
Creating a simple emulator case study from scratch:

a cookbook

Robin K. S. Hankin
Auckland University of Technology

Abstract

This document constructs a minimal working example of a simple application of the
emulator package, step by step. Datasets and functions have a .vig suffix, representing
“vignette”.

Keywords: emulator, BACCO, R.

1. Introduction

Package emulator of bundle BACCO performs Bayesian emulation of computer models. This
document constructs a minimal working example of a simple problem, step by step. Datasets
and functions have a .vig suffix, representing “vignette”.

This document is not a substitute for Kennedy and O’Hagan (2001a) or Kennedy and O’Hagan
(2001b) or Hankin (2005) or the online help files in BACCO. It is not intended to stand alone:
for example, the notation used here is that of Kennedy and O’Hagan (2001a,b), and the user
is expected to consult the online help in the BACCO package when appropriate.

This document is primarily didactic, although it is informal.

Nevertheless, many of the points raised here are duplicated in the BACCO helpfiles.

The author would be delighted to know of any improvements or suggestions. Email me at
hankin.robin@gmail.com.

2. List of objects that the user needs to supply

The user needs to supply three objects:

• A design matrix, here val.vig (rows of this show where the code has been evaluated)

• Basis functions. Here basis.vig(). This shows the basis functions used for fitting the
prior

• Data, here z.vig. This shows the data obtained from evaluating the various levels of
code at the points given by the design matrix and the subsets object.

Each of these is discussed in a separate subsection below.

But the first thing we need to do is install the library:

2 An emulator cookbook

2.1. Design matrix: USER TO SUPPLY

In these sections I show the objects that the user needs to supply, under a heading like the
one above. In the case of the emulator we need a design matrix and a vector of outputs.

The first thing needed is the design matrix val.vig, ie the points in parameter space at which
the lowest-level code is executed. The example here has just two parameters, a and b:

> head(val.vig)

[,1] [,2]

[1,] 0.6166667 0.7500000

[2,] 0.2166667 0.4166667

[3,] 0.6833333 0.1166667

[4,] 0.1500000 0.2500000

[5,] 0.9500000 0.7833333

[6,] 0.5166667 0.2833333

> nrow(val.vig)

[1] 30

Notes

• Each row is a point in parameter space, here two dimensional.

• The parameters are labelled a and b

2.2. Basis functions: USER TO SUPPLY

Now we need to choose a basis function. Do this by copying basis.toy() but fiddling with
it:

> basis.vig <-

+ function (x)

+ {

+ out <- c(1, x , x[1]*x[2])

+ names(out) <- c("const", LETTERS[1:2], "interaction")

+ return(out)

+ }

Notes

• This is shamelessly ripped off from basis.toy(), except that I’ve changed the basis to
be c(1,a,b,ab).

• in the function, out is a vector of length four: c(1,x[1],x[2], x[1]*x[2]).

Robin K. S. Hankin 3

2.3. Data: USER TO SUPPLY

The data we have for the .vig example is a vector whose elements are the output of the code
at the points specified in val.vig:

> head(z.vig)

[1] 6.319914 2.795909 3.203236 1.959357 7.810656 3.051558

> summary(z.vig)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.665 3.089 3.875 4.493 5.951 8.887

3. Data analysis

The previous section showed what data and functions the user needs to supply. These all
have a .vig suffix. This section shows the data being analyzed.

First we will estimate the scales to use:

> os <- optimal.scales(val=val.vig, scales.start=c(10,10), d=z.vig, func=basis.vig)

> os

[1] 3.671255 6.696801

So we can estimate the coefficients. But first we have to calculate the variance matrix and
invert it:

> A.os <- corr.matrix(xold=val.vig,scales=REAL.SCALES)

> Ainv.os <- solve(A)

Given this, use betahat.fun() to get the coeffs:

> betahat.fun(xold=val.vig, d=z.vig, Ainv=solve(A),func=basis.vig)

const A B interaction

1.343747 1.682817 2.830419 3.726375

The central function is interpolant:

> interpolant(x=c(0.5,0.5), d=z.vig, Ainv=Ainv.os, scales=os,

+ xold=val.vig, func=basis.vig, give.full.list=TRUE)

4 An emulator cookbook

$betahat

const A B interaction

1.343747 1.682817 2.830419 3.726375

$prior

[,1]

[1,] 4.531959

$beta.var

const A B interaction

const 0.1447825 -0.1155166 -0.1612761 0.1380621

A -0.1155166 0.2268836 0.1402198 -0.2533674

B -0.1612761 0.1402198 0.3903028 -0.3574391

interaction 0.1380621 -0.2533674 -0.3574391 0.6120397

$beta.marginal.sd

const A B interaction

0.3805030 0.4763230 0.6247422 0.7823296

$sigmahat.square

[1] 0.2336561

$mstar.star

[,1]

[1,] 4.175218

$cstar

[1] -0.03244193

$cstar.star

[1] -0.02830706

$Z

[1] 0.08132722

And that’s it, really.

References

Hankin RKS (2005). “Introducing BACCO, an R bundle for Bayesian analysis of computer
code output.” Journal of Statistical Software, 14(16).

Kennedy MC, O’Hagan A (2001a). “Bayesian calibration of computer models.” Journal of
the Royal Statistical Society, Series B, 63(3), 425–464.

Kennedy MC, O’Hagan A (2001b). “Supplementary details on Bayesian calibration of com-
puter models.” Internal Report. URL http://www.shef.ac.uk/~st1ao/ps/calsup.ps.

http://www.shef.ac.uk/~st1ao/ps/calsup.ps

Robin K. S. Hankin 5

A. Data generation

The data used in this study were created by directly sampling from the appropriate multi-
variate Gaussian:

> REAL.BETA <- 1:4

> REAL.SCALES <- c(3,6)

> REAL.SIGMASQUARED <- 0.3

> A <- corr.matrix(xold=val.vig,scales=REAL.SCALES)

> z.vig <-

+ as.vector(rmvnorm(n=1,mean=crossprod(REAL.BETA,apply(val.vig,1,basis.vig)),sigma=A*REAL.SIGMASQUARED))

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
Wakefield Street, Auckland, NZ
E-mail: hankin.robin@gmail.com

mailto:hankin.robin@gmail.com

	Introduction
	List of objects that the user needs to supply
	Design matrix: USER TO SUPPLY
	Basis functions: USER TO SUPPLY
	Data: USER TO SUPPLY

	Data analysis
	Data generation

