
The diveRsity Package
Kevin Keenan

Saturday, December 20, 2014

1 Introduction

This document is in progress.

2 Function demonstrations

2.1 arp2gen

This is a function allowing users to convert arliquin genotype files to genepop files. The digit format of the
resulting genepop file is determined my the genotype format in the arlequin file. The name of the genepop
file created is equal to the name of the arlequin file with the replacement of the .arp file extension with
.gen. Missing data in the arlequin file must be indicated by ‘-9’, and will be converted to ‘00’ or ‘000’ in the
genepop file, depending on the allele format in the arlequin file.

arp2gen(infile)

2.1.0.1 General use

2.1.0.2 Argument description

• infile: A character string pointing to an arlequin file to be converted. This string can either be a file
name, providing the file is in the current working directory, otherwise an absolute or relative file path
can be provided within the string.

2.1.0.3 Example Here an input file named arp2gen.arp in the current working directory has the following
format:

#Arlequin input file written by the simulation program fastsimcoal.exe

[Profile]

Title="A series of simulated samples"

NbSamples=2

GenotypicData=1

GameticPhase=0

RecessiveData=0

DataType=MICROSAT

LocusSeparator=WHITESPACE

MissingData='?'

[Data]

1

[[Samples]]

#Number of independent chromosomes: 1

#Total number of polymorphic sites: 5

10 polymorphic positions on chromosome 1

#1, 2, 3, 4, 5

SampleName="Sample 1"

SampleSize=5

SampleData= {

1_1 1 501 500 500 501 499

501 500 500 500 499

1_2 1 498 500 500 501 500

501 501 500 500 499

1_3 1 502 500 500 501 498

501 500 500 500 499

1_4 1 502 500 500 501 498

501 500 500 501 499

1_5 1 500 500 499 501 499

499 501 500 501 500

}

SampleName="Sample 2"

SampleSize=5

SampleData= {

2_1 1 501 500 500 501 499

501 500 500 501 499

2_2 1 501 500 500 501 499

501 500 500 501 499

2_3 1 501 500 500 501 499

498 500 501 501 500

2_4 1 501 500 500 501 499

501 500 500 501 499

2_5 1 501 500 500 501 499

500 500 500 501 499

}

[[Structure]]

StructureName="Simulated data"

NbGroups=1

Group={

"Sample 1"

"Sample 2"

}

This file can be converted to genepop format as follows:

arp2gen("arp2gen.arp")

This command results in a genepop file named _arp2gen.gen with the following format being written to the
current working directory:

2

./manuscript/arp2gen/arp2gen_gen_converted

locus1

locus2

locus3

locus4

locus5

POP

pop1 , 501501 500500 500500 501500 499499

pop1 , 498501 500501 500500 501500 500499

pop1 , 502501 500500 500500 501500 498499

pop1 , 502501 500500 500500 501501 498499

pop1 , 500499 500501 499500 501501 499500

POP

pop2 , 501501 500500 500500 501501 499499

pop2 , 501501 500500 500500 501501 499499

pop2 , 501498 500500 500501 501501 499500

pop2 , 501501 500500 500500 501501 499499

pop2 , 501500 500500 500500 501501 499499

2.2 chiCalc

This function allows users to test for sample independence from genotype counts. It implements Fisher’s
exact tests using the fisher.test function. Both global and pairwise tests are available, and can be tested
across loci and per locus. Multilocus p values are calculated using Fisher’s method.

chiCalc(infile = NULL, outfile = NULL, pairwise = TRUE, mcRep = 2000)

2.2.0.4 General use

2.2.0.5 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory.

• pairwise: A logical argument indicating whether sample independence should be tested between all
population pairs.

• mcRep: An integer specifying the number Monte Carlo test replicates. See ?fisher.test for more
information

2.2.0.6 Example In the file Test_data, there are six population samples. To test sample independence
between all pairs if populations, the following code is used.

3

load diveRsity

library(diveRsity)

load test data

data(Test_data)

calculate pairwise tests

res <- chiCalc(infile = Test_data, pairwise = TRUE)

head(res$multilocus_pw)

pops p.value

1 pop1, vs pop2, 0.7394

2 pop1, vs pop3, 0.0000

3 pop1, vs pop4, 0.0000

4 pop1, vs pop5, 0.0000

5 pop1, vs pop6, 0.0000

6 pop2, vs pop3, 0.0000

These results indicate that there is a significant difference in the distribution of genotypes between all
population pairs shown (i.e. p < 0.05), except between pop1 and pop2.

2.3 corPlot

Downward biases in the estimation of FST like parameters as a result of locus polymorphism are well described.
This function allows users to visually explore the effect of this bias within their data by comparing the
relationship between polymorphism (mean number of alleles per locus) and differentiation (calculated for
FST , GST , G′

ST
and DJost). The general rule for this method is, if there is a negative relationship between

number of alleles and either FST or GST , but a neutral or positive relationship between number of alleles
and G′

ST
or DJost, then FST type estimates are likely to be biased, and the use of DJost is recommended for

measuring genetic differentiation.

corPlot(x, y)

2.3.0.7 General use

2.3.0.8 Argument description

• x: Results from readGenepop function

• y: Results from fastDivPart function. The WC_Fst argument in the fastDivPart call must be TRUE.

2.3.0.9 Example To assess the bias associated with measuring genetic differentiation using FST type
statistics in Test_data, the following commands are executed.

load diveRsity

library(diveRsity)

load test data

data(Test_data)

Test_data <- Test_data[-33, -33]

plot the relationship between polymorphism and differentiation

corPlot(Test_data)

4

0.00

0.05

0.10

0.15

5 10 15 20 25
Mean number of alleles

F
S

T

0.00

0.04

0.08

0.12

5 10 15 20 25
Mean number of alleles

G
S

T
0.0

0.2

0.4

0.6

5 10 15 20 25
Mean number of alleles

G
' S

T

0.0

0.2

0.4

5 10 15 20 25
Mean number of alleles

D
JO

S
T

These results indicate that there is strong bias in these data. The negative trend in the top two plots coupled
with the strong positive trend in the bottom two is indicative of loci with high mutation rates. Indeed, one of
the major differences between statistics like DJost and FST is the former defines differentiation as a process
consisting of mutation and genetic drift, while the latter minimizes the role of mutation.

2.4 diffCalc

This function allows users to calculate genetic differentiation measures such as FST , GST , G′

ST
, G′′

ST
and

DJost. These parameters can be calculated at various levels including global, per locus and pairwise.
Integrated facilities for calculating 95% confidence intervals (CIs) through bootstrapping are also available.
The functionality of diffCalc overlaps significantly with fastDivPart, however the former is implemented
more efficiently, making use of significant portion of C++ code to execute computationally intensive routines.
In line with this efficiency, results can only be written to tab delimited files, rather that to xlsx workbooks,
as is available in fastDivPart.

diffCalc(infile = NULL, outfile = NULL, fst = FALSE, pairwise = FALSE,

bs_locus = FALSE, bs_pairwise = FALSE, boots = NULL, para = FALSE)

2.4.0.10 General use

2.4.0.11 Argument description

5

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory.

• fst: A logical indication of whether Weir & Cockerham’s F-statistics should be calculated.

• pairwise: A logical argument, indicating if pairwise point estimates should be calculated. Both locus
and multilocus parameters are calculated.

• bs_locus: A logical argument, indicating whether 95% CIs should be calculated at the global level. If
TRUE 95% CI are estimated for all loci across all population samples and across all loci for all population
samples.

• bs_pairwise: A logical argument, indicating whether 95% CIs should be calculated at the pairwise
level. If TRUE 95% CI are estimated for all loci for all pairwise comparisons and across all loci for all
pairwise comparisons.

• boots: An integer indicating the number of bootstrap replicates to use for the estimation of 95% CIs.

• para: A logical argument specifying whether diffCalc should make use of multiple CPUs.

2.4.0.12 Example To calculate pairwise differentiation using DJost and their statistical significance, the
code below can be used:

load diveRsity

library(diveRsity)

load test data

data(Test_data)

calculate pairwise stats

res <- diffCalc(infile = Test_data, pairwise = TRUE, bs_pairwise = TRUE,

boots = 999, para = TRUE)

pander::pandoc.table(head(res$bs_pairwise$D))

populations actual lower upper

pop1, vs pop2, 0.0027 -0.0123 0.0195
pop1, vs pop3, 0.1802 0.1514 0.2125
pop1, vs pop4, 0.1484 0.1225 0.1757
pop1, vs pop5, 0.2527 0.223 0.2841
pop1, vs pop6, 0.1494 0.1206 0.1796
pop2, vs pop3, 0.1579 0.1306 0.1879

These results, similar to those from the results from the chiCalc example above, indicate that there is a
significant differentiation between all population pairs (i.e. lower 95% CI do not overlap zero), except between
pop1 and pop2.

2.5 diffCalc

This function allows users to visualise pairwise differentiation matrices generated by fastDivPart and
diffCalc. Given that pairwise differentiation estimates can number in the hundreds-thousands, diffPlot

6

allows users to plot values using colour gradients as wells as having interactive tool tips for simple identification
of pairwise values.

diffPlot(x, outfile = NULL, interactive = FALSE)

2.5.0.13 General use

2.5.0.14 Argument description

• x: Output results from either fastDivPart or diffCalc where pairwise = TRUE.

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory.

• interactive: A logical indication as to whether the sendplot package should be used to generate
tool-tip information for plot cells. If FALSE, standard .png files will be generated.

2.5.0.15 Example diffPlot can be used to easily identify population pairs and their associated genetic
differentiation indices.

load diveRsity

library(diveRsity)

load test data

data(Test_data)

calculate pairwise stats

x <- diffCalc(Test_data, pairwise = TRUE, fst = TRUE)

diffPlot(x = x, outfile = "Out", interactive = TRUE)

7

As can be seen from this screen cap, hovering the mouse pointer over a cell reveals the associated pairwise
comparison as well as the relevant differentiation statistics.

2.6 divBasic

This function allows users to calculate a range of descriptive population parameters, including allelic richness,
observed and expected heterozygosity, Hardy-Weinberg Equilibrium (HWE) tests and FIS .

Within sample locus HWE tests can be calculated using either chi-square or Fisher’s exact goodness of fit
testing.

divBasic(infile = NULL, outfile = NULL, gp = 3, bootstraps = NULL,

HWEexact = FALSE, mcRep = 2000)

2.6.0.16 General use

2.6.0.17 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

8

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory.

• gp: An integer indicating the allele digit format of the input genepop file.

• bootstraps: An integer indicating the number of bootstrap replicates used to estimate 95% CIs for
FIS .

• HWEexact: A logical indicating whether Fisher’s exact test should be used to test HWE. If FALSE,
chi-square testing is carried out.

• mcRep: An integer indicating the number of Monte Carlo test replicates when using Fisher’s exact
testing for HWE.

2.6.0.18 Example divBasic can be used to calculate a number of useful parameters for population
samples. Below is a demonstration of how a simple table can be generated using the function.

load diveRsity

library(diveRsity)

load test data

data(Test_data)

calculate pairwise stats

res <- divBasic(infile = Test_data, outfile = NULL, gp = 3, bootstraps = 999,

HWEexact = TRUE, mcRep = 2000)

pander::pandoc.table(res$mainTab[[1]][,c(1:5, 39)])

stats Locus1 Locus2 Locus3 Locus4 overall

N 46 47 47 47 45.68
A 4 3 11 6 416
% 57.14 100 61.11 66.67 62.04
Ar 3.58 2.93 10.34 5.41 9.89
Ho 0.67 0.57 0.87 0.64 0.68
He 0.66 0.53 0.83 0.67 0.72

HWE 0.539 1 0.997 0.918 0.002
Fis -0.016 -0.089 -0.049 0.052 0.06

Fis_Low -0.209 -0.331 -0.152 -0.144 0.029
Fis_High 0.179 0.158 0.062 0.259 0.092

These tables show the descriptive statistics for the first four loci and across all loci for each population sample.
A description of each statistic is as follows:

• N : The number of individuals typed per locus. Overall value is the mean number of individuals typed
per locus.

• A: The number of alleles observed per locus. Overall value is the total number of alleles observed across
all loci.

• %: The percentage of total observed alleles per locus per population sample.

• AR: Allelic richness per locus. Overall value is the mean allelic richness.

• HO: Observed heterozygosity per locus. Overall value is the observed heterozygosity across loci.

• HE : Expected heterozygosity per locus. Overall value is the expected heterozygosity across loci.

9

• HWE: P-value from a goodness of fit to HWE expectations test using either chisq.test (if HWEexact

= FALSE) or fisher.test (if HWEexact = TRUE). Overall value is a p-value from either a chisq.test

where all chi-square differences and degrees of freedom are summed across loci (if HWEexact = FALSE),
or by combining locus p-values using Fisher’s method (if HWEexact = TRUE).

• FIS : Wright’s inbreeding coefficient per locus. Overall value is the multilocus FIS estimate.

• FIS_Low: The lower limit of the 95% Confidence interval of the corresponding FIS value.

• FIS_High: The upper limit of the 95% Confidence interval of the corresponding FIS value.

2.7 divMigrate

This function allows users to explore the patterns of gene flow that have influenced a group of population
samples. Accepting a genepop file as input, divMigrate allows users to visualise directional components
of gene flow and test whether gene flow occurs significantly more in any one direction between pairs of
population samples. This can be useful when testing the effects of barriers to gene flow, particularly when
gene flow is likely to be impeded in one direction, such as in river systems. Gene flow patters can also be
visualized using Network graphs, which can also be saved to file.

divMigrate(infile = NULL, outfile = NULL, boots = 0, stat = "all",

filter_threshold = 0, plot_network = FALSE, plot_col = "darkblue",

para = FALSE)

2.7.0.19 General use

2.7.0.20 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• outfile: String prefix to be added to the results directory. If left NULL, no networks will be written
to file.

• boots: An integer indicating the number of bootstrap replicates to use for the estimation of 95% CIs.

• stat: A character string or vector if character strings indicating which statistic should be used to
calculate directional gene flow components. Currently three separate methods are available:

– DJost (Jost, 2008)

– GST (Nei & Chesser, 1983)

– Nm (Alcala et al, 2014)

• filter_threshold: A numeric argument between 0 & 1. This parameter allows users to remove network
links less than the value given to reduce noise in network plots. By default, all links between nodes are
included in networks, which can result in un-interpretable relationships when many populations are
analysed. Increasing the value of filter_threshold can help reveal important genetic relationships
between groups of populations.

• plot_network: A logical argument indicating whether gene flow relationships should be plotted as
network graphs.

10

• plot_col: A character string indicating the major colour to be used in the network graph. See the
‘Color Specification’ section of the par help page for more details.

• para: A logical argument specifying whether divMigrate should make use of multiple CPUs.

2.7.0.21 Example Using a published data set collected from anadromous and river-resident Atlantic
salmon (see chapter x for details), it is possible to test if gene flow occurs at a significantly higher rate
downstream from the river-resident populations to the anadromous population. This hypothesis is based on
the presence of multiple barriers to gene flow along the study river. The analysis is shown below.

load diveRsity

library(diveRsity)

calculate pairwise stats

res <- divMigrate(infile = "s_salar.txt", outfile = NULL, boots = 999,

stat = "Nm", plot_network = TRUE, para = TRUE)

0.29

0.51

0.51 12

3

4

1: ANA,
2: POPE,
3: POPG,
4: POPA,

Significant relative migration network
 (999 bootstraps; Nm method)

From the network graph, it is clear that gene flow is occurring at a significantly greater rate from all upstream
river-resident populations to the anadromous population.

2.8 divOnline

This function allows users to launch a local instance of the diveRsity-online web application (online at
https://popgen.shinyapps.io/diveRsity-online/). The local version of the application uses local resources, and
so is dependent on the systems RAM and CPU.

11

https://popgen.shinyapps.io/diveRsity-online/

divOnline()

2.8.0.22 General usage

2.9 divRatio

Implementing a relatively new method introduced in Skrbinsek et al., (2012), divRatio allows users to
calculate standardized diversity ratios, relative to a user defined ‘yardstick’ population sample. The function
accepts data two different configurations. + The first, a genepop file containing both the ‘yardstick’ population
sample and all population samples to be compared. If this is the format used, the location of the ’yardstick
population should be indicated using the refPos argument.

• The second format involves two files. The first file, passed to the infile argument should contain the
genotype data for the ‘yardstick’ population sample in the genepop format. The second file, passed to
the pop_stats argument should be a table in the format shown in the data frame below.

pops n alr alrse he hese validloci

pop2 50 1.701 0.287 0.203 0.084 Loc1 Loc2 Loc3
pop3 50 3.334 0.79 0.428 0.107 Loc1 Loc2 Loc3
pop4 50 2.965 0.412 0.448 0.066 Loc1 Loc2 Loc3
pop5 50 3.357 0.571 0.506 0.089 Loc1 Loc2 Loc3
pop6 50 1.412 0.172 0.106 0.052 Loc1 Loc2 Loc3
pop7 50 4.682 0.461 0.689 0.039 Loc1 Loc2 Loc3

This table contains the following variables:

• pops: The name of the populations to be compared to the ‘yardstick’ population sample

• n: Sample size

• alr: Mean allelic richness

• alrse: The standard error of the mean allelic richness

• he: Multilocus expected heterozygosity

• hese: The standard error of the multilocus expected heterozygosity

• validloci: A character string indicating the names of loci each population sample has in common
with the ‘yardstick’ population sample.

divRatio(infile = NULL, outfile = NULL, gp = 3, pop_stats = NULL,

refPos = NULL, boots = 1000, para = FALSE)

2.9.0.23 General use

2.9.0.24 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format. The file can contain either all samples to
be analyses, including the ‘yardstick’ population. Alternatively, if infile contains only the ‘yardstick’

12

sample, a table containing the relevant summary statistics for population samples to be compared must
be passed to pop_stats.

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory.

• gp: An integer indicating the allele digit format of the input genepop file.

• pop_stats: A character string indication the location of a tab delimited file containing the information
documented in the table above. A benefit of inputting data in this format is the ability to include
population samples scored as variable loci. While all loci for a population sample must also be scored
in the ‘yardstick’ sample, they do not need to be present in the other populations being compared to
the ‘yardstick’ population.

• refPos: If pop_stats = NULL, this argument specifies the location of the ‘yardstick’ population sample
in infile. The argument should be an integer.

• boots: An integer specifying the number of bootstrap replicates to use when estimating the standard
error for allelic richness and expected heterozygosity per population sample.

• para: A logical argument indicating whether the analysis should make use of all available cores on the
users system.

2.9.0.25 Example Hypothetically, if the fourth population sample in Test_data was suitable for use as
a ‘yardstick’ (see Skrbinsek et al., 2012 for details), the following code outlines the procedure for calculating
standardized diversity ratios using divRatio.

load diveRsity

library(diveRsity)

load test data

data(Test_data)

ratios <- divRatio(infile = Test_data, refPos = 4, boots = 999, para = TRUE)

pops n alr alrSE He HeSE alrRatio alrSEratio heRatio heSEratio

pop4,-(ref) 53 10.69 1.12 0.74 0.03 1.00 0.15 1.00 0.05
pop1, 47 10.11 1.13 0.72 0.03 0.95 0.15 0.98 0.06
pop2, 42 9.88 1.02 0.73 0.03 0.92 0.14 0.99 0.06
pop3, 41 9.77 1.02 0.74 0.03 0.91 0.14 1.00 0.05
pop5, 41 8.83 0.78 0.74 0.03 0.83 0.11 1.00 0.05
pop6, 41 10.54 1.11 0.76 0.03 0.99 0.15 1.03 0.05

As shown above, divRatio produces a table containing both the point estimates of allelic richness (alr), and
expected heterozygosity (He), as well as their respective standard errors (alrSE and HeSE, respectively) for
all population samples. I the table the ‘yardstick’ population sample is marked with the suffix “-(ref). The
variables alrRatio and heRatio are the allelic richness and heterozygosity, respectively, standardized to the
‘yardstick’ sample, hence this sample’s values are always equal to 1. The variables alrSEratio and heSEratio

are the standard errors of the standardized allelic richness and expected heterozygosity, respectively.

Relative to pop4, all other population samples have slightly lower allelic richness, while all but pop6 have
lower expected heterozygosity.

13

2.10 divSimCo

This function allows the calculation of individual similarity coefficients for all possible pairs of individuals
from co-dominant genotype data (ref). Results can be returned for all loci, and across loci. A pairwise
distance matrix is returned, which can be used to visualise individual relationships in a phylogenetic tree,
using packages such as ape or phanhorn. An example of this analysis is provided below.

divSimCo(infile = NULL, loci = FALSE)

2.10.0.26 General use

2.10.0.27 Argument description

• infile: A character string specifying the name of the ‘genepop’ (Rousset, 2008) file from which
the statistics are to be calculated This file can be in either the 3 digit of 2 digit format. See http:
//genepop.curtin.edu.au/help_input.html for detail on the genepop file format..

• loci: A logical argument, specifying whether similarity matrices for each locus should be calculated. If
FALSE, only a global similarity matrix is given.

2.10.0.28 Example This chapter demonstrates the analyses used in chapter x. The data described in
chapter x are used.

The first step in visualising individual relationship is to calculate similarity coefficients among individual
using divSimCo.

load diveRsity

library(diveRsity)

calculate pairwise similarity coefficients

dists <- divSimCo(infile = "monomorphism_main.gen")$glb

These distance can then be used to draw a UPGMA tree using the hclust function to group distances and
plot.phylo function to draw the tree.

library("ape")

tree <- as.phylo(hclust(as.dist(dists), method = "average"))

plot.phylo(tree, type = "u")

14

http://genepop.curtin.edu.au/help_input.html
http://genepop.curtin.edu.au/help_input.html

RIB1
RIB10

RIB11

RIB12RIB13RIB14RIB15RIB16RIB18RIB19
RIB2RIB20

RIB21
RIB3

RIB5RIB6
RIB7

RIB8CRO1CRO10CRO2CRO3CRO4CRO5CRO6
CRO7

CRO8
CRO9

KLW050101

KLW050102
KLW050103KLW050104

KLW050105
KLW050107

KLW050108

KLW050109
KLW050110

KLW050111

KLW050112

KLW050113

KLW050114
KLW050115 KLW050116

KLW050117KLW050118

KLW050119

KLW050120

KLW050301

KLW050302

KLW050303

KLW050304

KLW050401

KLW050402

KLW050403

KLW050404

KLW050405

KLW050406

KLW050407

KLW050408

KLW050409

KLW050410

KLW050411

KLW050501

KLW050502

KLW050503

KLW050601

KLW050602

KLW050603

KLW050604

KLW050605

KLW050606

KLW050607

This tree clearly demonstrates two groups, however, it is difficult to see individuals on it. Below demonstrates
a clearer visualisation with coloured tip labels for individuals from different sample sites.

strip names refering to the level to be visualised (e.g. site name)

tree$tip.label <- substr(tree$tip.label, 1, 3)

create a palette of colours for each unique factor

colLevels <- factor(unique(tree$tip.label))

cols <- rainbow(length(colLevels))

generate a vector of colours for each tip

tipCols <- sapply(tree$tip.label, function(x){

cols[which(levels(colLevels) == x)]

})

plot.phylo(tree, label.offset = 0.01, edge.width = 3,

tip.color = tipCols, type = "f", cex = 1)

15

RIB

R
IB

RIB

RIB

R
IB

R
IBR

IB

R
IB

R
IB

R
IB

RIB

RIB

R
IB

RIB

RIB

RIB

RIB

R
IB

C
R

O

C
RO

C
R

O

C
R

O

C
R

O

CROCRO CRO

CRO

C
R

O

KLW

KL
W

K
LW

K
LW

KLW

KLW

KLW

KL
W

KLW
KLW

KLW

KLW

K
LWK

LW

K
LW

K
LW

K
LW

KLW

KLW

KLW

K
LW

KLW

K
LW

KLW

KLW

KLW

KLW

KLW

K
LW

KLW

KLW

K
LW

KLW

KLW

KLW
KLW

KLW

KLW

KLW

KLW

KLW

KLW

KLW

KLW

2.11 fastDivPart

Much like the diffCalc function, fastDivPart provides facilities for users to calculate FST , GST , G′

ST
and

DJost (but not G′′

ST
). All arguments are the same between both functions, however fastDivPart requires

two additional arguments, gp and plot. These arguments specify the genepop digit format of infile (2-digit
or 3-digit), and specifies whether estimated result should be plotted, respectively. The biggest difference
between fastDivPart and diffCalc is speed, diffCalc being much more efficient than the former. As
such fastDivPart provides additional facilities, such as plotting and writing results to multi-sheet excel
workbooks. The names of output results are also slightly difference between the two functions.

16

fastDivPart(infile = NULL, outfile = NULL, gp = 3, fst = FALSE,

pairwise = FALSE, bs_locus = FALSE, bs_pairwise = FALSE,

boots = NULL, plot = FALSE, para = FALSE)

2.11.0.29 General use

2.11.0.30 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory. If the suggested package xlsx is installed, all results tables
will be written to a single, multi-sheet workbook, alternatively, all tables will be written to separate tab
delimited files.

• gp: An integer specifying the allele digit format of infile. Either ‘2’ or ‘3’ are valid.

• fst: A logical indication of whether Weir & Cockerham’s F-statistics should be calculated.

• pairwise: A logical argument, indicating if pairwise point estimates should be calculated. Both locus
and multilocus parameters are calculated.

• bs_locus: A logical argument, indicating whether 95% CIs should be calculated at the global level. If
TRUE 95% CI are estimated for all loci across all population samples and across all loci for all population
samples.

• bs_pairwise: A logical argument, indicating whether 95% CIs should be calculated at the pairwise
level. If TRUE 95% CI are estimated for all loci for all pairwise comparisons and across all loci for all
pairwise comparisons.

• boots: An integer indicating the number of bootstrap replicates to use for the estimation of 95% CIs.

• plot: A logical argument allowing users to control whether estimated results should be plotted. Plots
are either generated using the standard png device, or if the suggested package sendplot is installed,
interactive HTML format plots will be created, allowing users to explore elements using the associated
tootip information generated.

• para: A logical argument specifying whether fastDivPart should make use of multiple CPUs.

2.11.0.31 Example To calculate pairwise differences using DJost and their statistical significance, the
code below can be used:

load diveRsity

library(diveRsity)

load test data

data(Test_data)

calculate pairwise stats

res <- fastDivPart(infile = Test_data, pairwise = TRUE, bs_pairwise = TRUE,

boots = 999, para = TRUE)

pander::pandoc.table(head(res$bs_pairwise$djostEst))

17

Table 5: Table continues below (continued below)

actual mean BC_mean Lower_95%CI

pop1, vs. pop2, 0.002728 0.0317 0.002728 0.01702
pop1, vs. pop3, 0.1802 0.2094 0.1802 0.1782
pop1, vs. pop4, 0.1484 0.1762 0.1484 0.1506
pop1, vs. pop5, 0.2527 0.274 0.2527 0.2423
pop1, vs. pop6, 0.1494 0.1847 0.1494 0.1565
pop2, vs. pop3, 0.1579 0.1883 0.1579 0.1605

Upper_95%CI BC_Lower_95%CI

pop1, vs. pop2, 0.05095 -0.01195
pop1, vs. pop3, 0.2438 0.149
pop1, vs. pop4, 0.2038 0.1227
pop1, vs. pop5, 0.3082 0.221
pop1, vs. pop6, 0.2149 0.1212
pop2, vs. pop3, 0.2207 0.1301

BC_Upper_95%CI

pop1, vs. pop2, 0.02198
pop1, vs. pop3, 0.2146
pop1, vs. pop4, 0.1759
pop1, vs. pop5, 0.2869
pop1, vs. pop6, 0.1796
pop2, vs. pop3, 0.1903

As in differentiation results from both diffCalc and chiCalc, only the difference between pop1 and pop2
is non-significant. The pairwise bootstrapping results from fastDivPart contains both standard 95% CIs
(Lower_95%CI and Upper_95%CI) and bias corrected 95% CIs (BC_Lower_95%CI and BC_Upper_95%CI),
while diffCalc only returns the bias corrected CI.

If the argument plot = TRUE was used, and the suggested package sendplot was installed, a plot with
tool-tip information, as below, can be generated. An argument must be passed to outfile to allow the
function to write the plots to file, otherwise standard png plots will be returned to the plot device.

18

2.12 gpSampler

The ability to randomly sub-sample population data ‘in silico’ is essential for investigations such as sample
effects on parameter estimation. By integrating this process into the R workflow with gpSampler, the
diveRsity package allows users to conveniently generate sub-sampled data and estimated various parameters
from them.

gpSampler(infile = NULL, samp_size = 10, outfile = NULL)

2.12.0.32 General use

2.12.0.33 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• samp_size: An integer vectors specifying the size of sub-sample to be taken from each population
sample in infile. If a single integer is provided, all population samples in infile will be re-sampled
for the same number of individuals. Alternatively, each sample in infile will be sub-sampled for a
number of individuals specified by the corresponding value in samp_size. For example, if samp_size

= c(10, 5, 10), then the first and third population sample in infile will be sub-sampled for n = 10,
while the second population sample will be sub-sampled for n = 5.

• outfile: A character string indicating the prefix to be added to the .gen file containing the sub-sampled
data.

19

2.12.0.34 Example This example demonstrates how gpSampler can be used to understand the effect of
sample size on the calculation of DJost. The main challenge from this task is the organisation of data. This
example provides a suitable strategy for such a task.

Here, each population sample will be re-sampled for n = 10, 20, 30, 40, 1000 times and DJost will be estimated
for each sub-sample of the data. These results will then be plotted with a +/- 1 standard deviation envelope,
calculated from the sub-sample data

load diveRsity

library(diveRsity)

generate sub-sample ouput names

samp_sizes <- seq(10, 40, 10)

outnms <- lapply(samp_sizes, function(x){

generate the sample size folder

dir.create(path = paste("./n", x, sep = ""))

create oufile names

lapply(1:1000, function(i){

c(x, paste("./n", x, "/", x, "_rep_", i, ".gen", sep = ""))

})

})

generate subsample data

sapply(outnms, function(x){

sapply(x, function(y){

gpSampler(infile = "Test_data.txt", samp_size = as.numeric(y[[1]]),

outfile = y[[2]])

})

})

When all of the sub-sample files are generated, it is straightforward to pass the file names to diffCalc to
calculate overall DJost. This is done as follows:

calculate Jost's D

d <- lapply(outnms, function(x){

sapply(x, function(y){

diffCalc(y[[2]])$std_stats[38,"D"]

})

})

Estimating both the mean and the standard deviation for each of the four samples sizes tested is done as
follows:

plot_stats <- t(sapply(d, function(x){

mn <- mean(x, na.rm = TRUE)

std <- sd(x, na.rm = TRUE)

c(mn, mn-std, mn+std)

}))

plot_stats <- as.data.frame(plot_stats)

plot_stats$sample_size <- samp_sizes

names(plot_stats) <- c("mean", "lower", "upper", "sample_size")

To visualize the effect of sample size on the estimation of DJost, these results can be plotted as follows:

20

load ggplot2

library(ggplot2)

create the plot

plt <- ggplot(data = plot_stats, aes(x = sample_size, y = mean)) +

geom_line(lwd = 2) +

geom_ribbon(aes(ymin=lower, ymax=upper), alpha = 0.3)

plt

0.13

0.14

0.15

10 20 30 40
sample_size

m
ea

n

From these results, it can be seen that the variance in DJost is much higher at smaller sample sizes, decreasing
as sample size increases. Additionally, the results indicate a slight underestimation of D for small sample
sizes.

2.13 inCalc

Locus informativeness for the inference of ancestry (In) can be calculated using inCalc. The function accepts
an input file in the genepop format, and allows users to calculate this parameter, both globally and for pairs
of populations.

inCalc(infile = NULL, outfile = NULL, pairwise = FALSE, xlsx = FALSE,

boots = NULL, para = FALSE)

2.13.0.35 General use

21

2.13.0.36 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• outfile: A character string indicating the prefix to be added to the results directory created. All
results files will be written to this directory.

• pairwise: A logical argument specifying whether In should be calculated for all population pairs.

• xlsx: A logical argument indicating whether users would like results to be written to a multi-sheet xlsx
workbook. If false, result will be written to tab delimited files.

• boots: An integer specifying the number of bootstrap replicates used when calculating 95% confidence
intervals.

• para: A logical argument indicating whether the function should make use of multiple cores.

2.13.0.37 Example When selecting a panel of markers for studying genetic structure among populations,
it is important that these loci are generally informative across multiple populations. For instance, a number of
factors can affect the informativeness of a locus, such that they may be informative for one pair of populations,
but not another. This example demonstrates how informativeness can be calculated and visualized with the
help of the inCalc function.

Calculate pairwise In with 95% CIs

load diveRsity

library("diveRsity")

data(Test_data)

in_res <- inCalc(Test_data, pairwise = TRUE, boots = 999, para = TRUE)

load ggplot2

library("ggplot2")

loci <- as.character(in_res$global$Locus)

for(i in 1:(nrow(in_res$pairwise)-1)){

loc1 <- data.frame(t(in_res$pairwise[i,-1]),

t(in_res$lower_CI[i,-1]),

t(in_res$upper_CI[i,-1]))

colnames(loc1) <- c("actual", "lower", "upper")

loc1$pops <- rownames(loc1)

rownames(loc1) <- NULL

p <- ggplot(data = loc1, aes(x = reorder(pops, actual), y = actual)) +

geom_hline(yintercept = in_res$global$Global_In[i], colour = "red") +

geom_point(pch = 20, cex = 10) +

geom_errorbar(aes(ymin = lower, ymax = upper),

width = 0.2, size = 1) +

theme_bw() +

theme(text = element_text(size=20),

axis.text.x = element_text(angle=90, vjust=1)) +

ggtitle(loci[i]) +

labs(x = "Pairwise comparison", y = expression("I"["n"]))

ggsave(paste("In_Locus", i, ".eps", sep = ""), device = cairo_ps)

}

22

From these plots we are able to visualise the variance in IN among pairwise comparisons. Each plot represent
pairwise In calculates for a given locus along with 95% CIs. The red line in each plot is the global In. This
approach can be used to identify loci with have high informativeness for the inference of ancestry at multiple
scales. Genepop input files can be organised to represent different hierarchical scales, allowing a more detailed
inspection of the informativeness of loci for specific question of interest.

23

2.14 microPlexer

This function allows users to launch a local instance of the microPlexer web application (http://glimmer.
rstudio.com/kkeenan/microPlexer/). The local version of the application uses local resources, and so is
dependent on the systems RAM and CPU.

This web application allows users to generate efficient configurations of microsatellite loci for the purposes
of multiplex PCR. The configurations generated only take into consideration the number of dye channels
available on the screening platform to be used, and the specified size range of the loci. It does not assess the
annealing temperature of primers etc.

microPlexer()

2.14.0.38 General usage

2.14.0.39 Example The application accepts a .csv file as input with the following structure:

nms lower upper

ssa85 100 125
one102b 160 280
ssa406 412 580
mhc-1 110 150

ca048302 172 219
ssa419 230 570

Users are able to specify the number of dyes available for screening and the minimum distance between
loci within dye groups. Additionally, two algorithms are available for use when grouping loci. These are
‘Maximum throughput’ and ‘Balanced throughput’. Maximum throughput attempts to group loci into as
few a number of multiplexes as possible, meaning that, depending on the total number of loci and their size
ranges, the first multiplex will generally have the largest number of loci. By using the ‘Balanced throughput’
option, user can specify a mean number of loci per multiplex group. In this case the application will attempts
to balance the number of loci in each multiplex.

Following plot represent a typical, single multiplex groups generated by microPlexer:

24

http://glimmer.rstudio.com/kkeenan/microPlexer/
http://glimmer.rstudio.com/kkeenan/microPlexer/

2.15 polyIn

This function is virtually identical to inCalc in that it calculates locus informativeness for the inference of
ancestry at global and pairwise scales. However, polyIn allows the use of loci with arbitrary ploidy. Results
are also only returned to the R workspace, so users must write them to file if required. This function does
not calculate 95% CIs.

The input file accepted is a modified genepop format. An example of this file, containing tetraploid is below:

pop-test

snp1 snp2 snp3 snp4 snp5

pop

pop1_1 AABA AABA AABA AABA AABA

25

pop1_2 AAAA AAAA AAAA AAAA AAAA

pop1_3 AABB AABB AABB AABB AABB

pop1_4 BBBB BBBB BBBB BBBB BBBB

pop1_5 AABA AABA AABA AABA AABA

pop1_6 ABAB ABAB ABAB ABAB ABAB

pop1_7 BBAA BBAA BBAA BBAA BBAA

pop1_8 AABB AABB AABB AABB AABB

pop1_9 ABAA ABAA ABAA -9 ABAA

pop1_10 AAAA AAAA AAAA AAAA AAAA

pop

pop2_1 AABB AABB AABB AABB AABB

pop2_2 AABB AABB AABB AABB AABB

pop2_3 BBBB BBBB BBBB BBBB BBBB

pop2_4 BBBA BBBA BBBA BBBA BBBA

pop2_5 BBBA BBBA BBBA BBBA BBBA

pop2_6 BABB BABB BABB BABB BABB

pop2_7 ABBB ABBB ABBB ABBB ABBB

pop2_8 AAAB AAAB AAAB AAAB AAAB

pop2_9 ABAB ABAB ABAB ABAB ABAB

pop2_10 BBAA BBAA BBAA BBAA BBAA

pop

pop2_1 AABB AABB AABB AABB AABB

pop2_2 AABB AABB AABB AABB AABB

pop2_3 BBBB BBBB BBBB BBBB BBBB

pop2_4 BBBA BBBA BBBA BBBA BBBA

pop2_5 BBBA BBBA BBBA BBBA BBBA

pop2_6 BABB BABB BABB BABB BABB

pop2_7 ABBB ABBB ABBB ABBB ABBB

pop2_8 AAAB AAAB AAAB AAAB AAAB

pop2_9 ABAB ABAB ABAB ABAB ABAB

pop2_10 BBAA BBAA BBAA BBAA BBAA

As can be seen, the format of the file follows that of the standard genepop format. However, missing data is
recorded as ‘-9’ and genotypes are recoded as shown, rather than as allele sizes/numbers.

2.15.0.40 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• pairwise: A logical argument specifying whether In should be calculated for all population pairs.

• parallel: A logical argument indicating whether the function should make use of multiple cores.

2.15.0.41 Example Using the file above, it is possible to calculate global In for all loci as follows:

library(diveRsity)

polyIn("polyIn_data.gen")

snp1 snp2 snp3 snp4 snp5

0.02810769 0.02810769 0.02810769 0.02506269 0.02810769

26

Here, all five loci appear to be equally informative for the inference of ancestry, at the level explored.

2.16 readGenepop

This function allows the generation of various objects from 3 or 2 digit genepop files. These objects can be
used directly (e.g. allele frequency plots below), or to efficiently construct user defined functions.

readGenepop(infile = NULL, gp = 3, bootstrap = FALSE)

2.16.0.42 General use

2.16.0.43 Argument description

• infile: A character string indicating the location and name of a genepop format file to be read. If the
file is in the current working directory, only the name must be provided. If the file is in a directory
other than the current working directory, either a relative or absolute path to the file must be provided.
The genepop file can be in the 2-digit or 3-digit allele format.

• gp: An integer specifying the digit format of the input genepop file (e.g. 2-digit or 3-digit).

• bootstrap: A logical argument allowing users to generate a genepop file object containing re-sampled
data. This utility is designed to allow users to generate re-sampled data sets from which 95% CIs for a
given parameter can be estimated.

2.16.0.44 Example Sometimes just visualising the differences in allele frequencies at a locus among
population samples can be informative. Here, readGenepop can be used to generate allele frequency matrices,
which can then be manipulated to generate stacked bar chart of these data.

library("diveRsity")

data("Test_data")

res <- readGenepop(Test_data)

af <- res$allele_freq

These commands result in a list of matrices (af). Each element of the list has the following structure:

af[[1]]

[,1] [,2] [,3] [,4] [,5] [,6]

258 0.00000000 0.0000 0.00000000 0.00000000 0.01219512 0.00000000

264 0.00000000 0.0000 0.00000000 0.00000000 0.01219512 0.00000000

280 0.28260870 0.2500 0.28048780 0.14423077 0.08536585 0.18292683

365 0.01086957 0.0500 0.04878049 0.05769231 0.06097561 0.03658537

369 0.29347826 0.1875 0.30487805 0.38461538 0.50000000 0.48780488

397 0.00000000 0.0250 0.02439024 0.00000000 0.00000000 0.00000000

539 0.41304348 0.4875 0.34146341 0.41346154 0.32926829 0.29268293

To plot these data, the following manipulations can be done:

27

library("reshape2")

library("ggplot2")

colnames(af[[1]]) <- res$pop_names

loc1 <- melt(af[[1]])

p <- ggplot(data = loc1, aes(x = Var2, y = value, fill = factor(Var1))) +

geom_bar(stat = "identity") +

theme_bw() +

theme(text = element_text(size=20)) +

labs(x = "Population", y = "Allele frequency", fill = "Alleles")

print(p)

0.00

0.25

0.50

0.75

1.00

pop1, pop2, pop3, pop4, pop5, pop6,
Population

A
lle

le
 fr

eq
ue

nc
y Alleles

258
264
280
365
369
397
539

2.17 snp2gen

This function allows users to efficiently convert SNP genotypes into the genepop format for further use with
the diveRsity package. The function accepts a matrix stored in a tab delimited file as below:

SNP_ID pop1_1 pop1_2 pop1_3 pop1_4 pop1_5

SNP1 TC TC TC TC TC

SNP2 TC TC TC TC TC

SNP3 TA TA TA TA AA

SNP4 AG AG AG AG AG

28

SNP5 TC TC TC TC TC

This file contains genotype data for five individuals at five SNP loci. Individuals are stored in columns, and
loci in rows.

snp2gen(infile = NULL, prefix_length = 2, write = FALSE)

2.17.0.45 General use

2.17.0.46 Argument description

• infile: A character string pointing to an SNP matrix file to be converted. This string can either be a
file name, providing the file is in the current working directory, otherwise an absolute or relative file
path can be provided within the string.

• prefix_length: An integer indicating the number of characters from the beginning of the individual
ID strings to be used to group individuals into population samples.

• write: A logical argument specifying whether a genepop file containing the converted data should be
written to disk. If FALSE, the genepop file will be returned to the R workspace. This can be passed
to other functions from the diveRsity package. Thus avoiding the time cost of reading the file twice,
especially useful when converting large data sets (i.e. > 10,000 loci).

2.17.0.47 Example Below is the output for the example input file above:

snp2gen-converted

SNP1, SNP2, SNP3, SNP4, SNP5

pop

pop1_1 , 0402 0402 0401 0103 0402

pop1_2 , 0402 0402 0401 0103 0402

pop1_3 , 0402 0402 0401 0103 0402

pop1_4 , 0402 0402 0401 0103 0402

pop1_5 , 0402 0402 0101 0103 0402

3 References

in progress

29

	Introduction
	Function demonstrations
	arp2gen
	chiCalc
	corPlot
	diffCalc
	diffCalc
	divBasic
	divMigrate
	divOnline
	divRatio
	divSimCo
	fastDivPart
	gpSampler
	inCalc
	microPlexer
	polyIn
	readGenepop
	snp2gen

	References

