
Dynamic Model Averaging for Practitioners in

Economics and Finance: The eDMA Package

Leopoldo Catania
University of Rome, “Tor Vergata”

Nima Nonejad
Aalborg University and CREATES

Abstract

Raftery et al. (2010) introduce an estimation technique referred to as Dynamic Model
Averaging (DMA). In their application, DMA is used to the problem of predicting the
output strip thickness for a cold rolling mill, where the output is measured with a time
delay. Recently, DMA has also shown to be very useful in macroeconomic and financial
applications. In this paper, we present the eDMA package for DMA estimation in R,
which is especially suited for practitioners in economics and finance. Our implementation
proves to be up to 133 times faster then a standard implementation on a single–core
CPU. With the help of this package, practitioners are able perform DMA on a standard
PC without resorting to large clusters, which are not easily available to all researchers.
We demonstrate the usefulness of this package through simulation experiments and an
empirical application using quarterly U.S. inflation data.

Keywords: Dynamic model averaging, Multi core CPU, Parallel computing, R, OpenMP.

1. Introduction

Modeling and forecasting economic variables such as real GDP, inflation and equity premium
is of clear importance for researchers in economics and finance. For instance, forecasting
inflation is crucial for central banks with regards to conducting optimal monetary policy.
Similarly, understanding and predicting equity premium is one of the most widely important
topics discussed in financial economics as it has great implications on portfolio choice and
risk management, see for instance Dangl and Halling (2012) among many others.

In order to obtain the best forecast as possible, practitioners often try to take advantage
of the many potential predictors available and seek to combine the information from these
predictors in an optimal way, see Stock and Watson (1999), Stock and Watson (2008) and
Groen et al. (2013) just to mention a few references. In the context of economic applications,
Koop and Korobilis (2011) and Koop and Korobilis (2012), implement a technique developed
by Raftery et al. (2010), referred to as Dynamic Model Averaging (DMA). The original intent
of the mentioned article is to predict the output strip thickness for a cold rolling mill, where
the output is measured with a time delay. Typically, DMA consists of thousands of models
based on all possible combinations of the predictors available. Furthermore, besides allowing
for time–variation in the regression coefficients of each individual model, DMA also allows
the relevant model set to change with time as well by introducing a forgetting factor. Koop
and Korobilis (2011) and Koop and Korobilis (2012) argue (very elegantly) that by slightly
adjusting the original framework, DMA can be very useful in economic contexts, especially

2 eDMA: Efficient Dynamic Model Averaging

inflation forecasting.1 Dangl and Halling (2012) provide further suggestions on how to improve
DMA such that it better suits the nature of economic and financial data. The aforementioned
authors, also provide a very useful variance decomposition scheme using the output from
the estimation procedure to understand which source of uncertainty explains the degree of
variation in the observed variable. Byrne et al. (2014), among others, use the modifications
proposed in Dangl and Halling (2012) to model currency exchange–rate behavior. We must
also emphasize that DMA is not solely limited to these series and can be used in a wide
range of economic applications such as: Forecasting realized volatility as well as house, oil
and commodity prices.

However, designing an efficient DMA algorithm remains a challenging issue. As previously
mentioned, DMA considers all possible combinations from a set of predictors at each point in
time. Typically, many candidate variables are available and, as a consequence, it poses a limit
given the computational facilities at hand, which for many practitioners typically consists of a
standard 8 core CPU. Thus, while handling a relatively small number of model combinations,
usually between 1000 to 3000, allows one to perform DMA using standard loops and software,
handling larger number of combinations becomes very burdensome, especially in the context
of memory consumption, see also Koop and Korobilis (2012).

In order to deal with this issue, Onorante and Raftery (2016) suggest a strategy that considers
not the whole model space, but rather a subset of models and dynamically optimizes the choice
of models at each point in time. However, Onorante and Raftery (2016) have to assume that
models do not change too fast over time, which is not an ideal assumption when dealing with
financial and in some cases monthly economic data. Furthermore, the approach of Onorante
and Raftery (2016) is not able to clearly state why certain predictors can be considered as
less important than others or vice versa. Finally, incorporating the modifications suggested in
Dangl and Halling (2012), which are very important with regards to interpretation of results,
is not possible using the approach of Onorante and Raftery (2016).

In this paper, we introduce the eDMA package for R (R Core Team 2016), which efficiently im-
plements a DMA procedure based on Raftery et al. (2010) and Dangl and Halling (2012). The
routines in the eDMA package are principally written in C++ using the armadillo library of
Sanderson (2010) and then made available in R exploiting the Rcpp and RcppArmadillo pack-
ages of Eddelbuettel et al. (2016a) and Eddelbuettel et al. (2016b), respectively. Furthermore,
the OpenMP API (OpenMP 2008) is used to speedup the computations when a shared memory
multiple processors hardware is available, which, nowadays, is standard for the majority of
commercial laptops. However, if the hardware does not have multiple processors, the eDMA
package can still be used with the classical sequential CPU implementation.

Our aim is to provide a package that can be used by a broad audience from different academic
fields who are interested in implementing DMA in their research. Furthermore, our package
enables practitioners, to perform DMA using a large number of predictors without needing to
understand and possibly implement complex programming concepts such as“how to efficiently
allocate memory”, or “how to efficiently parallelize the computations”.

It is worth noting that, within the R environment, the package dma of McCormick et al.
(2016) downloadable from CRAN can be used to perform the DMA of Raftery et al. (2010).

1Specifically, Koop and Korobilis (2012) change the conditional volatility formula of Raftery et al. (2010)
arguing that their original formula is not suited in the context of economic data. Their suggestion proves more
compatible with the behavior of economic data such as inflation, see also Dangl and Halling (2012) for a similar
approach.

Leopoldo Catania, Nima Nonejad 3

However, dma has several weaknesses such as (i): Does not allow for the extensions of Dangl
and Halling (2012), which are important in the context of interpreting the amount of time–
variation in the regression coefficients and performing a variance decomposition analysis, (ii):
It is remarkably slow compared to our alternative, (iii): Requires a very large amount of RAM
when executed for moderately large applications, (iv): Does not allow for parallel computing.
We refer the reader interested in these aspects to Section 4, where we report a comparative
analysis between dma and eDMA using simulated data. eDMA permits us to also perform
Bayesian Model Averaging (BMA) and Bayesian Model Selection (BMS) for linear regression
models with constant coefficients implemented, for example, in the R packages BMA (Raftery
et al. 2015) and BMS (Zeugner and Feldkircher 2015).

The empirical application in Section 6 presents different features of this package, provides
illustrations on how practitioners can implement DMA and more importantly use the output
from the estimation procedure to interpret results.

The structure of this paper is as follows: Sections 2 and 3 briefly introduce DMA and its
extensions. Section 4 presents the technical aspects. Section 5 provides an intuitive description
of the challenges that DMA posses from a computational point of view and proposes solutions.
Section 6 provides an empirical application to demonstrate the advantages of eDMA from a
practical point of view. Therefore, practitioners who are solely interested on how to implement
DMA using the eDMA package can skip Sections 2 and 3. Finally, Section 7 concludes.

2. The model

In this section, we briefly introduce the DMA algorithm of Raftery et al. (2010). We then
pinpoint some of the main challenges associated with applying DMA in economic and financial
applications. Thereafter, we propose solutions in Section 5.

Let yt denote the dependent variable at time t. Our goal is to model yt using a pool of
i = 1, . . . , k, candidate Dynamic Linear Models (DLM) of the types introduced in West and
Harrison (1999) and Raftery et al. (2010),

yt = F
(i)′
t θ

(i)
t + ε

(i)
t , ε

(i)
t ∼ N

(
0, V

(i)
t

)
(1)

θ
(i)
t = θ

(i)
t−1 + η

(i)
t , η

(i)
t ∼ N

(
0,W

(i)
t

)
, (2)

where F
(i)
t is a subset from the total n predictors. Let p denote the numbers of predictors

in F
(i)
t for model i. Then, θ

(i)
t is a p× 1 vector of time–varying regression coefficients, which

evolve according to (2) and determine the impact of F
(i)
t on yt. Note, we do not assume any

systematic movements in θ
(i)
t . On the contrary, we consider changes in θ

(i)
t as unpredictable.2

The conditional variances, V
(i)
t and W

(i)
t , for model i are the unknown quantities associated

with the observational equation, (1), and the state equation, (2). Obviously, when W
(i)
t = 0

for t = 1, . . . , T , then θ
(i)
t is constant over time. Thus, our model can nest the specification

of constant regression coefficients. As W
(i)
t increases, the variation in θ

(i)
t varies according to

Equation 2. However, this does not mean that θ
(i)
t needs to change at every time period. For

2See Dangl and Halling (2012) and Koop and Korobilis (2012) for a similar model specification.

4 eDMA: Efficient Dynamic Model Averaging

instance, we can simply have periods where W
(i)
t = 0 in which θ

(i)
t = θ

(i)
t−1 and other periods

when θ
(i)
t is allowed to change according to Equation 2.3

In DMA, we consider a total of k = 2n − 1 possible combinations of the predictors at each

point in time while contemporaneously assuming that θ
(i)
t changes according to Equation 2.4

DMA then averages forecasts/predictions across these combinations using a recursive updating
scheme based on the predictive likelihood. The predictive likelihood measures the ability of
a model to predict yt, thus making it the central quantity of interest for model evaluation.
Apparently, models containing important combinations of predictors receive high predictive
likelihood values, which means that these models obtain higher weights in the averagning
process. Besides averaging, we can also use the prediction/forecasts of the model receiving
the highest probability among all model combinations considered at each point in time. In
this case, we are performing Dynamic Model Selection (DMS), see also Koop and Korobilis
(2012).

In the context of estimation, DMA avoids the difficult task of specifying W
(i)
t for each indi-

vidual model. Instead DMA relies on using a forgetting factor, 0 < δ ≤ 1. This parameter
describes the loss of information through time, which simplifies things greatly from a practi-

cal point of view. The forgetting factor avoids the need to estimate W
(i)
t for each individual

model. Particularly, using the same notation as the Appendix in Dangl and Halling (2012), we

define the variables in the Kalman recursions of the i–t model as: (i): R
(i)
t , the unconditional

variance of θ
(i)
t (see Equation 14 in the Appendix of Dangl and Halling (2012)), (ii): C

(i)
t ,

the estimator for the variance of θ
(i)
t , (see Equation 20 in the Appendix of Dangl and Halling

(2012)), and (iii): S
(i)
t , the estimator of the observational variance (see Equation 17 in the Ap-

pendix of Dangl and Halling (2012)). Then, using δ, we can rewrite R
(i)
t = δ−1C

(i)
t−1, indicating

that there is a relationship between W
(i)
t and δ, which is given as W

(i)
t = (1− δ) /δC(i)

t−1. In
other words, the loss of information is proportional to the covariance of the state parameters.

This way, we can control the magnitude of the shocks that affect θ
(i)
t by adjusting δ instead

of directly estimating W
(i)
t . Accordingly, δ = 1 corresponds to W

(i)
t = 0, which means that

θ
(i)
t is constant over time. For δ < 1, we introduce time–variation in θ

(i)
t . For instance, when

δ = 0.99, in the context quarterly data, observations five years ago receive approximately 80%
as much weight as last period’s observation, which corresponds to gradual time–variation in

θ
(i)
t . When δ = 0.95, observations 20 periods ago receive only about 35% as much weight

as last period’s observations, suggesting relatively more drastic change in θ
(i)
t at each point

in time. Evidently, while this renders the model more flexible to adapt to changes in yt, the

increased variability in θ
(i)
t translates into high prediction variance. Thus, finding the correct

value of δ at each point in time is extremely important with regards to the ability of the

model to capture the correct magnitude of variations in θ
(i)
t an thus produce optimal fore-

casts/predictions. The same line of argumentation holds for the parameter, α, which controls
the forgetting for the entire model set, see Raftery et al. (2010) for more details. For instance,
α = 0.95 means that past model performance is less important than when α = 0.99. We must

3As indicated below, we model time–variation in θ
(i)
t through a forgetting factor, δ. The way we update

δ, which determines the magnitude of the shocks that hit θ
(i)
t at each t, avoids any unreasonable behavior of

θ
(i)
t . Thus, we do not need to put any restrictions on θ

(i)
t itself, see Dangl and Halling (2012) for a similar

approach.
4The model yt = εt is not considered in the universe of models, see also Dangl and Halling (2012).

Leopoldo Catania, Nima Nonejad 5

also determine a way to model the evolution of V
(i)
t . Here, we have several choices, which we

go into more details below, see point (c).

To summarize, DMA depends on:

(a) The number of predictors to consider. Typically, in economic applications, the set of
predictors contains exogenous predictors as well as lagged values of yt. For instance,
in the context of forecasting quarterly inflation, besides considering predictors such as
unemployment rate and T–bill rates, Koop and Korobilis (2012) also consider the first
three lags of yt as explanatory variables. Of course, how to distinguish useful variables
from noise remains an important issue. For instance, following a recession or revisions
of data, the set of predictors to use probably changes.

(b) The choice of the forgetting factors, α and δ. In many applications α ∈ {0.98, 0.99, 1}
work very well and results do not change drastically across different values of α. On
the other hand, as previously mentioned, we often find that the choice of δ is more
important. Koop and Korobilis (2012) fix δ at {0.95, 0.98, 0.99, 1.00} and run DMA
using each of these values. They find that results differ considerably in terms of out–of–
sample forecasts, see Koop and Korobilis (2012) for more details. Evidently, in many
economic applications, it is very plausible that δ would indeed be time–varying. For
instance, it is plausible to expect that δ is relatively low in recessions or periods of market

turmoil (as there is considerable time–variation in θ
(i)
t in these periods). Conversely,

δ is expected to be close to 1.00 during tranquil and periods of low volatility. Dangl
and Halling (2012) propose a very elegant solution to this problem by considering a
grid of values for δ and incorporate this in the DMA setting by averaging over all
possible combinations of the predictors as well as over a grid value for δ. Furthermore,
this procedure can also be used to obtain more information from the data through a
variance decomposition scheme, see below for more details.

(c) Modeling V
(i)
t : In this paper, we make things easy for conjugate analysis by using the

following assumptions, see also Dangl and Halling (2012) and Byrne et al. (2014) for

the same approach: We assume that V
(i)
t = V (i) for all t. For time t = 0, we specify a

Normal prior on θ
(i)
0 and a Gamma prior on φ(i) = V −1(i). The time t estimate of the

variance of the error term in (1) is then given as Equation 17 in the Appendix of Dangl
and Halling (2012). More importantly, by using these assumptions, we find that, when

we integrate the conditional density of yt over the values of θ
(i)
t and V (i) to obtain the

predictive density, p (yt|Ft−1), the corresponding density has a closed–form solution,

which is given as p (yt|Ft−1) ∼ t
n
(i)
t

(
ŷ
(i)
t , Q

(i)
t

)
, where t

n
(i)
t

stands for the Student–t

distribution with n
(i)
t degrees–of–freedom and mean and scale given by ŷ

(i)
t and Q

(i)
t ,

see Equations 13 and 16 of Dangl and Halling (2012), respectively.

We can also follow Koop and Korobilis (2012) and use an Exponentially Weighted Moving

Average (EWMA) estimate of V
(i)
t . However, this requires the practitioner to also consider

an additional parameter, namely, κ, which increases the computation burden. Furthermore,
by experimenting with EWMA on a smaller model, we find that δ and κ in many ways are

intertwined, in the sense that we obtain the same magnitudes of variation in θ
(i)
t as for (c)

when we allow κ and δ to vary over time. In this case, compared to (c), we obtain higher

6 eDMA: Efficient Dynamic Model Averaging

estimates of δ over time whereas we estimate κ close to 0.96, which is the value suggested in
Koop and Korobilis (2012). We observe the same phenomena when we allow α to vary with
δ. Overall, our conclusion is that it is best to use (c) and fix α close to 0.99 for monthly and
quarterly data. This way, we maintain a very parsimonious model structure and are never in
doubt with regards to under (over) estimating the true magnitude of variation in δ (α).

3. Modified DMA

Below, we present the DMA algorithm modified to incorporate the extensions mentioned
above. We refer the reader to Dangl and Halling (2012) for more details. Let Mi denote
a model containing a specific set of predictors chosen from a set of k = 2n − 1 candidates
and δj ∈ {δ1, ..., δd} denote a specific choice of the degree of time–variation in the regression
coefficients at time t. The total posterior density of model Mi and forgetting δj at time t,
p (Mi, δj |Ft), is given as

p (Mi, δj |Ft) = p (Mi|δj ,Ft) p (δj |Ft) .

In order to obtain p (Mi|Ft) and p (δj |Ft), we can use that

p (Mi|Ft) =
d∑
j=1

p (Mi|δj ,Ft) p (δj |Ft) . (3)

The term, p (Mi|δj ,Ft), in Equation 3 is given as

p (Mi|δj ,Ft) =
p (yt|Mi, δj ,Ft−1) p (Mi|δj ,Ft−1)∑k
l=1 p (yt|Ml, δj ,Ft−1) p (Ml|δj ,Ft−1)

(4)

where

p (Mi|δj ,Ft−1) =
p (Mi|δj ,Ft−1)α∑k
l=1 p (Ml|δj ,Ft−1)α

. (5)

The second term on the right–hand side of Equation 3 is given as

p (δj |Ft) =
p (yt|δj ,Ft−1) p (δj |Ft−1)∑d
l=1 p (yt|δl,Ft−1) p (δl|Ft−1)

. (6)

where

p (δj |Ft−1) =
p (δj |Ft−1)α∑d
l=1 p (δl|Ft−1)α

.

As previously mentioned, p (yt|Mi, δj ,Ft−1) ∼ tnt

(
ŷ
(j)
i,t , Q

(j)
i,t

)
, where ŷ

(j)
i,t and Q

(j)
i,t are the

quantities of model Mi, i = 1, ..., k, conditional on δj , j = 1, ..., d, and α. Typically,
p (Mi, δj |F0) = 1/(d · k) such that, initially, all model combinations and degrees of time–
variation are equally likely. Thereafter, as a new observation arrives, model probabilities are
updated using the above recursions.

3.1. Using the output from DMA

For practitioners, the most interesting output from DMA are:

Leopoldo Catania, Nima Nonejad 7

(i) The predictive mean of yt+1 conditional on Ft, ŷt+1. This is simply an average of each
of the individual model predictive means. That is

ŷt+1 =
d∑
j=1

E
[
y
(j)
t+1|Ft

]
p (δj |Ft) , (7)

where

E
[
y
(j)
t+1|Ft

]
=

k∑
i=1

E
[
y
(j)
i,t+1|Ft

]
p (Mi|δj ,Ft) .

The formulas for the predictive density are very similar. We only replace the predic-
tive mean with the predictive density inside Equation 7, see Dangl and Halling (2012).
Besides averaging over the individual predictive means/densities, we can simply choose
the predictive mean/density associated with the model with the highest posterior prob-
ability, see Equation 3. Henceforth, we label this as Dynamic Model Selection (DMS).
Furthermore, as mentioned in Koop and Korobilis (2012), for DMA and DMS, with
δ and α fixed at 1, we have Bayesian model averaging (BMA) and Bayesian Model
Selection (BMS) based on exact predictive likelihood, see for instance Zeugner and
Feldkircher (2015).5

(ii) Quantities such as the expected size of the predictor, E [Sizet] = Σk
i=1Size

(i)p (Mi|Ft),
where Size(i) be the number of predictors in model i. This quantity reveals the average
number of predictors in the DMA, see Koop and Korobilis (2012). Similarly, we can
compute the number of predictors for the model with the highest posterior probability,
(3), at each point in time, which give the optimal model size at time t.

(iii) Posterior inclusion probabilities for the predictor. That is, at each t we calculate∑k
i=1 1(i⊂m)p (Mi|Ft), where 1(i⊂m) is an indicator function taking the value of either 0

or 1 and m is the mth predictor. We can also report the highest posterior model prob-
ability or the sum of the top 10% model probabilities among all model combinations
after the effect of δ is integrated out. This information can be used to determine if there
is a group or an individual model that obtains relatively high posterior probability.

(iv) Posterior weighted average of δ at each point in time, see Equation 6.

(v) Posterior weighted average estimates of θt for DMA,

E [θt|Ft] =
d∑
j=1

E
[
θ
(j)
t |Ft

]
p (δj |Ft) , (8)

where

E
[
θ
(j)
t |Ft

]
=

k∑
i=1

E
[
θ
(j)
i,t |Ft

]
p (Mi|δj ,Ft) .

5Zeugner and Feldkircher (2015) also implement BMA using the MC3 algorithm relying on Markov Chain
Monte Carlo (MCMC) techniques. However, their framework does not allow for time–variation in the regression
coefficients nor model size.

8 eDMA: Efficient Dynamic Model Averaging

(vi) Variance decomposition of the data, Var (yt+1|Ft), decomposed into

VAR (yt+1|Ft) =

d∑
j=1

[
k∑
i=1

(St|Mi, δj ,Ft) p (Mi|δj ,Ft)

]
p (δj |Ft)

+

d∑
j=1

[
k∑
i=1

(
F′tRtFt|Mi, δj ,Ft

)
p (Mi|δj ,Ft)

]
p (δj |Ft)

+

d∑
j=1

[
k∑
i=1

(
ŷ
(j)
t+1,i − ŷ

(j)
t+1

)2
p (Mi|δj ,Ft)

]
p (δj |Ft)

+

d∑
j=1

(
ŷ
(j)
t+1 − ŷt+1

)2
p (δj |Ft) . (9)

The first term is the observational variance, Obs. The remaining terms are: Variance
due to errors in the estimation of the coefficients, Coeff, variance due to uncertainty
with respect to the choice of the predictors, Mod, and variance due to uncertainty with
respect to the choice of the degree of time–variation in the regression coefficients, TVP,
see Dangl and Halling (2012) for more details.

4. The eDMA package for R

The eDMA package for R offers an integrated environment for practitioners in economics
and finance to perform our DMA algorithm. It is principally written in C++ exploiting the
armadillo library of Sanderson (2010) to speed up computations. The relevant functions are
then made available in R through the Rcpp and RcppArmadillo packages of Eddelbuettel
et al. (2016a) and Eddelbuettel et al. (2016b), respectively. It also makes use of the OpenMP

API (OpenMP 2008) to parallelize part of the routines needed to perform DMA. Furthermore,
multiple processors are automatically used if supported by the hardware, however, as will be
discussed later, the user is free to manage the level of resources used by the program.

The eDMA package is written using the S4 object oriented language, meaning that classes
and methods are available in the code. Specifically, R users will find common methods such
as plot(), show(), as.data.frame(),coef() and residuals(), among others, in order to
visualise the output of DMA and extract estimated quantities.

Package eDMA is available from GitHub at https://github.com/LeopoldoCatania/eDMA

and can be installed using the command:6

R> library("devtools")

R> install_github("LeopoldoCatania/eDMA")

Once the package is correctly installed and loaded, the user faces one function named DMA()

to perform DMA over a series of possible models. The DMA() function accepts a series of

6Note that, to build the eDMA package under Windows it is advised to install Rtools from https://cran.

r-project.org/bin/windows/Rtools/ before preceding to the next steps.

https://github.com/LeopoldoCatania/eDMA
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/

Leopoldo Catania, Nima Nonejad 9

arguments and returns an object of the class DMA which comes with several methods, see
Section 4.2. The arguments the DMA() function accepts are:

� formula: An object of class formula (or one that can be coerced to that class): A
symbolic description of the model to be fitted. The formula should include all the
predictors one chooses to include. The inclusion of the constant term follows the usual
R practice, i.e., it is included by default and can be removed if necessary. For instance,
in order to model y ~ x, however, without the constant, we can write for example, y
~ x - 1, see help(formula). This implementation follows the common practice for R
users, see e.g., the plm package of Croissant and Millo (2008).

� data: A data.frame (or object coercible by as.data.frame() to a data.frame) con-
taining the variables in the model. If data is an object of the class ts, zoo or xts, then
the time information is used in the graphical representation of the results as well as for
the estimated quantities. The dimension of data is T × (1 + n), containing at each row,
the dependent variables yt and the predictors Ft, that is (yt,F

′
t), for all t = 1, . . . , T .

� vDelta: A d × 1 numeric vector representing a grid of δ. Typically we choose the
following grid: {0.90, 0.91, . . . , 1.00}. By default vDelta = c(0.90, 0.95, 0.99).

� dAlpha: A numeric variable representing α in Equation 5. By default dAlpha = 0.99.

� vKeep: A numeric vector of indices representing the predictors that must be always
included in the models. The models that do not include the variables declared in vKeep

are automatically discarded. The indices must be consistent with the model description
given in formula. For instance, if the first and fourth variables always have to be
included, then we must set vKeep=c(1, 4). Notice that, the intercept (if not removed
from formula) is always in the first position. vKeep can also be a character vector
indicating the names of the predictors if these are consistent with the provided formula.
Furthermore, if vKeep = "KS" the “Kitchen Sink” formulation is adopted, i.e., all the
predictors are always included, see, e.g., Paye (2012). By default all the combinations
are considered, vKeep = NULL.

� bZellnerPrior: A boolean variable indicating whether the Zellner’s prior (see Dangl
and Halling 2012) should be used for the coefficients at time t = 0. By default
bZellnerPrior = FALSE.

� dG: A numeric variable equal to 100 by default. If bZellnerPrior = TRUE, this rep-
resents the prior hyperparameter value, g, in Equation 4 of Dangl and Halling (2012).
Otherwise, if bZellnerPrior = FALSE, it represents the scaling factor for the variance
covariance matrix of the Normal prior for θ0, i.e., θ0 ∼ N(0, dG × I), where I is the
identity matrix. We generally recommend practitioners to use the default prior, espe-
cially in the context of quarterly data, where we typically have 200 to 300 observations.
For longer time–series, the differences between priors is of relatively less importance.

� bParallelize: A boolean variable indicating wether to use multiple processors to speed
up the computations. By default bParallelize = TRUE. Since the use of multiple pro-
cessors is basically effortless for the user, we suggest to not change this value. Fur-
thermore, if the hardware does not permit parallel computations, the program will
automatically adapt to run on a single core.

10 eDMA: Efficient Dynamic Model Averaging

� iCores: An integer indicating the number of cores to use if bParallelize = TRUE.
By default, all but one cores are used. The number of cores is guessed using the
detectCores() function from the parallel package. The choice of the number of cores
depends somehow from the specific application, namely the length of the time–series T
and the number of the predictors n. However, as detailed in Chapman et al. (2008), the
level of parallelization of the code should be traded off with the increase in computational
time due to threads communications. Consequently, the user can fine tune its application
depending on its hardware changing this parameter.

The DMA() function returns an object of the formal class DMA.7 This object contains model
information and the estimated quantities. It is organized in three slots: model, Est, data. The
slot, model, contains information about the specification used to perform DMA. Examples
are: The number of considered models and the computational time in seconds. The slot, Est,
contains the estimated quantities such as: Point forecasts, Predictive likelihood, Posterior
inclusion probabilities of the predictors, Filtered estimates of the regression coefficients, θt,
and so on. Finally, the slot, data, includes the data passed to the DMA() function, organised
in the vector of responses vY and a design matrix mF.

4.1. Using eDMA

After having installed eDMA, it can be easily loaded using:

R> library("eDMA")

Thereafter, model estimation can be performed using the R commands reported below.

In order to illustrate how eDMA works in practice, we present the following guidelines using
simulated data. We also provide an application using quarterly inflation data in Section 6.

We simulate a time–series of T = 500 observations from

yt = F′tθt +
√

0.1εt, εt
iid∼ N (0, 1) . (10)

The first four elements of θt vary according to random–walks, whereas the remaining elements
in θt are equal to zero at all time periods. In other words, θt = (θ1,t, θ2,t, θ3,t, θ4,t, θ5,t, θ6,t)

′

with

θk,t = θk,t−1 +
√

0.01ηk,t, ηk,t
iid∼ N (0, 1) , (11)

for k = 1, 2, 3, 4, and ηk,t |= ηj,t, for all k 6= j. The last two elements of θt are equal to
zero, that is, θ5,t = θ6,t = 0 for t = 1, . . . , T . The first element of the 6 × 1 vector, Ft, is
one, representing the constant term. The remaining elements are generated from a standard

Gaussian distribution, i.e., Ft = (1.0, x2,t, x3,t, x4,t, x5,t, x6,t)
′, where xk,t

iid∼ N (0, 1) and
xk,t |= xj,t for all k 6= j. We simulate the data in the following way (that is θ5,t = θ6,t = 0)
to illustrate that DMA is indeed able to identify the correct variables. In other words, the
inclusion probabilities of the last two predictors ought to be zero as they do not impact yt

7see, help("class") and help("DMA-class").

Leopoldo Catania, Nima Nonejad 11

through Ft. Conversely, inclusion probabilities of the first four predictors ought to converge
to 1.

This data is simulated using the SimulateDLM() function available in eDMA, details are
reported in the R documentation, see help("SimulateDLM"). We organize the data in a
data.frame named SimData, which is included in eDMA and can be loaded into the workspace
by executing:

R> data("SimData", package = "eDMA")

DMA is then performed using the function DMA() as:

R> Fit <- DMA(y ~ x2 + x3 + x4 + x5 + x6 , data = SimData,

vDelta = seq(0.9, 1.0, 0.01))

Information on the DMA procedure is available by typing:

R> Fit

--

- Dynamic Model Ageraging -

--

Model Specification

T = 500

n = 6

d = 11

Alpha = 0.99

Model combinations = 63

Model combinations including averaging over delta = 693

--

Prior : Multivariate Gaussian with mean vector 0

and covariance matrix equal to: 100 x diag(6)

--

The grid for delta:

Delta = 0.90, 0.91, 0.92, 0.93, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99, 1.00

--

Elapsed time : 0.57 secs

Note, we specify a grid of eleven equally spaced values for δ (d = 11) ranging from 0.90 to
1.00. Furthermore, since we do not specify any value for bZellnerPrior and bParallelize,
their default values, bZellnerPrior = FALSE and bParallelize = TRUE have been used.

In order to extract the quantities estimated by DMA, the user can relay on the as.data.frame()
method. as.data.frame() accepts two arguments: (i): An object of the class DMA and (ii):
A character string, which, indicating the quantity to extract. Possible values for which are:

12 eDMA: Efficient Dynamic Model Averaging

� "vyhat": Point forecasts of DMA, see Equation 7. "vyhat_DMS" for point forecast
according to DMS.

� "mincpmt": Posterior inclusion probabilities of the predictors at each point in time, see
Koop and Korobilis (2012) for more details.

� "vsize": Expected number of predictors (average size), see Koop and Korobilis (2012)
and point (ii) at page 7.

� "vsize_DMS": Number of predictors in the model with the highest posterior model
probability, at each point in time, see Equation 3.

� "mtheta": Filtered estimates of the regression coefficients for DMA, see Equation 8.

� "mpmt": Posterior probability of the degrees of instability, see Equation 6.

� "vLpdfhat": Predictive (log–)likelihood of DMA, see Dangl and Halling (2012).

� "vLpdfhat_DMS": Predictive (log–)likelihood according to DMS.

� "vdeltahat": Posterior weighted average of δ, that is δ̂t =
∑d

j=1 δjp (δj |Ft).

� "mvdec": Individual components of Equation 9, see point (vi) in page 8 and Dangl and
Halling (2012) for more details. The function returns a T × 5 matrix whose columns
contain the variables.

– vobs: Observational variance, Obs.

– vcoeff: Variance due to errors in the estimation of the coefficients, Coeff.

– vmod: Variance due to model uncertainty, Mod.

– vtvp: Variance due to uncertainty with respect to the choice of the degrees of
time–variation in the regression coefficients, TVP.

– vtotal: Total variance, that is vtotal = vobs + vcoeff + vmod + vtvp .

� "vhighmp_DMS": Highest posterior model probability, i.e., max
i
P (Mi|Ft) , t = 1, . . . , T .

� "vhighmpTop01_DMS": Sum of the 10% highest posterior model probabilities.

The additional numeric argument, iBurnPeriod, determines the length of the burn–in period,
i.e., results before t=iBurnPeriod are discarded. By default, iBurnPeriod = NULL, meaning
that no burn–in period is considered. For instance, in order to extract the posterior inclusion
probabilities of the predictors, with a burn–in period of 50 observations, we can easily run
the following command

R> PostProb = as.data.frame(Fit, which = "mincpmt", iBurnPeriod = 50)

which returns a (T−iBurnPeriod)× 7 matrix of inclusion probabilities for the predictors at
each point in time. Final values of PostProb are printed as:

R> round(tail(PostProb), 2)

Leopoldo Catania, Nima Nonejad 13

(Intercept) x2 x3 x4 x5 x6

[445,] 1 1 1 1 0.06 0.03

[446,] 1 1 1 1 0.06 0.03

[447,] 1 1 1 1 0.07 0.03

[448,] 1 1 1 1 0.07 0.03

[449,] 1 1 1 1 0.07 0.03

[450,] 1 1 1 1 0.09 0.04

Furthermore, if the supplied data is a ts, zoo or xts object, the class membership is auto-
matically transferred to the output of the as.data.frame() method.

The plot() method is also available for the class DMA. Specifically, this method prints an
interactive menu in the console permitting the user to chose between a series of interesting
graphical representation of the estimated quantities. It can be straightforwardly executed
running:

R> plot(Fit)

Print 1-11 or 0 to exit

1: Point forecasts

2: Predictive likelihood

3: Posterior weighted average of delta

4: Posterior inclusion probabilities of the predictors

5: Posterior probability of the degree of instability

6: Filtered estimates of the regression coefficients, theta

7: Observational variance

8: Variance due to errors in the estimation of the coefficients

9: Variance due to model uncertainty

10: Variance due to uncertainty with respect to the choice of

the degrees of time-variation in the regression coefficients

11: Expected number of predictors (average size)

12: Number of predictors (highest posterior model probability) (DMS)

13: Highest posterior model probability (DMS)

14: Point forecasts (highest posterior model probability) (DMS)

15: Predictive likelihood (highest posterior model probability) (DMS)

and selecting the desiderated options. The additional character argument, which, can be
supplied in order to directly plot one particular quantity. Possible values for which are the
same of the as.data.frame() method. Similar to as.data.frame(), the additional numeric
argument iBurnPeriod determines the length of the burn–in period. Typically, it takes
around 30 to 50 for the model to adapt to the time–series given the prior. Therefore, in
almost all applications, the first 30 to 50 observations are discarded.

The code:

R> plot(Fit, which = "mincpmt", iBurnPeriod = 50)

plots the inclusion probabilities for the predictors discarding the first 50 observations. The
outcome is reported in Figure 1. As expected, x1 to x4 quickly converge to 1 after few

14 eDMA: Efficient Dynamic Model Averaging

0.0

0.2

0.4

0.6

0.8

1.0

(a)

x1

0.0

0.2

0.4

0.6

0.8

1.0

(b)

x2

0.0

0.2

0.4

0.6

0.8

1.0

(c)

x3

50 100 150 200 250 300 350 400 450 500

0.0

0.2

0.4

0.6

0.8

1.0

(d)

x4

0.0

0.2

0.4

0.6

0.8

1.0

(e)

x5

0.0

0.2

0.4

0.6

0.8

1.0

(f)

x6

50 100 150 200 250 300 350 400 450 500

Figure 1: Posterior inclusion probabilities of the predictors using simulated data.

observations. Conversely, the inclusion probabilities of the last two predictors with loading
factor equal to zero, quickly converge to 0.

4.2. Additional methods for the DMA class

The DMA class comes with several methods for extracting and representing estimated quan-
tities. The plot(), as.data.frame() and show() methods have been previously intro-
duced, additional methods are: summary(), coef(), residuals(), inclusion.prob(), and
pred.like().

For instance, the summary method prints a summary of the estimated model directly in the
console. The code:

R> summary(Fit, iBurnPeriod = 50)

produces the output:

Call:

DMA(formula = vY ~ x1 + x2 + x3 + x4 + x5)

Residuals:

Min 1Q Median 3Q Max

-2.0408 -0.3833 0.0421 0.4427 2.3140

Leopoldo Catania, Nima Nonejad 15

Coefficients:

E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]

(Intercept) 0.51 0.68 1.00 0.00

x1 -0.64 0.65 0.90 0.29

x2 2.11 1.74 0.93 0.20

x3 -1.43 1.02 0.99 0.02

x4 0.01 0.03 0.07 0.07

x5 0.00 0.01 0.06 0.04

Variance contribution (in percentage points):

vobs vcoeff vmod vtvp

3.18 1.73 0.08 95.01

Top 10% included predictors: (Intercept)

Forecast Performance:

DMA DMS

MSE 0.486 0.482

MAD 0.537 0.532

Predictive Likehood -462.360 -463.083

where the quantities, E[theta_t], SD[theta_t], E[P(theta_t)] and SD[P(theta_t)] rep-
resent the means and standard deviations across the time dimension of the filtered estimates
of θ

(i)
t , and the inclusion probabilities after burn-in.

The last part of the summary, (Forecast Performance), prints the output of the BacktestDMA()
function implemented in eDMA. BacktestDMA() accepts a DMA object and returns a matrix

with out–of–sample Mean Squared Error (MSE), Mean Absolute Deviation (MAD) and Pre-
dictive Likelihood, computed according to DMA and DMS, see help("BacktestDMA").

The additional methods: coef(), residuals(), inclusion.prob(), and pred.like() are
wrapper to the as.data.frame() method and focus on particular estimated quantities, for
instance:

- coef(): Returns a T × n matrix with the filtered regressor coefficients, θt, t =
1, . . . , T .

- residuals(): Extract the residuals of the model, i.e., yt− ŷt, t = 1, . . . , T . The addi-
tional boolean argument standardize controls if the standardize residuals should be re-
turned. By default standardize = FALSE. The additional character argument, Type,
permits to choose between residuals evaluated using DMA ("DMA") or DMS ("DMS").
By default Type = "DMA".

- inclusion.prob(): Extract the inclusion probabilities of the predictors. Analogous to
as.data.frame(object, which = "mincpmt", iBurnPeriod).

- pred.like(): Extract the predictive log likelihood series. The additional argument
Type permits to choose between predictive likelihoods evaluated using DMA and DMS.
By default Type = "DMA". Similar to the above variables, pred.like() accepts iBurnPeriod.

16 eDMA: Efficient Dynamic Model Averaging

5. Computational challenges

Although estimation of DMA does not require resorting to simulation methods, in many
economic applications, performing DMA can become computationally very cumbersome. As
it can be seen from the set of recursions from the Section 3, DMA consists of considering a
large number of model combinations. In many cases, DMA tends to occupy a large chunk of
Random–Access Memory (RAM). Often on a standard PC, the system basically runs out of
memory due to the large number of combinations and the amount of information that must
be saved. Therefore, it limits the use of DMA to middle–sized data sets. For instance, in their
seminal paper, Koop and Korobilis (2012) use DMA to forecast quarterly inflation. Thus,
yt in Equation 1 is the percentage changes in the quarterly U.S. GDP price deflator and Ft
consists of 14 exogenous predictors and three lags of yt for a total of 17 variables. However,
handling 217 combinations reveals to be very burdensome in their programming framework.
Therefore, Koop and Korobilis (2012) choose to include three lags of inflation in all model
combinations and thus reduce the model space to 214 model combinations.

We can argue that DMA can impose a very substantial challenge for the practitioner when
dealing with a large number of predictors, namely that, besides dealing with the task of trans-
forming mathematical equations from paper to codes, handling data and estimation issues,
a practitioners also has to overcome “technical/computer science” challenges such as how to
deal with extensive memory consumption and how to use multiple cores instead of a single
core to speed up computation time. Although one can always improve the computational
procedure by “coding smarter” or discovering ways to optimize memory allocation, it seems
unreasonable to expect that practitioners in economics should have extensive knowledge of
computer science concepts such as those stated above.

In this paper, we provide practical solutions to these problems. First, reduction in compu-
tation time is implemented by writing all the code in C++ using the armadillo library of
Sanderson (2010). Second, we exploit multiple processors through the OpenMP API whenever
the hardware is suited for that. The combination of C++ routines and parallel processing
permits to dramatically speed up the computations over the same code written in plain R.

In order to provide an intuitive example of the advantages of our package, we report a com-
parison between our code and the available dma package of McCormick et al. (2016). For this
experiment, since the dma package cannot operate over a grid value of δ, we fix δ at 0.95.
We simulate T = {100, 500, 1000} observations from a DLM with n = {4, 6, 8, 10, 12, 14, 16}
predictors and evaluate the differences in the computational time of the dma() function in
the dma package and the DMA() function in the presented eDMA package. The experiment
is performed on a standard Intel Core i7–4790 processor with 8 threads and Ubuntu 12.04
server edition.

Table 1 reports the ratio of the CPU time for different values of T and n between dma() and
DMA(). As one can note, the decrease in computational time in favor of our package is huge.
For example, in the case T = 500 and n = 16, dma() takes 37.5 minutes while DMA() only 1.8.
It is also worth stressing that, the benefit of using eDMA does not only concern the possibility
of running moderately large applications in a reasonable time using a commercial hardware,
but also enables practitioners to run application with a large number of exogenous variables.
To give an idea of the computational time a eDMA user faces, we report a second simulation
study. We simulate from a DLM with T = {100, 200, ..., 900, 1000}, n = {2, 3, .., 18} and
run DMA() using a grid of values for δ between 0.9 and 1.0 with different spaces d, namely

Leopoldo Catania, Nima Nonejad 17

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

1 min
5 min

15 min

30 min

T = 100

(a)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

1 min
5 min

15 min

30 min

T = 200

(b)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min
5 min

15 min

30 min

T = 300

(c)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min
5 min

15 min

30 min

T = 400

(d)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min
5 min

15 min

30 min

T = 500

(e)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 600

(f)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 700

(g)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 800

(h)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

T = 900

(i)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

1 min
5 min

15 min

30 min

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18n

T = 1000

(j)

Figure 2: Computational time for DMA() using simulated data. Each panel represents com-
putation time in minutes for DMA() using different sample sizes, T , number of predictors, n,
and values of d, the number of points in the grid of δ. The values for d range between 2 and
10, the line at the bottom of each subfigure is for d = 2, the one immediately above is d = 3
and so on until the last which is for d = 10. Computations are performed on a standard Intel
Core i7–4790 processor with 8 threads and 8 GB of RAM with Ubuntu 12.04 server edition.

18 eDMA: Efficient Dynamic Model Averaging

T/n 4 6 8 10 12 14 16

100 10.9 92.6 133.2 88.4 69.4 70.5 58.4
500 37.5 29.4 31.5 30.7 25.7 26.5 25.4
1000 13.0 15.0 13.8 12.9 12.7 13.5 13.8

Table 1: Ratio of computation time between the dma() function from the dma package of McCormick et al.
(2016) and the DMA() function of the eDMA package for different values of T and n.

d = {2, 3, . . . , 10}. Figure 2 displays the computational time in minutes for all the combination
of T, n, d. The lines reported in each subfigure represent the computational time for a specific
choice of d. The line at the bottom of each subfigure is for d = 2,8 the one immediately above
is for d = 3 and so on until d = 10. From the Figure, we can see that, when T ≤ 400, even
for n = 18 and d = 10, the computational time is less then 15 minutes. Such sample sizes are
relatively common in economic applications. When T increases, computational time increases
linearly. For example, when T = 800, n = 18 and d = 10, computational time is 30 minutes,
which is the double of the same case with T = 400.

The other relevant problem with DMA is the RAM usage. Specifically, if we want to store
the quantities defined in Equations 1 and 4, we need to define two arrays of dimension T ×
d × (2n − 1). These kind of objects are not present in the eDMA package since we rely on
the markovian nature of the model clearly evident from Equation 1. In this respect, we keep
track of the quantities coming from Equation 4 and p (yt|Mi, δj ,Ft−1) only for two consecutive
periods during the loop over T . RAM usage is still efficiently performed in the eDMA package.
Indeed, the computer where we run all our simulations has only 8GB of RAM.

6. A DMA example: Inflation data

This section shows how to run DMA using the R (R Core Team 2016) package DMA (Catania
and Nonejad 2016). We use a time–series of quarterly U.S. inflation rate for illustration, show
how to obtain posterior output and briefly interpret results. The example can be thought of as
a typical assignment for a researcher at a central bank who is interested in forecasting inflation
several–quarters ahead and understand the relationship between inflation and business cycles.

6.1. Data

In this analysis, we use the data of Groen et al. (2013).9 Particularly, as a measure of inflation,
yt, we consider quarterly log changes in the Gross Domestic Product implicit price deflator
(GDPDEF) observed at a quarterly frequency ranging from 1960q1 to 2011q2. The number
of exogenous predictors are fifteen. This number is in accordance with typical “real–world”
application, see Dangl and Halling (2012), Koop and Korobilis (2012) and Groen et al. (2013).

The predictors are: Real GDP in volume terms (ROUTP), real durable personal consump-
tion expenditures in volume terms (RCONS), real residential investment in volume terms
(RINVR), the import deflator (PIMP), the unemployment ratio (UNEMP), non–farm pay-

8In this case δ can takes values δ = 0.9 and δ = 1.0.
9The data is downloadable from http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.

727718.

http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.727718
http://www.tandfonline.com/doi/suppl/10.1080/07350015.2012.727718

Leopoldo Catania, Nima Nonejad 19

rolls data on employment (NFPR), housing starts (HSTS), the real spot price of oil (OIL),
the real food commodities price index (FOOD) the real raw material commodities price index
(RAW), and the M2 monetary aggregate (M2), which can reflect information on the current
stance of monetary policy and liquidity in the economy as well as spending in households.
In addition, we also use data on the term structure of interest rates approximated by means
of: The level factor (YL), the slope factor (TS) and curvature factor (CS). Finally, we proxy
inflation expectations through the one–year ahead inflation expectations that come from the
Reuters/Michigan Survey of Consumers (MS). We include the data in the eDMA package as
a xts object of dimension 206× 16 named USData.

For most series, we use the percentage change of the original series in order to remove possible
stochastic and deterministic trends. Exceptions are HSTS, for which we use the logarithm
of the respective levels, as well as UNEMP, YL,TS, CS and MS, where we use the “raw”
levels, see also Groen et al. (2013) for more details. Finally, since inflation very persistence,
besides these 15 predictors, we follow Groen et al. (2013) and also include four inflation lags,
yt−1, ..., yt−4, as predictors. In eDMA, we implement the function, Lag(), which allows us to
lag variables delivered in the form of vector or matrices. For instance, to lag the numeric

vector GDPDEF of length T by one period, we simply run

R> Lag(GDPDEF, 1)

which returns a numeric vector of length T containing the lagged inflation. Values that are
not available (i.e., the value y0 in this example) are replaced by NA.

6.2. Model estimation

We have a total of 219 = 524288 model combinations.10 Furthermore, we let δ = {0.9, 0.91, ..., 1}
such that we have a total of

(
219
)
·11 = 5767168 combinations. We set α = 0.99 and specify a

noninformative prior over the model combinations, p (Ms | F0) = 1/ (d · k) , s = 1, . . . , d · k,
such that initially, all models are equally likely. We then update these model probabilities as
new information arrives. As previously mentioned, we include the constant in all models, see
also Groen et al. (2013).

In terms of implementation, we start by loading the eDMA package and the data set by
typing:

R> library("eDMA")

R> data("USData")

In order to perform DMA using the DMA() function, we write:

R> Fit <- DMA(GDPDEF ~ Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Lag(GDPDEF, 3) + Lag(GDPDEF, 4) +

Lag(ROUTP, 1) + Lag(RCONS, 1) +

Lag(RINVR, 1) + Lag(PIMP, 1) +

Lag(UNEMP, 1) + Lag(NFPR, 1) +

10The model which include only the constant is also considered. Indeed, when vKeep = NULL, the number of
models is 2n − 1, however, when vKeep != NULL, the number of models is 2b, where b = n - length(vKeep).

20 eDMA: Efficient Dynamic Model Averaging

Lag(HSTS, 1) + Lag(M2, 1) +

Lag(OIL, 1) + Lag(RAW, 1) +

Lag(FOOD, 1) + Lag(YL, 1) +

Lag(TS, 1) + Lag(CS, 1) +

Lag(MS, 1), data = USData,

vDelta = seq(0.90, 1.00, 0.01), vKeep = 1)

In terms of implementation, we suggest using the non–informative prior, bZellnerPrior =

FALSE, which is the default, see Section 6.6 for a prior sensitivity analysis. More details on
the model can be made available by typing Fit:

R> Fit

--

- Dynamic Model Ageraging -

--

Model Specification

T = 202

n = 20

d = 11

Alpha = 0.99

Model combinations = 524288

Model combinations including averaging over delta = 5767168

--

Prior : Multivariate Gaussian with mean vector 0

and covariance matrix equal to: 100 x diag(20)

Variables always included : (Intercept)

--

The grid for delta:

Delta = 0.90, 0.91, 0.92, 0.93, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99, 1.00

--

Elapsed time : 1686.14 secs

As it can be seen, the total estimation time of our DMA is 1686.14 seconds corresponding
to around 28 minutes on an Intel Core i7-3630QM processor. A complete summary of the
estimation is available as:

R> summary(Fit, iBurnPeriod = 32)

Call:

DMA(formula = Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Leopoldo Catania, Nima Nonejad 21

Lag(GDPDEF, 3) + Lag(GDPDEF, 4) +

Lag(ROUTP, 1) + Lag(RCONS, 1) +

Lag(RINVR, 1) + Lag(PIMP, 1) +

Lag(UNEMP, 1) + Lag(NFPR, 1) +

Lag(HSTS, 1) + Lag(M2, 1) +

Lag(OIL, 1) + Lag(RAW, 1) +

Lag(FOOD, 1) + Lag(YL, 1) +

Lag(TS, 1) + Lag(CS, 1) +

Lag(MS, 1))

Residuals:

Min 1Q Median 3Q Max

-1.3494 -0.2990 -0.0138 0.2218 1.5653

Coefficients:

E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]

(Intercept) 0.11 0.16 1.00 0.00

Lag(GDPDEF, 1) 0.41 0.18 0.83 0.30

Lag(GDPDEF, 2) 0.02 0.02 0.19 0.11

Lag(GDPDEF, 3) 0.09 0.06 0.38 0.22

Lag(GDPDEF, 4) 0.12 0.06 0.52 0.23

Lag(ROUTP, 1) 0.00 0.01 0.15 0.09

Lag(RCONS, 1) 0.00 0.00 0.14 0.07

Lag(RINVR, 1) 0.02 0.02 0.21 0.11

Lag(PIMP, 1) 0.21 0.09 0.83 0.27

Lag(UNEMP, 1) -0.03 0.06 0.22 0.12

Lag(NFPR, 1) 0.02 0.01 0.22 0.14

Lag(HSTS, 1) 0.02 0.03 0.20 0.09

Lag(M2, 1) 0.01 0.01 0.16 0.06

Lag(OIL, 1) -0.03 0.09 0.36 0.22

Lag(RAW, 1) 0.00 0.01 0.16 0.07

Lag(FOOD, 1) 0.01 0.01 0.20 0.12

Lag(YL, 1) 0.27 0.44 0.36 0.32

Lag(TS, 1) 0.01 0.04 0.15 0.07

Lag(CS, 1) -0.03 0.07 0.19 0.12

Lag(MS, 1) 0.02 0.03 0.18 0.09

Variance contribution (in percentage points):

vobs vcoeff vmod vtvp

43.59 11.71 12.84 31.86

Top 10% included predictors: (Intercept), Lag(PIMP, 1)

Forecast Performance:

DMA DMS

MSE 0.235 0.251

MAD 0.361 0.369

22 eDMA: Efficient Dynamic Model Averaging

Predictive Likehood -106.352 -122.943

Below, we go into more details with regards to how to use the output from the estimation
procedure to interpret our results.

6.3. Using the output from eDMA

The output can be divided into two main parts: (a): Full–sample analysis, (b): Out–of–
sample analysis. With regards to (a), the most interesting quantities are: mincpmt, vsize,
mtheta, vdeltahat, and mvdec, see Section 4.

For instance, the inclusion probabilities of the predictors for the last part of the sample can
be printed by:

R> InclusionProb <- inclusion.prob(Fit, iBurnPeriod = 32)

R> tail(round(InclusionProb[, 1:4], 2))

(Intercept) Lag(GDPDEF, 1) Lag(GDPDEF, 2) Lag(GDPDEF, 3)

2010-01-01 1 0.99 0.43 0.71

2010-04-01 1 1.00 0.44 0.72

2010-07-01 1 1.00 0.45 0.73

2010-10-01 1 1.00 0.45 0.73

2011-01-01 1 1.00 0.45 0.73

2011-04-01 1 1.00 0.45 0.73

The above matrix shows the inclusion probabilities of: The constant and yt−1, ..., yt−3, from
2010q1 to 2011q2. Notice that, the inclusion probabilities of the constant term, (Intercept),
are always equal to 1 as every model contains this term (since we set vKeep = 1), see (iii) in
page 7 of this paper.

In Figure 3, we report the inclusion probabilities for predictors that are important at least
one point in time. To be precise, any predictor where the inclusion probability is never above
0.2 is excluded. In these plots, we also make evident NBER recorded recessions (shaded
gray bars). Overall, we observe a good amount of time–variation these plots. The lags
of inflation, except for yt−2 all seem important. The import deflator (PIMP) also receives
high posterior probability throughout the sample. Inflation expectation (MS) and M2 receive
higher probabilities towards the end of the sample. However, the inclusion probability of these
predictors at any point in time is relatively low. Real spot price of oil (OIL) receives high
inclusion probability during the post Great Moderation era, whereas we observe the opposite
trend for YL. In addition to the inclusion probabilities, we also report filtered estimates of the
regression coefficients for these predictors in Figure 4. These quantities are extracted from
Fit simply using

R> mTheta <- coef(Fit, iBurnPeriod = 32)

Besides these variables, the output from DMA can be used to analyze:

The magnitude of time–variation in the model parameters, "vdeltahat", which is the pos-
terior weighted average of δ at each point in time. We report this estimate in panel (a) of
Figure 5. The analogous plot in R can be obtained using:

Leopoldo Catania, Nima Nonejad 23

0.0

0.2

0.4

0.6

0.8

1.0

yt−1

(a)

0.0

0.2

0.4

0.6

0.8

1.0 yt−3

(b)

0.0

0.2

0.4

0.6

0.8

1.0 yt−4

(c)

0.0

0.2

0.4

0.6

0.8

1.0

PIMP

(d)

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

0.0

0.2

0.4

0.6

0.8

1.0 MS

(e)

0.0

0.2

0.4

0.6

0.8

1.0 M2

(f)

0.0

0.2

0.4

0.6

0.8

1.0 OIL

(g)

0.0

0.2

0.4

0.6

0.8

1.0 YL

(h)

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

Figure 3: Posterior inclusion probabilities for the most important predictors of DMA. Panels
(a), (b) and (c): First, third and fourth lags of inflation. Panel (d): Import deflator (PIMP).
Panel (e): Inflation expectations (MS). Panel (f): M2 monetary aggregate (M2). Panel (g):
Real spot price of oil (OIL). Panel (h): Level factor of the term structure (YL). We refer the
reader to Groen et al. (2013) for more details regarding the variables. The gray vertical bars
indicate business cycle peaks, i.e., the point at which an economic expansion transitions to a
recession, based on National Bureau of Economic Research (NBER) business cycle dating.

R> plot(Fit, which = "vdeltahat", iBurnPeriod = 32)

Except for the recessions in 1990 and 2001, there is a very intuitive relationship between δ
and recession periods. Typically, δ falls during recessions, which fares well with the notion
that θt changes rapidly as the model needs to adopt to the changes in the data. Conversely, δ
remains high and close to 1 during the Great Moderation. We can also use inclusion.prob()
to extract the posterior probability of each value of δ. We can print these quantities for the
final part of the sample using:

R> InclusionProbDelta <- inclusion.prob(Fit, iBurnPeriod = 32)

R> round(tail(InclusionProbDelta), 2)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

2010-01-01 0 0 0 0 0.01 0.02 0.06 0.16 0.30 0.28 0.17

2010-04-01 0 0 0 0 0.01 0.02 0.06 0.15 0.29 0.29 0.17

2010-07-01 0 0 0 0 0.01 0.02 0.05 0.15 0.30 0.29 0.18

24 eDMA: Efficient Dynamic Model Averaging

yt−1

0.00

0.15

0.30

0.45

0.60

0.75

(a)

yt−2

0.00

0.07

0.14

0.21

0.28

0.35

(b)

yt−3

0.00

0.08

0.16

0.24

0.32

0.40

(c)

PIMP

−0.10

−0.01

0.08

0.17

0.26

0.35

(d)

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

MS

−0.03

0.05

0.13

0.21

0.29

0.37

(e)

M2

−0.02

0.00

0.02

0.04

0.06

0.08

(f)

OIL

−0.20

−0.08

0.04

0.16

0.28

0.40

(g)

YL

0.00

0.30

0.60

0.90

1.20

1.50

(h)

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

Figure 4: Filtered estimates of the regression coefficients for the most important predictors
of DMA. Panels (a), (b) and (c): First, third and fourth lags of inflation. Panel (d): Import
deflator (PIMP). Panel (e): Inflation expectations (MS). Panel (f): M2 monetary aggregate
(M2). Panel (g): Real spot price of oil (OIL). Panel (h): Level factor for the terms structure
(YL). We refer the reader to Groen et al. (2013) for more details regarding the variables. The
gray vertical bars indicate business cycle peaks, i.e., the point at which an economic expansion
transitions to a recession, based on National Bureau of Economic Research (NBER) business
cycle dating.

2010-10-01 0 0 0 0 0.01 0.02 0.06 0.16 0.30 0.29 0.16

2011-01-01 0 0 0 0 0.01 0.02 0.06 0.16 0.30 0.29 0.16

2011-04-01 0 0 0 0 0.01 0.02 0.06 0.17 0.32 0.28 0.14

where the column names are the values of δ.

In panel (b), we report the number of predictors contained in the model with the highest
posterior probability , p (Mi|Ft),at each point in time. This can be achieved by:

R> plot(Fit, which = "vsize_DMS", iBurnPeriod = 32)

Alternatively, we can also plot the expected number of predictors at each point in time
replacing which = "vsize_DMS" by which = "vsize". A very interesting result from panel
(b) is that, although we have 19 predictors, at each point in time the best model contains
only a few predictors. Furthermore, there is also evidence of time–variation in the number of
predictors as we have as many as eight and as few as two predictors over the sample.

Leopoldo Catania, Nima Nonejad 25

(a)

0.90

0.92

0.94

0.96

0.98

1.00

(b)

0.00

2.00

4.00

6.00

8.00

10.00

(c)

0.00

0.03

0.06

0.09

0.12

0.15

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

(d)

0.00

0.20

0.40

0.60

0.80

1.00

(e)

0.00

0.20

0.40

0.60

0.80

1.00

(f)

0.00

0.20

0.40

0.60

0.80

1.00
Mod
TVP

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

Figure 5: Posterior output for DMA. Panel (a): Posterior weighted average estimate of δ.
Panel (b): Number of predictors for the model with the highest posterior probability. Panel
(c): Sum of top 10% inclusion probabilities. Panel (d): Observational variance. Panel (e):
Variance due to errors in the estimation of the coefficients. Panel (f) Variance due to model
uncertainty (Mod, solid) and variance due to uncertainty with respect to the choice of the
degrees of time-variation in the regression coefficients (TVP, red-dotted). The gray vertical
bars indicate business cycle peaks, i.e., the point at which an economic expansion transitions
to a recession, based on National Bureau of Economic Research (NBER) business cycle dating.

We can also use posterior model probabilities to obtain an idea of how important is model
averaging. In panel (c), we report the sum of the posterior inclusion probabilities for the
10% of models (which = "vhighmpTop01_DMS"). If this number is high, then it means that
relatively few models dominate, obtaining relatively high posterior probabilities. Conversely,
if this number is low, then no individual (or group of) models receive high probabilities, which
provides evidence in favor of averaging over predictors instead of selecting.

Finally, in panels (d), (e) and (f), we report the variance decomposition analysis (which
= "mvdec"). Evidently, the dominant source of uncertainty is the observational variance.
This is not surprising as random fluctuation are expected to dominate uncertainty. However,
uncertainty about the correct magnitude of time–variation in θt is very high during recessions
such as the Great recession of 2008, see the red–dashed line in panel (f). We believe that
practitioners can build on the variance decomposition results to better understand the sources
of variation in inflation. Indeed, as our preliminary results indicate, model uncertainty and
estimation errors in the coefficients play a minor role compared to uncertainty due to time–

26 eDMA: Efficient Dynamic Model Averaging

Model Description

M0
Plain AR(4) model: The constant term and yt−1, . . . , yt−4 are always included. We
set α = 1 and δ = 1.

M1
Time-varying AR(4) model: The constant term and yt−1, ..., yt−4 are always in-
cluded. We set α = 0.99 and average over δ1, . . . , δd.

M2
DMA using yt−1, . . . , yt−4: The constant term is always included. We set α = 0.99
and average over the combinations of yt−1, ..., yt−4 and δ1, . . . , δd.

M3

DMA using yt−1, . . . , yt−4 and the exogenous predictors: The constant term is always
included. We set α = 0.99 and average over the combinations of predictors as well
as δ1, . . . , δd.

M4

DMS using yt−1, . . . , yt−4 and the exogenous predictors: The constant term is always
included. We set α = 0.99 and select the model with the highest posterior probability
at each t and use it to forecasts.

M5 BMA: DMA with α = 1 and δ = 1.

M6 BMS: DMS with α = 1 and δ = 1.

M7
Kitchen Sink: The constant term, yt−1, . . . , yt−4 and all exogenous predictors are
always included. We set α = 0.99 and average only over δ1, . . . , δd.

Table 2: Model specifications. The first column is the model index. The second column
provides a brief description of each individual model.

variation in θt.

6.4. Forecasts

A very important feature of DMA is out–of–sample forecasting, see Koop and Korobilis (2011)
and Koop and Korobilis (2012). In this section, we illustrate how our package can be used to
perform forecasting.

In Table 2, we provide an overview of several alternative models. Notice that, all models can
be estimate using our package. For instance, the plain AR(4) model, (M0), can be estimated
by setting δ = 1.0, α = 1.0, using the code:

R> Fit_M0 <- DMA(GDPDEF ~ Lag(GDPDEF, 1) + Lag(GDPDEF, 2) +

Lag(GDPDEF, 3) + Lag(GDPDEF, 4),

data = USData, vDelta = 1.00,

dAlpha = 1.00, vKeep = c(1, 2, 3, 4, 5))

The same holds for Bayesian Model Averaging (BMA, M5) and Bayesian Model Selection
(BMS, M6) by setting δ = 1.0, α = 1.0. Thus, eDMA also relates to the BMS package of
Zeugner and Feldkircher (2015).

We use the models to obtain one and five quarter ahead forecasts through direct forecasting,
see Marcellino et al. (2006).

Leopoldo Catania, Nima Nonejad 27

Model h = 1 h = 5

MSE PLD MSE PLD

M1 1.020 0.244 0.835 20.522
M2 0.982 1.544 0.694 37.192
M3 0.969 11.700 0.645 73.819
M4 1.038 -4.890 0.780 26.996
M5 0.976 6.809 1.127 9.234
M6 1.187 -18.358 1.310 -33.352
M7 1.762 -7.125 1.242 32.293

Table 3: Mean Squared Error (MSE) and Predictive Likelihood Difference (PLD) ofMi, i =
1, . . . , 7 compared to M0 for h = 1 and h = 5 quarters ahead out–of–sample forecasts.

Table 3 reports the Mean Squared Error (MSE) and the Predictive Likelihood Difference
(PLD) of Mi, i = 1, . . . , 7, over M0 (the benchmark) at h = 1 and h = 5. Compared
to the benchmark, M1 provides relatively small improvements at h = 1, whereas at h =
5, we obtain reductions in MSE by about 17% over the benchmark. The improvement in
PLD at h = 5 is also notable. By averaging over yt−1, ...yt−4, we obtain more gains, which
indicates that allowing for time–variation in the number of predictors is important. DMA
using lags of inflation as well as 15 additional predictors is the top performer, regardless of
h. Conversely, the improvements of DMS over M0 are much more modest. This result is
understandable as panel (c) in Figure 5 demonstrates that there is no individual model that
performs overwhelmingly better than other specifications. As a result, DMS is outperformed
by DMA.

As previously mentioned, DMA (DMS) with α = δ = 1 correspond to BMA (BMS). Overall,
compared to the benchmark model, BMA provides some improvements in density forecasts,
whereas we do not observe any improvements in terms of point forecasts.

Finally, as an alternative to these models, we can consider the Kitchen Sink model (the model
with all predictors, M7) where we only average over δ. Compared to M0, the kitchen sink
model does not provide any improvements at h = 1. At h = 5, we observe improvements in
density forecasts. However, the kitchen sink model is outperformed by DMA.

6.5. Why does DMA performs so well ?

To investigate how quickly our techniques adapt to changes in data, we report the accumulated
log–PLD for several models over the benchmark in panels (a)–(d) of Figure 6. These can be
obtained using the pred.like() method available for DMA objects. For instance, we create
the two vectors vPL_M0 and vPL_DMA containing the log–Predictive Likelihood ofM0 andM3

using:

R> vPL_M0 <- pred.like(Fit_M0, iBurnPeriod = 32)

R> vPL_M3 <- pred.like(Fit, iBurnPeriod = 32)

and compute the accumulated log-PLD of M3 over M0 as:

R> vPLD_M3.M0 <- vPL_M3 - vPL_M0

28 eDMA: Efficient Dynamic Model Averaging

(a)

−15.00

−9.00

−3.00

3.00

9.00

15.00

(b)

−15.00

−9.00

−3.00

3.00

9.00

15.00

(c)

−15.00

−9.00

−3.00

3.00

9.00

15.00

(d)

−15.00

−9.00

−3.00

3.00

9.00

15.00

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

(e)

0.00

3.00

6.00

9.00

12.00

15.00

(f)

0.00

3.00

6.00

9.00

12.00

15.00

(g)

0.00

3.00

6.00

9.00

12.00

15.00

(h)

0.00

3.00

6.00

9.00

12.00

15.00

1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009

Figure 6: Accumulated PDL and the optimal number of predictors for prior sensitivity anal-
ysis. Panel (a): M1 over M0, Panel (b): M3 over M0, Panel (c): M5 over M0, Panel (d):
M7 overM0. Panels (e)–(h): Number of predictors for the model with the highest posterior
probability using Zellenr’s prior with g = 0.5, 20, 100, T . The gray vertical bars indicate busi-
ness cycle peaks, i.e., the point at which an economic expansion transitions to a recession,
based on National Bureau of Economic Research (NBER) business cycle dating.

which is reported in panel (b) of Figure 6.

In panels (a), (b), (c) and (d) of Figure 6 a value of zero corresponds to equal support of
both models, positive values are in support of the model of choice over M0 and negative
values show support ofM0 over the model of choice at time t. In these panels, we decompose
the effects of (i): Allowing for time–variation in the regression coefficients, (ii): Allowing for
model uncertainty but no time–variation in the regression coefficients and (iii): Allowing for
time–variation in the regression coefficients and model uncertainty.

In panel (a), we see that the time–varying AR(4) (M1) model outperforms the benchmark
during the recession in the early 1970s. On the other hand, both models provide basically
same results. The Great Recession is associated with a small improvements in favor of M1.
Compared to the plain AR(4) model, it takes about 30 observations to provide compelling
evidence for DMA. These improvements increase till the end of the sample. Furthermore, we
also see that DMA improves model performance in recession as well as expansion periods.
Compared to BMA, the improvements of DMA are mostly concentrated around recession
periods, which indicates the importance of allowing for time–variation of θt in periods of
economic turmoil.

Leopoldo Catania, Nima Nonejad 29

Prior MSE PLD

g = 0.1 4.875 -175.145
g = 20 1.255 -27.141
g = 100 1.072 -0.573
g = T 1.014 6.920

Table 4: Mean Squared Error (MSE) and Predictive Likelihood Difference (PLD) of DMA
using the following values of g: 0.1, 20, 100, T and M0 for h = 1.

6.6. Prior sensitivity analysis

In this section, we evaluate the robustness of our results with regards to Zellner’s prior shrink-
age parameter, g, see (4) and (5) in Dangl and Halling (2012). Intuitively, a smaller value
of g means more shrinkage around the prior mean of θ0, i.e., 0. Furthermore, if g = 0, then
p (Mi | Ft) is equal for all models. The larger is g, the more we are willing to move away from
the model priors in response to what we observe in the data. Thus, the choice of g can have
important implications with respect to out–of–sample forecasting results.

In order to shed light on this issue, we re–estimate DMA with g equals to 0.1, 20, 100 and T
(using bZellnerPrior = TRUE) and see to which extent it influences out–of–sample results,
see Table 4 and Figure 6. Compared to our default priors, we see that very informative values
such as g = 0.1 and 20 worsen results considerably as DMA tends to favor models with higher
number of predictors, which obviously does not improve forecast performance, see panels (e)
and (f) of Figure 6. As we increase g, we obtain closer results to the default prior. Therefore,
we generally recommend practitioners to use the default prior.

7. Conclusion

In this paper, we present the eDMA package for R. The purpose of eDMA is to offer an
integrated environment to perform DMA using the available DMA() function, which enables
practitioners to perform DMA exploiting multiple processors without major efforts. Further-
more, R users will find common methods to represent and extract estimated quantities such
as plot(), as.data.frame(), coef() and residuals().

Overall, eDMA is able to: (i): Incorporate the extensions introduced in Dangl and Halling
(2012), which is particularly relevant for economic and financial applications, (ii): Compared
to other approaches, our package is much faster, (iii): It requires a smaller amount of RAM
even in cases of moderately large applications, and (iv): It allows for parallel computing.

In Section 5, we also detail the expected time the program takes to perform DMA under
different sample sizes, number of predictors and number of grid points. For typical economic
applications, estimation time is around 30 min using a commercial laptop. Very large appli-
cations can still benefit from the use of eDMA when performed on desktop or even clusters,
without additional effort from the user.

Computational details

The results in this paper were obtained using R 3.2.3 (R Core Team 2016) with the pack-

30 eDMA: Efficient Dynamic Model Averaging

ages: eDMA version 1.0 (Catania and Nonejad 2016), Rcpp version 0.12.5 (Eddelbuettel and
François 2011; Eddelbuettel et al. 2016a), RcppArmadillo version 0.7.100.3.1 (Eddelbuettel
and Sanderson 2014; Eddelbuettel et al. 2016b), xts version 0.9-7 (Ryan and Ulrich 2015) and
devtools version 1.1.1 (Wickham and Chang 2016). R itself and all packages used are avail-
able from CRAN at http://CRAN.R-project.org/. The package eDMA is available from
GitHub at https://github.com/LeopoldoCatania/eDMA. Computations were performed on
a Genuine Intel® quad core CPU i7–3630QM 2.40Ghz processor.

http://CRAN.R-project.org/
https://github.com/LeopoldoCatania/eDMA

Leopoldo Catania, Nima Nonejad 31

References

Byrne JP, Korobilis D, Ribeiro PJ (2014). “On the Sources of Uncertainty in Exchange
Rate Predictability.” Available at SSRN 2502586. URL http://papers.ssrn.com/sol3/

papers.cfm?abstract_id=2502586.

Catania L, Nonejad N (2016). eDMA: Efficient Dynamic Model Averaging. R package version
1.0.0, URL https://github.com/LeopoldoCatania/eDMA.

Chapman B, Jost G, Van Der Pas R (2008). Using OpenMP: Portable Shared Memory Parallel
Programming, volume 10. MIT press, Cambridge, US.

Croissant Y, Millo G (2008). “Panel Data Econometrics in R: The plm Package.” Journal of
Statistical Software, 27(2). URL http://www.jstatsoft.org/v27/i02/.

Dangl T, Halling M (2012). “Predictive Regressions with Time–Varying Coefficients.” Journal
of Financial Economics, 106(1), 157–181. doi:doi:10.1016/j.jfineco.2012.04.003.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Bates D, Chambers J (2016a).
Rcpp: Seamless R and C++ Integration. R package version 0.12.5, URL https://cran.

r-project.org/package=Rcpp.

Eddelbuettel D, François R, Bates D (2016b). RcppArmadillo: Rcpp Integration for the
Armadillo Templated Linear Algebra Library. R package version 0.7.100.3.1, URL https:

//cran.r-project.org/package=RcppArmadillo.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High–
Performance C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–
1063. doi:10.1016/j.csda.2013.02.005.

Groen JJ, Paap R, Ravazzolo F (2013). “Real–Time Inflation Forecasting in a Changing
World.” Journal of Business & Economic Statistics, 31(1), 29–44. doi:10.1080/07350015.
2012.727718.

Koop G, Korobilis D (2011). “UK Macroeconomic Forecasting with Many Predictors: Which
Models Forecast Best and When Do They Do So?” Economic Modelling, 28(5), 2307–2318.
doi:10.1016/j.econmod.2011.04.008.

Koop G, Korobilis D (2012). “Forecasting Inflation Using Dynamic Model Averaging.” Inter-
national Economic Review, 53(3), 867–886. doi:10.1111/j.1468-2354.2012.00704.x.

Marcellino M, Stock JH, Watson MW (2006). “A comparison of direct and iterated multistep
AR methods for forecasting macroeconomic time series.” Journal of Econometrics, 135(1-
2), 499 – 526. ISSN 0304-4076. doi:10.1016/j.jeconom.2005.07.020. URL http:

//www.sciencedirect.com/science/article/pii/S030440760500165X.

McCormick TH, Raftery A, Madigan D (2016). dma: Dynamic Model Averaging. R package
version 1.2-3, URL https://CRAN.R-project.org/package=dma.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2502586
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2502586
https://github.com/LeopoldoCatania/eDMA
http://www.jstatsoft.org/v27/i02/
http://dx.doi.org/doi:10.1016/j.jfineco.2012.04.003
http://dx.doi.org/10.18637/jss.v040.i08
https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=RcppArmadillo
https://cran.r-project.org/package=RcppArmadillo
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1080/07350015.2012.727718
http://dx.doi.org/10.1080/07350015.2012.727718
http://dx.doi.org/10.1016/j.econmod.2011.04.008
http://dx.doi.org/10.1111/j.1468-2354.2012.00704.x
http://dx.doi.org/10.1016/j.jeconom.2005.07.020
http://www.sciencedirect.com/science/article/pii/S030440760500165X
http://www.sciencedirect.com/science/article/pii/S030440760500165X
https://CRAN.R-project.org/package=dma

32 eDMA: Efficient Dynamic Model Averaging

Onorante L, Raftery AE (2016). “Dynamic Model Averaging in Large Model Spaces Using
Dynamic Occam’s Window.” European Economic Review, 81, 2–14. doi:10.1016/j.

euroecorev.2015.07.013.

OpenMP A (2008). OpenMP Application Program Interface, v. 3.0. URL http://www.openmp.

org/mp-documents/spec30.pdf.

Paye BS (2012). “‘Déjà vol’: Predictive Regressions for Aggregate Stock Market Volatility
Using Macroeconomic Variables.” Journal of Financial Economics, 106(3), 527 – 546. ISSN
0304-405X. doi:10.1016/j.jfineco.2012.06.005. URL http://www.sciencedirect.

com/science/article/pii/S0304405X12001316.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. R version 3.2.3, URL https:

//www.R-project.org/.

Raftery A, Hoeting J, Volinsky C, Painter I, Yeung KY (2015). BMA: Bayesian Model
Averaging. R package version 3.18.6, URL https://CRAN.R-project.org/package=BMA.

Raftery AE, Kárnỳ M, Ettler P (2010). “Online Prediction Under Model Uncertainty via
Dynamic Model Averaging: Application to a Cold Rolling Mill.” Technometrics, 52(1),
52–66. doi:10.1198/TECH.2009.08104.

Ryan JA, Ulrich JM (2015). xts: Extensible Time Series. R package version 0.9-7, URL
https://CRAN.R-project.org/package=xts.

Sanderson C (2010). “Armadillo: An Open Source C++ Linear Algebra Library for Fast
Prototyping and Computationally Intensive Experiments.” Technical report, NICTA. URL
http://arma.sourceforge.net/.

Stock JH, Watson MW (1999). “Forecasting Inflation.” Journal of Monetary Economics,
44(2), 293–335. doi:10.1016/S0304-3932(99)00027-6.

Stock JH, Watson MW (2008). “Phillips Curve Inflation Forecasts.” Technical report, National
Bureau of Economic Research. URL http://www.nber.org/papers/w14322.

West M, Harrison J (1999). Bayesian Forecasting & Dynamic Models. Springer–Verlag, Berlin.

Wickham H, Chang W (2016). devtools: Tools to Make Developing R Packages Easier. R
package version 1.11.1, URL https://CRAN.R-project.org/package=devtools.

Zeugner S, Feldkircher M (2015). “Bayesian Model Averaging Employing Fixed and Flexible
Priors: The BMS Package for R.” Journal of Statistical Software, 68(1), 1–37. doi:

10.18637/jss.v068.i04.

http://dx.doi.org/10.1016/j.euroecorev.2015.07.013
http://dx.doi.org/10.1016/j.euroecorev.2015.07.013
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1016/j.jfineco.2012.06.005
http://www.sciencedirect.com/science/article/pii/S0304405X12001316
http://www.sciencedirect.com/science/article/pii/S0304405X12001316
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=BMA
http://dx.doi.org/10.1198/TECH.2009.08104
https://CRAN.R-project.org/package=xts
http://arma.sourceforge.net/
http://dx.doi.org/10.1016/S0304-3932(99)00027-6
http://www.nber.org/papers/w14322
https://CRAN.R-project.org/package=devtools
http://dx.doi.org/10.18637/jss.v068.i04
http://dx.doi.org/10.18637/jss.v068.i04

Leopoldo Catania, Nima Nonejad 33

Affiliation:

Leopoldo Catania
Department of Economics and Finance
Faculty of Economics
University of Rome, “Tor Vergata”
Via Columbia, 2
00133 Rome, Italy
E-mail: leopoldo.catania@uniroma2.it

Nima Nonejad
Department of Mathematical Sciences
Aalborg University and CREATES
Fredrik Bajers Vej 7G
9220, Aalborg East, Denmark
E-mail: nimanonejad@gmail.com

mailto:leopoldo.catania@uniroma2.it
mailto:nimanonejad@gmail.com

	Introduction
	The model
	Modified DMA
	Using the output from DMA

	The eDMA package for R
	Using eDMA
	Additional methods for the DMA class

	Computational challenges
	A DMA example: Inflation data
	Data
	Model estimation
	Using the output from eDMA
	Forecasts
	Why does DMA performs so well ?
	Prior sensitivity analysis

	Conclusion

