and lon-
gitude, given the time at which all points were measured.

Usage

distSpeed(pt1, pt2)

Arguments

pt1 A matrix or data frame with three columns; the first a POSIXct object with
dates and times for all points, the second and third numeric vectors of longitude
and latitude for all points, respectively, in decimal degrees.

pt2 A matrix with the same size and structure as pt1.

Value

A matrix with three columns: distance (km), time difference (s), and speed (m/s).

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉



DRAFT

18 diveMove-internal

Examples

locs <- readLocs(system.file(file.path("data", "sealLocs.csv"),
package="diveMove"), idCol=1, dateCol=2,

dtformat="%Y-%m-%d %H:%M:%S", classCol=3, lonCol=4,
latCol=5)

## Travel summary between successive standard locations
locs.std <- subset(locs, subset=class == "0" | class == "1" |

class == "2" | class == "3" &
!is.na(lon) & !is.na(lat))

locs.std.tr <- by(locs.std, locs.std$id, function(x) {
distSpeed(x[-nrow(x), 3:5], x[-1, 3:5])

})
lapply(locs.std.tr, head)

## Particular quantiles from travel summaries
lapply(locs.std.tr, function(x) {

quantile(x[, 3], seq(0.90, 0.99, 0.01), na.rm=TRUE) # speed
})
lapply(locs.std.tr, function(x) {

quantile(x[, 1], seq(0.90, 0.99, 0.01), na.rm=TRUE) # distance
})

## Travel summary between arbitrary two sets of points
distSpeed(locs[c(1, 5, 10), 3:5], locs[c(25, 30, 35), 3:5])

diveMove-internal Internal diveMove Functions

Description

Functions used for very particular tasks within larger functions in diveMove

Usage

.diveIndices(diveID, diveNo)

.getInterval(time)

.speedStats(x, vdist)

.night(time, sunrise.time, sunset.time)

.rleActivity(time, act, interval)

.speedCol(x)

Arguments

diveID Numeric vector of all dive and non dive IDs.

diveNo Numeric vector of unique dive indices to extract from diveID.



DRAFT

diveMove-internal 19

time POSIXct object representing time.

x For .speedStats, a matrix with a dive’s section data (time, speed). A sin-
gle dive’s data, a 3-col matrix with time, depth, and speed. For .speedCol, a
data frame where names are searched for strings matching .speedNames (see
Details).

vdist Vertical distance travelled during this time. If vdist is missing, then it’s all
horizontal movements (no angles).

sunrise.time, sunset.time
Passed from plotTD.

act A numeric vector indicating the activity for every element of time.

interval Sampling interval in seconds.

Details

These functions are not meant to be called directly by the user, as he/she could not care less (right?).
This may change in the future.

.speedNames is a character vector with possible names for a speed vector.

.rleActivity takes a factor indicating different activity phases, their associated time, and the
sampling interval to return a factor uniquely identifying each phase of activity, i.e. labelling them.
In addition, it returns the duration of each phase, and their beginning and end times.

Value

.diveIndices returns a numeric vector with the indices of dives (and their beginning/end in-
dices) in diveID.

.getInterval returns a scalar, the mode of intervals between time readings.

.speedStats returns a 3-column matrix with total distance, mean speed, and angle for a section
of a dive.

.night returns a list with sunrise and sunset times for dates in time.

.speedCol returns column number where speed is located in x.

.rleActivity returns a list with components:

time.br A factor dividing act into different periods of activity.

time.peract The duration of each period of activity.
beg.time, end.time

POSIXct objects indicating the beginning and ending times of each period of
activity.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉



DRAFT

20 diveMove-package

diveMove-package Time depth recorder analysis

Description

This package is a collection of functions for visualizing, and analyzing depth and speed data from
time-depth recorders TDRs. These can be used to zero-offset correct depth, calibrate speed, and
divide the record into different phases, or time budget. Functions are provided for calculating
summary dive statistics for the whole record, or at smaller scales within dives.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

A vignette with a guide to this package is available by doing ’vignette("diveMove")’. TDR-class,
calibrateDepth, calibrateSpeed, timeBudget, stampDive.

Examples

## read in data and create a TDR object
(sealX <- readTDR(system.file(file.path("data", "dives.csv"),

package="diveMove"), speed=TRUE))

if (dev.interactive(orNone=TRUE)) plotTDR(sealX) # interactively pan and zoom

## detect periods of activity, and calibrate depth, creating
## a 'TDRcalibrate' object
if (dev.interactive(orNone=TRUE)) dcalib <- calibrateDepth(sealX)
(dcalib <- calibrateDepth(sealX, offset=3)) # zero-offset correct at 3 m

if (dev.interactive(orNone=TRUE)) {
## plot all readings and label them with the phase of the record
## they belong to, excluding surface readings
plotTDR(dcalib, labels="phase.id", surface=FALSE)
## plot the first 300 dives, showing dive phases and surface readings
plotTDR(dcalib, diveNo=seq(300), labels="dive.phase", surface=TRUE)

}

## calibrate speed (using changes in depth > 1 m and default remaining arguments)
(vcalib <- calibrateSpeed(dcalib, z=1))

## Obtain dive statistics for all dives detected
dives <- diveStats(vcalib)
head(dives)

## Attendance table
att <- timeBudget(vcalib, FALSE) # taking trivial aquatic activities into account
att <- timeBudget(vcalib, TRUE) # ignoring them



DRAFT

dives 21

## Add trip stamps to each dive
stamps <- stampDive(vcalib)
sumtab <- data.frame(stamps, dives)
head(sumtab)

dives Sample TDR data from a fur seal

Description

This data set is meant to show a typical organization of a TDR *.csv file, suitable as input for
readTDR, or to construct a TDR object. divesTDR and divesTDRcalibrate are example
TDR and TDRcalibrate objects.

Format

A comma separated value (csv) file with 69560 TDR readings with the following columns:

date Date

time Time

depth Depth in m

light Light level

temperature Temperature in C

speed Speed in m/s

The data are also provided as a TDR object (*.RData format) for convenience.

Details

The data are a subset of an entire TDR record, so they are not meant to make valid inferences from
this particular individual/deployment.

divesTDR is a TDR object representation of the data in dives.

divesTDRcalibrate is a TDRcalibrate object representing the data in dives, calibrated at
default criteria (see calibrateDepth), and 3 m offset.

divesSummary is a data frame containing a summary of all dives in this dataset (see diveStats
and stampDive for the information contained in this object.

Source

Sebastian P. Luque, Christophe Guinet, John P.Y. Arnould

See Also

readTDR, diveStats.



DRAFT

22 diveStats

diveStats Per-dive statistics

Description

Calculate dive statistics in TDR records.

Usage

diveStats(x)
oneDiveStats(x, interval, speed=FALSE)
stampDive(x, ignoreZ=TRUE)

Arguments

x A TDRcalibrate-class object for diveStats and stampDive, and a
data frame containing a single dive’s data for oneDiveStats.

interval Sampling interval for interpreting x.

speed Logical; should speed statistics be calculated?

ignoreZ Logical indicating whether trips should be numbered considering all aquatic
activities (“W” and “Z”) or ignoring “Z” activities.

Details

diveStats calculates various dive statistics based on time and depth for an entire TDR record.
oneDiveStats obtains these statistics from a single dive, and stampDive stamps each dive
with associated trip information.

Value

A data.frame with one row per dive detected (durations are in s, and linear variables in m):

begdesc A POSIXct object, specifying the start time of each dive.

enddesc A POSIXct object, as begdesc indicating descent’s end time.

begasc A POSIXct object, as begdesc indicating the time ascent began.

desctim Descent duration of each dive.

botttim Bottom duration of each dive.

asctim Ascent duration of each dive.

descdist Numeric vector with descent depth.

bottdist Numeric vector with the sum of absolute depth differences while at the bottom
of each dive; measure of amount of “wiggling” while at bottom.

ascdist Numeric vector with ascent depth.

desc.tdist Numeric vector with descent total distance, estimated from speed.



DRAFT

diveStats 23

desc.mean.speed
Numeric vector with descent mean speed.

desc.angle Numeric vector with descent angle.

bott.tdist Numeric vector with bottom total distance, estimated from speed.

bott.mean.speed
Numeric vector with bottom mean speed.

asc.tdist Numeric vector with ascent total distance, estimated from speed.

asc.mean.speed
Numeric vector with ascent mean speed.

asc.angle Numeric vector with ascent angle.

divetim Dive duration.

maxdep Numeric vector with maximum depth.

postdive.dur Postdive duration.

postdive.tdist
Numeric vector with postdive total distance, estimated from speed.

postdive.mean.speed
Numeric vector with postdive mean speed.

The number of columns depends on the value of speed.

stampDive returns a data.frame with trip number, trip type, and start and end times for each dive.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

.detPhase, zoc, TDRcalibrate-class

Examples

data(divesTDRcalibrate)
divesTDRcalibrate

tdrX <- diveStats(divesTDRcalibrate)
stamps <- stampDive(divesTDRcalibrate, ignoreZ=TRUE)
tdrX.tab <- data.frame(stamps, tdrX)
summary(tdrX.tab)



DRAFT

24 extractDive-methods

extractDive-methods
Extract Dives from "TDR" or "TDRcalibrate" Objects

Description

Extract data corresponding to a particular dive(s), referred to by number.

Usage

## S4 method for signature 'TDR, numeric, numeric':
extractDive(obj, diveNo, id)
## S4 method for signature 'TDRcalibrate, numeric,
## missing':
extractDive(obj, diveNo)

Arguments

obj "TDR" object.

diveNo Numeric vector or scalar with dive numbers to extract.

id Numeric vector of dive numbers from where diveNo should be chosen.

Value

An object of class TDR or TDRspeed.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

Examples

data(divesTDR)
divesTDR
data(divesTDRcalibrate)
divesTDRcalibrate

diveX <- extractDive(divesTDR, 9, getDAct(divesTDRcalibrate, "dive.id"))
plotTDR(diveX, interact=FALSE)

diveX <- extractDive(divesTDRcalibrate, 5:10)
plotTDR(diveX, interact=FALSE)



DRAFT

labDive-internal 25

labDive-internal Internal Functions used for Detection of Dives

Description

These functions provide information for particular dives,

Usage

.cutDive(x, descent.crit.q, ascent.crit.q, wiggle.tol)

.labDive(act, string, interval)

.labDivePhase(x, diveID, descent.crit.q, ascent.crit.q, wiggle.tol)

Arguments

x For .labDivePhase, a class ‘TDR’ object. For .cutDive, a 3-col ma-
trix with subscript in original TDR object, non NA depths, and numeric vector
representing POSIXct times.

descent.crit.q, ascent.crit.q, wiggle.tol
Passed from calibrateDepth.

act Factor with values to label.

string A character belonging to a level of act to search for and label sequentially.

interval The sampling interval in seconds.

diveID Numeric vector indexing each dive (non-dives should be 0)

Details

These functions are for internal use and are not meant to be called by the user.

Value

.labDive returns a matrix with as many rows as its first two arguments with two columns: dive.id,
and postdive.id, each one sequentially numbering each dive and postdive period.

.labDivePhase returns a factor with levels “D”, “DB”, “B”, “BA”, “A”, “DA”, and “X”, break-
ing the input into descent, descent/bottom, bottom, bottom/ascent, ascent, and non-dive, respec-
tively. If x contains no dives, only level “X” is present for all readings.

.cutDive generates a character vector that breaks a dive into descent, descent/bottom, bottom, bot-
tom/ascent, ascent, and/or descent/ascent given a proportion of maximum depth for bottom time. It
return a character matrix with orig ID and corresponding label.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉



DRAFT

26 plotTDR-methods

plotTDR-methods Methods for plotting objects of class "TDR", "TDRspeed", and "TDR-
calibrate"

Description

Main plotting method for objects of these classes.

Usage

## S4 method for signature 'TDR':
plotTDR(x, ...)
## S4 method for signature 'TDRspeed':
plotTDR(x, concurVars, concurVarTitles, ...)
## S4 method for signature 'TDRcalibrate':
plotTDR(x, diveNo=seq(max(getDAct(x, "dive.id"))),

labels="phase.id", concurVars, surface=FALSE, ...)

Arguments

x "TDR", "TDRspeed", or "TDRcalibrate"object.
concurVars, concurVarTitles, ...

Arguments passed to plotTD. For the TDRspeed method, concurVars is a
matrix with variables to plot, in addition to speed, if any. concurVarTitles in this
case is a character vector with axis labels for speed and the additional variables
supplied in concurVars . For the TDRcalibrate method, concurVars is a char-
acter vector indicating which additional components from the concurrent data
frame should also be plotted, if any.

diveNo Numeric vector with dive numbers to plot.
labels One of “phase.id” or “dive.phase”, specifying whether to label observations

based on the gross phase ID of the "TDR" object, or based on each dive phase,
respectively.

surface Logical indicating whether to plot surface readings.

Value

If called with the interact argument set to TRUE, returns coordinates from the ZOC procedure
(see zoc).

Methods

plotTDR signature(x="TDR"): interactive graphical display of the data, with zooming and
panning capabilities.

plotTDR signature(x="TDRspeed"): As the TDR method, but also plots the concurrent
speed readings.

plotTDR signature(x="TDRcalibrate"): plot the TDR object, labelling identified sec-
tions of it (see Usage).



DRAFT

readLocs 27

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

zoc

Examples

data(divesTDR)
divesTDR

plotTDR(divesTDR, interact=FALSE)

data(divesTDRcalibrate)
divesTDRcalibrate

plotTDR(divesTDRcalibrate, interact=FALSE)
plotTDR(divesTDRcalibrate, diveNo=19:25, interact=FALSE)
plotTDR(divesTDRcalibrate, labels="dive.phase", interact=FALSE)

readLocs Read comma-delimited file with location data

Description

Read a comma delimited (*.csv) file with (at least) time, latitude, longitude readings.

Usage

readLocs(file, loc.idCol, idCol, dateCol, timeCol=NULL,
dtformat="%m/%d/%Y %H:%M:%S", tz="GMT",
classCol, lonCol, latCol, alt.lonCol=NULL, alt.latCol=NULL, ...)

Arguments

file A string indicating the name of the file to read. Provide the entire path if the file
is not on the current directory.

loc.idCol Column number containing location ID. If missing, a loc.id column is gen-
erated with sequential integers as long as the input.

idCol Column number containing an identifier for locations belonging to different
groups. If missing, an id column is generated with number one repeated as
many times as the input.

dateCol Column number containing dates, and, optionally, times.

timeCol Column number containing times.



DRAFT

28 readTDR

dtformat A string, specifying the format in which the date and time columns, when pasted
together, should be interpreted (see strptime) in file.

tz A string indicating the time zone for the date and time readings.

lonCol Column number containing longitude readings.

latCol Column number containing latitude readings.

classCol Column number containing the ARGOS rating for each location.

alt.lonCol Column number containing alternative longitude readings.

alt.latCol Column number containing alternative latitude readings.

... Passed to read.csv

Details

The file must have a header row identifying each field, and all rows must be complete (i.e. have the
same number of fields). Field names need not follow any convention.

Value

A data frame.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

Examples

locs <- readLocs(system.file(file.path("data", "sealLocs.csv"),
package="diveMove"), idCol=1, dateCol=2,

dtformat="%Y-%m-%d %H:%M:%S",
classCol=3, lonCol=4, latCol=5)

summary(locs)

readTDR Read comma-delimited file with TDR data

Description

Read a comma delimited (*.csv) file containing time-depth recorder (TDR) data from various TDR
models. Return a TDR or TDRspeed object. createTDR creates an object of one of these classes
from other objects.



DRAFT

readTDR 29

Usage

readTDR(file, dateCol=1, timeCol=2, depthCol=3, speed=FALSE,
subsamp=5, concurrentCols=4:6,
dtformat="%d/%m/%Y %H:%M:%S", tz="GMT")

createTDR(time, depth, concurrentData=data.frame(), speed=FALSE, dtime, file)

Arguments

file A string indicating the path to the file to read.

dateCol Column number containing dates, and optionally, times.

timeCol Column number with times.

depthCol Column number containing depth readings.

speed For readTDR: Logical indicating whether speed is included in one of the columns
of concurrentCols.

subsamp Subsample rows in file with subsamp interval, in s.
concurrentCols

Column numbers to include as concurrent data collected.

dtformat A string, specifying the format in which the date and time columns, when pasted
together, should be interpreted (see strptime).

tz A string indicating the time zone assumed for the date and time readings.

time A POSIXct object with date and time readings for each reading.

depth Numeric vector with depth readings.
concurrentData

Data frame with additional, concurrent data collected.

dtime Sampling interval used in seconds. If missing, it is calculated from the time
argument.

Details

The input file is assumed to have a header row identifying each field, and all rows must be complete
(i.e. have the same number of fields). Field names need not follow any convention. However, depth
and speed are assumed to be in m, and m · s−1, respectively, for further analyses.

If speed is TRUE and concurrentCols contains a column named speed or velocity, then an object of
class TDRspeed is created, where speed is considered the column matching this name.

Value

An object of class ‘TDR’ or ‘TDRspeed’.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉



DRAFT

30 rqPlot

Examples

readTDR(system.file(file.path("data", "dives.csv"),
package="diveMove"), speed=TRUE)

## Or more pedestrian
tdrX <- read.csv(system.file(file.path("data", "dives.csv"),

package="diveMove"), na.strings="", as.is=TRUE)
date.time <- paste(tdrX$date, tdrX$time)
tdr.time <- as.POSIXct(strptime(date.time, format="%d/%m/%Y %H:%M:%S"),

tz="GMT")
createTDR(tdr.time, tdrX$depth, concurrentData=data.frame(speed=tdrX$speed),

file="dives.csv", speed=TRUE)

rqPlot Plot of quantile regression for speed calibrations

Description

Plot of quantile regression for assessing quality of speed calibrations

Usage

rqPlot(rddepth, speed, z, contours, rqFit, main="qtRegression",
xlab="rate of depth change (m/s)", ylab="speed (m/s)",
colramp=colorRampPalette(c("white", "darkblue")),
col.line="red", cex.pts=1)

Arguments

speed Speed in m/s.

rddepth Numeric vector with rate of depth change.

z A list with the bivariate kernel density estimates (1st component the x points of
the mesh, 2nd the y points, and 3rd the matrix of densities).

contours List with components: ptswhich should be a matrix with columns named x and
y, level a number indicating the contour level the points in pts correspond
to.

rqFit Object of class “rq” representing a quantile regression fit of rate of depth change
on mean speed.

main String; title prefix to include in ouput plot.

xlab, ylab axis labels.

colramp Function taking an integer n as an argument and returning n colors.

col.line Color to use for the regression line.

cex.pts A numerical value specifying the amount by which to enlarge the size of points.



DRAFT

sealLocs 31

Details

The dashed line in the plot represents a reference indicating a one to one relationship between speed
and rate of depth change. The other line represent the quantile regression fit.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

diveStats

sealLocs Ringed and Gray Seal ARGOS Satellite Location Data

Description

Satellite locations of a gray (Stephanie) and a ringed (Ringy) seal caught and released in New York.

Format

A data frame with the following information:

id String naming the seal the data come from.

time The date and time of the location.

class The ARGOS location quality classification.

lon, lat x and y geographic coordinates of each location.

Source

WhaleNet Satellite Tracking Program http://whale.wheelock.edu/Welcome.html.

See Also

readLocs, distSpeed.



DRAFT

32 TDR-accessors

TDR-accessors Coerce, Extractor, and Replacement methods for class "TDR" objects

Description

Basic methods for manipulating objects of class "TDR".

Show Methods

show signature(object="TDR"): print an informative summary of the data.

Coerce Methods

as.data.frame signature(x="TDR"): Coerce object to data.frame. This method returns a
data frame, with attributes ‘file’ and ‘dtime’ indicating the source file and the interval between
samples.

as.data.frame signature(x="TDRspeed"): Coerce object to data.frame. Returns an object
as for TDR objects.

as.TDRspeed signature(x="TDR"): Coerce object to TDRspeed class.

Extractor Methods

[ signature(x="TDR"): Subset a TDR object; these objects can be subsetted on a single index
i . Selects given rows from object.

getDepth signature(x = "TDR"): depth slot accessor.

getCCData signature(x="TDR", y="missing"): concurrentData slot accessor.

getCCData signature(x="TDR", y="character"): access component named y in x.

getDtime signature(x = "TDR"): sampling interval accessor.

getFileName signature(x="TDR"): source file name accessor.

getTime signature(x = "TDR"): time slot accessor.

getSpeed signature(x = "TDRspeed"): speed accessor for TDRspeed objects.

Replacement Methods

depth<- signature(x="TDR"): depth replacement.

speed<- signature(x="TDR"): speed replacement.

ccData<- signature(x="TDR"): concurrent data frame replacement.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

extractDive, plotTD.



DRAFT

TDRcalibrate-accessors 33

Examples

data(divesTDR)

## Retrieve the name of the source file
getFileName(divesTDR)
## Retrieve concurrent temperature measurements
temp <- getCCData(divesTDR, "temperature")

## Coerce to a data frame
dives.df <- as.data.frame(divesTDR)
head(dives.df)

## Replace speed measurements
newspeed <- getSpeed(divesTDR) + 2
speed(divesTDR) <- newspeed

TDRcalibrate-accessors
Methods to Show and Extract Basic Information from "TDRcalibrate"
Objects

Description

Plot, print summaries and extract information from "TDRcalibrate" objects.

Usage

## S4 method for signature 'TDRcalibrate, missing':
getDAct(x)
## S4 method for signature 'TDRcalibrate, character':
getDAct(x, y)
## S4 method for signature 'TDRcalibrate, missing':
getDPhaseLab(x)
## S4 method for signature 'TDRcalibrate, numeric':
getDPhaseLab(x, diveNo)
## S4 method for signature 'TDRcalibrate, missing':
getGAct(x)
## S4 method for signature 'TDRcalibrate, character':
getGAct(x, y)

Arguments

x "TDRcalibrate" object.

diveNo numeric vector with dive numbers to plot.

y string; “dive.id”, “dive.activity”, or “postdive.id” in the case of getDAct, to
extract the numeric dive ID, the factor identifying dive phases in each dive, or
the numeric postdive ID, respectively. In the case of getGAct it should be



DRAFT

34 TDRcalibrate-accessors

one of “phase.id”, “activity”, “begin”, or “end”, to extract the numeric phase
ID for each observation, a factor indicating what major activity the observation
corresponds to, or the beginning and end times of each phase in the record,
respectively.

Value

The extractor methods return an object of the same class as elements of the slot they extracted.

Show Methods

show signature(object="TDRcalibrate"): prints an informative summary of the data.

Extractor Methods

getDAct signature(x="TDRcalibrate", y="missing"): this accesses the dive.activity
slot of TDRcalibrate objects. Thus, it extracts a data frame with vectors identifying all
readings to a particular dive and postdive number, and a factor identifying all readings to a
particular activity.

getDAct signature(x="TDRcalibrate", y = "character"): as the method for miss-
ing y, but selects a particular vector to extract. See TDRcalibrate for possible strings.

getDPhaseLab signature(x="TDRcalibrate", diveNo = "missing"): extracts a
factor identifying all readings to a particular dive phase. This accesses the dive.phases slot of
TDRcalibrate objects, which is a factor.

getDPhaseLab signature(x="TDRcalibrate", diveNo = "numeric"): as the method
for missing y, but selects data from a particular dive number to extract.

getGAct signature(x="TDRcalibrate", y="missing"): this accesses the gross.activity
slot of TDRcalibrate objects, which is a named list. It extracts elements that divide the
data into major wet and dry activities.

getGAct signature(x="TDRcalibrate", y="character"): as the method for miss-
ing y, but extracts particular elements.

getTDR signature(x="TDRcalibrate"): this accesses the tdr slot of TDRcalibrate
objects, which is a TDR object.

getSpeedCoef signature(x="TDRcalibrate"): this accesses the speed.calib.coefs
slot of TDRcalibrate objects; the speed calibration coefficients.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

Examples

data(divesTDRcalibrate)

divesTDRcalibrate # show

## Beginning times of each successive phase in record



DRAFT

TDRcalibrate-class 35

getGAct(divesTDRcalibrate, "begin")

## Factor of dive IDs
dids <- getDAct(divesTDRcalibrate, "dive.id")
table(dids[dids > 0]) # samples per dive

## Factor of dive phases for given dive
getDPhaseLab(divesTDRcalibrate, 19)

TDRcalibrate-class Class "TDRcalibrate" for dive analysis

Description

This class holds information produced at various stages of dive analysis. Methods are provided for
extracting data from each slot.

Details

This is perhaps the most important class in diveMove, as it holds all the information necessary for
calculating requested summaries for a TDR.

Objects from the Class

Objects can be created by calls of the form new("TDRcalibrate", ...). The objects of this
class contain information necessary to divide the record into sections (e.g. dry/water), dive/surface,
and different sections within dives. They also contain the parameters used to calibrate speed and
criteria to divide the record into phases.

Slots

tdr: Object of class “TDR”.
This slot contains the time, zero-offset corrected depth, and possibly a data frame. If the object
is also of class "TDRspeed", then the data frame might contain calibrated or uncalibrated
speed. See readTDR and the accessor function getTDR for this slot.

gross.activity: Object of class “list”.
This slot holds a list of the form returned by .detPhase, composed of 4 elements. It con-
tains a vector (named phase.id) numbering each major activity phase found in the record, a
factor (named activity) labelling each row as being dry, wet, or trivial wet activity. These
two elements are as long as there are rows in tdr. This list also contains two more vectors,
named begin and end: one with the beginning time of each phase, and another with the
ending time; both represented as POSIXct objects. See .detPhase.

dive.activity: Object of class “data.frame”.
This slot contains a data.frame of the form returned by .detDive, with as many rows as
those in tdr, consisting of three vectors named: dive.id, which is an integer vector, se-
quentially numbering each dive (rows that are not part of a dive are labelled 0), dive.activity is



DRAFT

36 TDR-class

a factor which completes that in activity above, further identifying rows in the record
belonging to a dive. The third vector in dive.activity is an integer vector sequen-
tially numbering each postdive interval (all rows that belong to a dive are labelled 0). See
.detDive, and getDAct to access all or any one of these vectors.

dive.phases: Object of class “factor”. must be the same as value returned by .labDivePhase.
This slot is a factor that labels each row in the record as belonging to a particular phase of a
dive. It has the same form as objects returned by .labDivePhase.

dry.thr: Object of class “numeric” the temporal criteria used for detecting dry periods that
should be considered as wet.

wet.thr: Object of class “numeric” the temporal criteria used for detecting periods wet that
should not be considered as foraging time.

dive.thr: Object of class “numeric” the criteria used for defining a dive.

speed.calib.coefs: Object of class “numeric” the intercept and slope derived from the speed
calibration procedure. Defaults to c(0, 1) meaning uncalibrated speeds.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

TDR for links to other classes in the package. TDRcalibrate-methods for the various methods
available.

TDR-class Classes "TDR" and "TDRspeed" for representing TDR information

Description

These classes store information gathered by time-depth recorders.

Details

Since the data to store in objects of these clases usually come from a file, the easiest way to construct
such objects is with the function readTDR to retrieve all the necessary information. The methods
listed above can thus be used to access all slots.

Objects from the Class

Objects can be created by calls of the form new("TDR", ...) and new("TDRspeed",
...).

TDR objects contain concurrent time and depth readings, as well as a string indicating the file the
data originates from, and a number indicating the sampling interval for these data. TDRspeed
extends TDR objects containing additional concurrent speed readings.



DRAFT

timeBudget-methods 37

Slots

In class TDR:

file: Object of class “character”, string indicating the file where the data comes from.

dtime: Object of class “numeric”, sampling interval in seconds.

time: Object of class “POSIXct”, time stamp for every reading.

depth: Object of class “numeric”, depth (m) readings.

concurrentData: Object of class “data.frame”, optional data collected concurrently.

Class TDRspeed must also satisfy the condition that a component of the concurrentData slot is
named speed or velocity, containing the measured speed, a vector of class “numeric” containing
speed measurements in (m/s) readings.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

readTDR, TDRcalibrate.

timeBudget-methods Describe the Time Budget of Major Activities from "TDRcalibrate"
object.

Description

Summarize the major activities recognized into a time budget.

Usage

## S4 method for signature 'TDRcalibrate, logical':
timeBudget(obj, ignoreZ)

Arguments

obj "TDRcalibrate" object.

ignoreZ Logical indicating whether to ignore trivial aquatic periods.

Details

Ignored trivial aquatic periods are collapsed into the enclosing dry period.



DRAFT

38 zoc

Value

A data frame with components:

phaseno A numeric vector numbering each period of activity.

activity A factor labelling the period with the corresponding activity.

beg, end POSIXct objects indicating the beginning and end of each period.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉

See Also

calibrateDepth

Examples

data(divesTDRcalibrate)

timeBudget(divesTDRcalibrate, TRUE)

zoc Interactive zero-offset correction of TDR data

Description

Correct zero-offset in TDR records, with the aid of a graphical user interface (GUI), allowing for
dynamic selection of offset and multiple time windows to perform the adjustment.

Usage

zoc(time, depth, offset)
plotTD(time, depth, concurVars=NULL, xlim=NULL, depth.lim=NULL,

xlab="time (dd-mmm hh:mm)", ylab.depth="depth (m)",
concurVarTitles=deparse(substitute(concurVars)),
xlab.format="%d-%b %H:%M", sunrise.time="06:00:00",
sunset.time="18:00:00", night.col="gray60",
phaseCol=NULL, interact=TRUE, key=TRUE, cex.pts=0.4, ...)



DRAFT

zoc 39

Arguments

time POSIXct object with date and time.

depth Numeric vector with depth in m.

offset Known amount of meters to subtract for zero-offset correcting depth throughout
the entire TDR record.

concurVars Matrix with additional variables in each column to plot concurrently with depth.

xlim Vector of length 2, with lower and upper limits of time to be plotted.

depth.lim Numeric vector of length 2, with the lower and upper limits of depth to be plot-
ted.

xlab, ylab.depth
Strings to label the corresponding y-axes.

concurVarTitles
Character vector of titles to label each new variable given in concurVars .

xlab.format Format string for formatting the x axis; see strptime.

sunrise.time, sunset.time
Character string with time of sunrise and sunset, respectively, in 24 hr format.
This is used for shading night time.

night.col Color for shading night time.

phaseCol Factor dividing rows into sections.

interact Logical; whether to provide interactive tcltk controls and access to the associated
ZOC functionality.

key Logical indicating whether to draw a key.

cex.pts Passed to points to set the relative size of points to plot (if any).

... Arguments passed to par; useful defaults las=1, bty="n", and mar (the
latter depending on whether additional concurrent data will be plotted) are pro-
vided, but they can be overridden.

Details

These functions are used primarily to correct, visually, drifts in the pressure transducer of TDR
records. zoc calls plotDive, which plots depth and, optionally, speed vs. time with the possibil-
ity zooming in and out on time, changing maximum depths displayed, and panning through time.
The option to zero-offset correct sections of the record gathers x and y coordinates for two points,
obtained by clicking on the plot region. The first point clicked indicates the offset and beginning
time of section to correct, and the second one indicates the ending time of the section to correct.
Multiple sections of the record can be corrected in this manner, by panning through the time and
repeating the procedure. In case there’s overlap between zero offset corrected windows, the last one
prevails.

Once the whole record has been zero-offset corrected, remaining points with depth values lower
than zero, are turned into zeroes, as these are assumed to be values at the surface.



DRAFT

40 zoc

Value

zoc returns a numeric vector, as long as depth of zero-offset corrected depths.

plotTD returns (invisibly) a list with as many components as sections of the record that were zero-
offset corrected, each consisting of two further lists with the same components as those returned by
locator.

Author(s)

Sebastian P. Luque 〈spluque@gmail.com〉, with many ideas from CRAN package sfsmisc.

See Also

calibrateDepth, and plotTDR.

Examples

data(divesTDR)

## Use interact=TRUE (default) to set the offset interactively
depth.zoc <- zoc(getTime(divesTDR), getDepth(divesTDR), offset=3)
plotTD(getTime(divesTDR), depth.zoc, interact=FALSE)



DRAFT
Index

∗Topic arith
diveStats, 21
rqPlot, 29

∗Topic classes
TDR-class, 35
TDRcalibrate-class, 34

∗Topic datasets
dives, 20
sealLocs, 30

∗Topic hplot
rqPlot, 29

∗Topic internal
detDive-internal, 14
detPhase-internal, 15
diveMove-internal, 17
labDive-internal, 24

∗Topic iplot
zoc, 37

∗Topic iteration
austFilter, 1

∗Topic manip
austFilter, 1
bout-misc, 5
bouts2MLE, 7
bouts2NLS, 10
calibrateDepth, 11
calibrateSpeed, 13
distSpeed, 16
readLocs, 26
readTDR, 27
rqPlot, 29

∗Topic math
calibrateDepth, 11
calibrateSpeed, 13
distSpeed, 16
diveStats, 21

∗Topic methods
bout-methods, 4
extractDive-methods, 23

plotTDR-methods, 25
TDR-accessors, 31
TDRcalibrate-accessors, 32
timeBudget-methods, 36

∗Topic misc
bout-misc, 5

∗Topic models
bouts2MLE, 7
bouts2NLS, 10

∗Topic package
diveMove-package, 19

.cutDive (labDive-internal), 24

.detDive, 16, 34, 35

.detDive (detDive-internal), 14

.detPhase, 14, 15, 22, 34

.detPhase (detPhase-internal), 15

.diveIndices (diveMove-internal),
17

.getInterval (diveMove-internal),
17

.labDive (labDive-internal), 24

.labDivePhase, 35

.labDivePhase (labDive-internal),
24

.night (diveMove-internal), 17

.rleActivity (diveMove-internal),
17

.speedCol (diveMove-internal), 17

.speedNames (diveMove-internal),
17

.speedStats (diveMove-internal),
17

[,TDR-method (TDR-accessors), 31

as.data.frame,TDR-method
(TDR-accessors), 31

as.TDRspeed (TDR-accessors), 31
as.TDRspeed,TDR-method

(TDR-accessors), 31
austFilter, 1

41



DRAFT

42 INDEX

bec2 (bout-methods), 4
bec2,mle-method (bout-methods), 4
bec2,nls-method (bout-methods), 4
bout-methods, 4
bout-misc, 5
boutfreqs (bout-misc), 5
boutinit, 8
boutinit (bout-misc), 5
bouts.mle, 5, 6, 11
bouts.mle (bouts2MLE), 7
bouts2.LL, 8
bouts2.LL (bouts2MLE), 7
bouts2.ll, 8
bouts2.ll (bouts2MLE), 7
bouts2.mleBEC (bouts2MLE), 7
bouts2.mleFUN (bouts2MLE), 7
bouts2.nls, 5, 6
bouts2.nls (bouts2NLS), 10
bouts2.nlsBEC (bouts2NLS), 10
bouts2.nlsFUN (bouts2NLS), 10
bouts2MLE, 7
bouts2NLS, 10

calibrateDepth, 11, 12, 13, 15, 19, 20,
37, 39

calibrateSpeed, 12, 13, 13, 19
ccData<- (TDR-accessors), 31
ccData<-,TDR,data.frame-method

(TDR-accessors), 31
coerce,TDR,data.frame-method

(TDR-accessors), 31
coerce,TDR,TDRspeed-method

(TDR-accessors), 31
createTDR (readTDR), 27
curve, 7

data.frame, 21
depth<- (TDR-accessors), 31
depth<-,TDR,numeric-method

(TDR-accessors), 31
detDive-internal, 14
detPhase-internal, 15
distSpeed, 2, 16, 30
diveMove (diveMove-package), 19
diveMove-internal, 17
diveMove-package, 19
dives, 20
divesSummary (dives), 20
diveStats, 20, 21, 30

divesTDR (dives), 20
divesTDRcalibrate (dives), 20

extractDive, 31
extractDive

(extractDive-methods), 23
extractDive,TDR,numeric,numeric-method

(extractDive-methods), 23
extractDive,TDRcalibrate,numeric,missing-method

(extractDive-methods), 23
extractDive-methods, 23

getCCData (TDR-accessors), 31
getCCData,TDR,character-method

(TDR-accessors), 31
getCCData,TDR,missing-method

(TDR-accessors), 31
getDAct, 35
getDAct (TDRcalibrate-accessors),

32
getDAct,TDRcalibrate,character-method

(TDRcalibrate-accessors),
32

getDAct,TDRcalibrate,missing-method
(TDRcalibrate-accessors),
32

getDepth (TDR-accessors), 31
getDepth,TDR-method

(TDR-accessors), 31
getDPhaseLab

(TDRcalibrate-accessors),
32

getDPhaseLab,TDRcalibrate,missing-method
(TDRcalibrate-accessors),
32

getDPhaseLab,TDRcalibrate,numeric-method
(TDRcalibrate-accessors),
32

getDtime (TDR-accessors), 31
getDtime,TDR-method

(TDR-accessors), 31
getFileName (TDR-accessors), 31
getFileName,TDR-method

(TDR-accessors), 31
getGAct (TDRcalibrate-accessors),

32
getGAct,TDRcalibrate,character-method

(TDRcalibrate-accessors),
32



DRAFT

INDEX 43

getGAct,TDRcalibrate,missing-method
(TDRcalibrate-accessors),
32

getSpeed (TDR-accessors), 31
getSpeed,TDRspeed-method

(TDR-accessors), 31
getSpeedCoef

(TDRcalibrate-accessors),
32

getSpeedCoef,TDRcalibrate-method
(TDRcalibrate-accessors),
32

getTDR, 34
getTDR (TDRcalibrate-accessors),

32
getTDR,TDRcalibrate-method

(TDRcalibrate-accessors),
32

getTime (TDR-accessors), 31
getTime,TDR-method

(TDR-accessors), 31
grpSpeedFilter (austFilter), 1

labDive-internal, 24
labelBouts (bout-misc), 5
locator, 39
logit, 8, 9
logit (bout-misc), 5

mle, 4, 7–9

nls, 4, 10

oneDiveStats (diveStats), 21
optim, 9

par, 38
plot.default, 10
plot.ecdf, 7
plotBouts (bout-methods), 4
plotBouts,mle-method

(bout-methods), 4
plotBouts,nls-method

(bout-methods), 4
plotBouts2.cdf (bouts2MLE), 7
plotBouts2.mle, 4
plotBouts2.mle (bouts2MLE), 7
plotBouts2.nls, 4
plotBouts2.nls (bouts2NLS), 10

plotTD, 25, 31
plotTD (zoc), 37
plotTDR, 39
plotTDR (plotTDR-methods), 25
plotTDR,TDR-method

(plotTDR-methods), 25
plotTDR,TDRcalibrate-method

(plotTDR-methods), 25
plotTDR,TDRspeed-method

(plotTDR-methods), 25
plotTDR-methods, 25
points, 38
POSIXct, 37

read.csv, 27
readLocs, 26, 30
readTDR, 20, 27, 34, 36
rmsDistFilter (austFilter), 1
rq, 13
rqPlot, 13, 29

sealLocs, 30
show,TDR-method (TDR-accessors),

31
show,TDRcalibrate-method

(TDRcalibrate-accessors),
32

speed<- (TDR-accessors), 31
speed<-,TDRspeed,numeric-method

(TDR-accessors), 31
stampDive, 19, 20
stampDive (diveStats), 21
strptime, 27, 28, 38

TDR, 20, 23, 25, 31, 33, 35
TDR (TDR-class), 35
TDR-class, 19
TDR-accessors, 31
TDR-class, 35
TDR-methods (TDR-accessors), 31
TDRcalibrate, 12–14, 20, 25, 32, 33, 36
TDRcalibrate

(TDRcalibrate-class), 34
TDRcalibrate-class, 21, 22
TDRcalibrate-methods, 35
TDRcalibrate-accessors, 32
TDRcalibrate-class, 34
TDRcalibrate-methods

(TDRcalibrate-accessors),
32



DRAFT

44 INDEX

TDRspeed, 25
TDRspeed (TDR-class), 35
TDRspeed-class (TDR-class), 35
timeBudget, 19
timeBudget (timeBudget-methods),

36
timeBudget,TDRcalibrate,logical-method

(timeBudget-methods), 36
timeBudget-methods, 36

unLogit, 9
unLogit (bout-misc), 5

zoc, 12, 13, 15, 22, 25, 26, 37


	Introduction
	Starting up
	Reading Input Files
	Extracting Information from TDR and TDRspeed Objects
	ZOC and Wet/Dry period detection
	Access to Elements from TDRcalibrate Objects
	Speed Calibration
	TDR dive and postdive statistics
	Miscellaneous functions
	Acknowledgements

