
exactLoglinTest: A Program for Monte Carlo Conditional

Analysis of Log-linear Models

Brian S. Caffo

November 16, 2005

Nuisance parameters are parameters that are not of direct interest to the inferential question in
hand. In a frequentist or likelihood paradigm, a common tool for eliminating nuisance parameters is to
condition on their sufficient statistics. The same technique is useful (though rarely used) in a Bayesian
settings, as it eliminates the need to put priors on nuisance parameters.

For log-linear models, conditional analysis suffers from two main drawbacks.

1. The set of lattice points contained in the conditional distribution is difficult to manage, computa-
tionally or analytically.

2. The sufficient statistics for the nuisance parameters are not ancillary to the parameters of interest.

In this manuscript we address only the first drawback using exactLoglinTest.

1 The Problem

The observed data, y = (y1, . . . , yn), are modeled as Poisson counts with a means, µ = (µ1, . . . , µn),
satisfying

log µ = xβ

under the null hypothesis. Here x is a full rank n× p design matrix. It is easily shown that the sufficient
statistics for β under the null hypothesis are xty, where a superscript t denotes a transpose. Let h be a
test statistic of interest where larger values of h support the alternative hypothesis. Two examples are
the Pearson Chi-Squared statistic and the deviance. An exact test relative to h can be performed via
the conditional P-value

Prob{h(y) ≥ h(yobs)|xty = xtyobs} =
∑

{y∈Γ}

I{h(y) ≥ h(yobs)}
C

∏
yi!

where yobs is the observed table, C is a normalizing constant and Γ = {y|xty = xtyobs} (often referred
to as the reference set).

The term“exact” is used to refer to tests that guarantee the nominal type I error rate unconditionally.
Thus a test that never rejects the null hypothesis is technically exact in any situation. Therefore,
exactness is not in itself a sufficient condition for a test to be acceptable. Moreover, this example (never
rejecting) is particularly relevant in our setting because Γ may contain one or few elements. Hence the
conditional P-value will be exactly or near one regardless of the evidence in the data vis-a-vis the two
hypotheses. However, it is also the case that the conservative conditional tests can produce P-values that
are smaller than those calculated via Chi-squared approximations (see Subsection 3.2 for an example).

1.1 Binomial Calculations

Conditional inference for Poisson log-linear models contains conditional inference for binomial-logit mod-
els as a special case. Consider a binomial logit models of the form, bi ∼ Bin(ni, pi) for i = 1, . . . , k and

logit(pi) = ziγ + x′iβ, (1)

where γ is a scalar and β is a p dimensional vector. Frequently, x′i contains only a strata indicator and an
intercept term. In this case conditioning on the sufficient statistic for β results in standard conditional

1

logistic regression. For this purpose, we suggest the coxph function as described in [7]. Instead we
consider the more general case where β is arbitrary vector of nuisance parameters. However, the reader
should again be warned that the loss of information from conditioning can sometimes be quite severe in
these problems and hence produce useless results.

Consider testing H0γ = 0 versus some alternative. The following model model is equivalent to the
null modell for (1):

yij ∼ Poisson(µij) log(µi1) = αi + x′iβ log(µi2) = αi, (2)

for j = 1, 2 and i = 1, . . . , k. The sufficient statistics for the αi are yi1 + yi2 = yi+. Then it is easy to
show that the conditional distribution of yi1|yi+ is precisely the model given by (1) where

pi = µi1/µi+

bi = yi1

ni = yi+.

Therefore, conditioning out the nuisance parameters {αi} and β for the Poisson log-linear model yields
exactly the same (null) conditional distribution as conditioning out β in model (1). Furthermore, this
exercise indicates exactly how to perform the calculations, which is useful since exactLoglinTest only
accepts models in the form of Poisson log-linear models.

Currently exactLoglinTest is useful for tests of γ = 0. With modifications, the central ideas could
be used to calculate a Monte Carlo estimate of the conditional likelihood for γ. (It is possible to use
mcexact as is for this purpose. However, we have had mixed success in this endeavor and it is best
avoided due to numerical instability.)

2 exactLoglinTest

The software exactLoglinTest is an implementation of the algorithms presented in [2] and [3]. At the
heart of both algorithms is a sequentially generated rounded normal approximation to the conditional
distribution. We refer the reader to those papers for a more complete description.

You can obtain a copy of exactLoglinTest at as well as a no-web [6] version of this document at

http://www.biostat.jhsph.edu/~bcaffo/downloads.htm

You can install exactLoglinTest with R CMD INSTALL, on Unix and Linux, while the binaries are avail-
able for Windows. Assuming it is installed, one can load mcexact with

> library(exactLoglinTest)

> set.seed(1)

Here, the optional argument lib.loc is necessary if the package has been installed into one of the paths
that R automatically checks. We also set the random number seed to a specific value which is a good
practice for Monte Carlo procedures.

3 Examples

3.1 Residency Data

Assuming exactLoglinTest has been properly installed, the residency data can be obtained by the
command

> data(residence.dat)

This data is a 4×4 table of persons’ residence in 1985 by their residence in 1980. See Table 1 for the
complete data. The data frame, residence.dat, contains the counts stacked by the rows. The extra
term sym.pair is used to fit a quasi-symmetry model. For details on the quasi-symmetry model see [1].
To obtain a Monte Carlo goodness of fit test of quasi-symmetry versus a saturated model involves the
following command

> resid.mcx <- mcexact(y ~ res.1985 + res.1980 + factor(sym.pair),

+ data = residence.dat, nosim = 10^2, maxiter = 10^4)

> resid.mcx

2

The default method is the importance sampling of [2]. Using this method, the number of desired
simulations nosim may not be met in maxiter iterations and no warning is issued if this occurs. The
returned value is a list storing the results of the Monte Carlo simulation and all of the relevant information
necessary to restart the simulation. More information can be obtained with summary

> summary(resid.mcx)

Number of iterations = 100
T degrees of freedom = 3
Number of counts = 16
df = 3
Next update has nosim = 100
Next update has maxiter = 10000
Proportion of valid tables = 1

deviance Pearson
observed.stat 2.98596233 2.98198696
pvalue 0.46311695 0.46311695
mcse 0.03679595 0.03679595

The t degrees of freedom refers to degrees of freedom used as a tuning parameter within the algorithm
while the df refers to the model degrees of freedom. In this case, the Monte Carlo standard error, mcse,
seems too large. As mentioned previously, mcexact , stores the relevant information for restarting the
simulation

> resid.mcx <- update(resid.mcx, nosim = 10^4, maxiter = 10^6)

> resid.mcx

It is important to note that update only resumes the simulation with changes to simulation-specific pa-
rameters. It will not allow users to change the model formulation; one must rerun mcexact independently
to do that.

This example illustrates the point that the underlying algorithms are very efficient when the cell
counts are large. Of course, when this is the case, the large sample approximations are nearly identical
to the conditional results

> pchisq(c(2.986, 2.982), 3, lower.tail = FALSE)

[1] 0.3937887 0.3944088

3.2 Pathologists’ Tumor Ratings

The following example is interesting in that the large sample results differ drastically from the conditional
results. Moreover, the conditional results are less conservative. The data, given in Table 2 can be obtained
via

> data(pathologist.dat)

A uniform association model accounts for the ordinal nature of the ratings by associating ordinal scores
with the pathologist’s ratings [see 1]. Specifically, we can test a uniform association model against the
saturated model with

> path.mcx <- mcexact(y ~ factor(A) + factor(B) + I(A * B), data = pathologist.dat,

+ nosim = 10^4, maxiter = 10^4)

> summary(path.mcx)

Number of iterations = 4444
T degrees of freedom = 3
Number of counts = 25
df = 15
Next update has nosim = 10000

3

Next update has maxiter = 10000
Proportion of valid tables = 0.4444

deviance Pearson
observed.stat 16.214534925 14.729278917
pvalue 0.037393837 0.126297722
mcse 0.001194588 0.002990041

The previous code chunk takes about 1 minute on my laptop. It is worth comparing these results to the
asymptotic Chi-squared results

> pchisq(c(16.214, 14.729), 15, lower.tail = FALSE)

[1] 0.3679734 0.4711083

3.3 Alligator Food Choice Data Using MCMC

In this example we illustrate the algorithm from[3] using the data and Poisson log-linear model from
Table 3. The alligator data is a good choice for MCMC as the percent of valid tables generated using
method = "bab" is very small, less than 1% of the tables simulated. It is often the case that the MCMC
algorithm will be preferable when the table is large and/or sparse. Of course, using MCMC introduces
further complications in reliably running and using the output of the algorithm.

The algorithm from [3] uses local moves to reduce the number of tables with negative entries that
the chain produces. You can specify this method by using method = "cab". The parameter p represents
the average proportion of table entries left fixed. So a chain with p=.9 will leave most of the table
entries fixed from one iteration to the next. A high value of p will result in a high proportion of valid
(non-negative) simulated tables. Too large of a value of p causes the chain to mix slowly because the
tables will be very similar from one iteration to the next. However, it is sometimes the case that a small
value of p will produce too many tables with negative entries. Hence the Metropolis/Hastings/Green
algorithm will stay at the current table for long periods and again result in a slowly mixing chain. It is
also worth mentioning that for large values of p the algorithm is theoretically irreducible, but may not
be practically irreducible. Therefore, it is advisable to both tinker with the chain some and make final
runs using multiple values of p.

The program allows for the option to save the chain goodness of fit statistics, so that some initial
tinkering can be performed. This is specified with the savechain = TRUE option. If using impartance
sampling, method = "bab", then savechain saves both the statistic values and the importance weights
on the log scale.

> data(alligator.dat)

> alligator.mcx <- mcexact(y ~ (lake + gender + size) * food +

+ lake * gender * size, data = alligator.dat, nosim = 10^3,

+ method = "cab", savechain = TRUE, batchsize = 100, p = 0.4)

> summary(alligator.mcx)

Number of iterations = 1000
T degrees of freedom = 3
Number of counts = 80
df = 40
Number of batches = 10
Batchsize = 100
Next update has nosim = 1000
Proportion of valid tables = 0.035

deviance Pearson
observed.stat 50.2636886 52.56768703
pvalue 0.2390000 0.19900000
mcse 0.1114177 0.09906513

4

The chain of goodness of fit statistics are saved in alligator.mcx$chain. The saved chain is discarded
if the simulations are resumed with update, even if savechain = T when the simulation is resumed.

We would want to look at the autocorrelation function of the goodness of fit statistics.

> if (!"package:stats" %in% search()) library(ts)

> par(mfrow = c(2, 1))

> acf(alligator.mcx$chain[, 1])

> acf(alligator.mcx$chain[, 2])

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series alligator.mcx$chain[, 1]

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series alligator.mcx$chain[, 2]

We would also want to look at the chain of P-values.

> dev.p <- cumsum(alligator.mcx$chain[, 1] >= alligator.mcx$dobs[1])/(1:alligator.mcx$nosim)

> pearson.p <- cumsum(alligator.mcx$chain[, 1] >= alligator.mcx$dobs[1])/(1:alligator.mcx$nosim)

> par(mfrow = c(2, 1))

> plot(dev.p, type = "l", ylab = "P-value", xlab = "iteration")

> title("Deviance P-value by iteration")

> plot(pearson.p, type = "l", ylab = "P-value", xlab = "iteration")

> title("Pearson P-value by iteration")

5

0 200 400 600 800 1000

0.
0

0.
4

0.
8

iteration

P
−

va
lu

e

Deviance P−value by iteration

0 200 400 600 800 1000

0.
0

0.
4

0.
8

iteration

P
−

va
lu

e

Pearson P−value by iteration

The P-values have apparently not stabilized. Also, there is an extremely slow decay in the autocor-
relations of the chain of goodness of fit statistics. Therefore, we should execute a longer run using large
batch sizes. While on the subject of batch sizes, note that mcexact does not require the total number of
simulations to be a multiple of the batch size. If the algorithm terminates in the middle of completing a
batch, it is not used in the P-value calculations. However, the simulations are not wasted if the algorithm
is resumed with update.

One large final run of this data discarding all of the initial tinkering could be performed by setting
flush = TRUE as an argument to update. Here, flush = TRUE, tells update to throw out all of the data
used in the initial tinkering, except that it starts the new chain from the final table from the initial runs.
This is a harmless way to burn the chain in while you are tinkering with it. Of course, the chain can be
restarted at the default starting value, the observed data, by simply rerunning mcexact .

4 Application to Disclosure Limitation

Though there are certainly more rigorous procedures available [see 4], exactLoglinTest is a useful tool
for exploring disclosure limitation in contingency tables. Consider the Czech Auto Worker’s data given
in Table 4. Suppose a researcher is concerned about the potential disclosure risk of releasing all two-way
marginals from this table. The following code will load the Czech auto worker data into a data frame:

> data(czech.dat)

We will explore disclosure limitation by simulating tables from the hypergeometric distribution ob-
tained by conditioning on all two way margins. However, we would like to save all of the simulated
table entries, not just the deviance and Pearson statistics. This could be accomplished by changing the
argument stat of mcexact to an appropriate statistic. However, the function simulateConditional
performs this simulation for us. It returns the simulated tables in a matrix with each row being a
complete simulated table.

Now we run the chain. Notice the stat = cell.stat option to load the newly defined statistic.

6

> chain <- simulateConditional(y ~ (A + B + C + D + E + F)^2, data = czech.dat,

+ method = "cab", nosim = 10^3, p = 0.4)

Now, chain is a matrix where each row is a simulated table. We were particularly concerned with cells
39, 48, and 55 which contained only one, two and two individuals respectively. Consider the proportion
of tables which have greater than 0 but fewer than three individuals

> mean(chain[, 39] > 0 & chain[, 39] < 3)

[1] 0.419

> mean(chain[, 48] > 0 & chain[, 58] < 3)

[1] 0.342

> mean(chain[, 55] > 0 & chain[, 55] < 3)

[1] 0.376

We used the model in question because this model fixes all two-way margins. However, that model
need not fit the data well (in fact, it doesn’t). Therefore, in addition to simulating from the hypergeomet-
ric density, a user would likely also want to simulate from other densities, such as a uniform distribution
on tables with these margins. Though the normal approximations for exactLoglinTest were tailored
specifically to the hypergeometric density, it allows for other target distributions. Here the density must
be specified on the log scale up to a constant. Since a uniform density is simply a constant we use a
density that always returns 0.

> chain2 <- simulateConditional(y ~ (A + B + C + D + E + F)^2,

+ data = czech.dat, method = "cab", nosim = 10^3, p = 0.4,

+ dens = function(y) 0)

> mean(chain2[, 39] > 0 & chain2[, 39] < 3)

[1] 0.732

> mean(chain2[, 48] > 0 & chain2[, 58] < 3)

[1] 0.703

> mean(chain2[, 55] > 0 & chain2[, 55] < 3)

[1] 0.8

Both simulations suggest that there are plenty of tables with higher counts than the observed counts
for cells 39, 48 and 55. Hence the disclosure risk in releasing the two-way marginals seems minimal.
However, it should be reiterated that this example is given only to illustrate how to obtain simulated
tables from exactLoglinTest, further investigation of the chain and the data would be necessary for a
thorough analysis of the disclosure risk.

4.1 Exact Score Test for Binomial Counts

The data given in A are obtained from the Cytel web site1. The data cross classify the survival of the
Titanic passengers by class, gender and age. You can obtain the data with

> data(titanic.dat)

1http://www.cytel.com/

7

Following the analysis done at the Cytel web site, we view each person’s survival as a binary outcome.
We use a model where a person’s age, sex and class are additive effects on the logit scale. In the light of
the discussion from Subsection 1.1, this model is equivalent to the following:

> titanic.dat$alpha <- rep(1:16, 2)

> fit <- glm(y ~ (factor(class) + factor(age) + factor(sex)):factor(surv) +

+ factor(surv) + factor(alpha), family = poisson, data = titanic.dat)

> summary(fit)

Call:
glm(formula = y ~ (factor(class) + factor(age) + factor(sex)):factor(surv) +

factor(surv) + factor(alpha), family = poisson, data = titanic.dat)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.7995316 -1.7072318 -0.0002603 0.9135367 3.5930750

Coefficients: (5 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.7133 2170.2682 -0.009 0.993
factor(surv)1 2.2477 0.2988 7.522 5.40e-14 ***
factor(alpha)2 16.4218 2170.2684 0.008 0.994
factor(alpha)3 18.9137 2170.2682 0.009 0.993
factor(alpha)4 19.6645 2170.2682 0.009 0.993
factor(alpha)5 19.3346 2170.2682 0.009 0.993
factor(alpha)6 21.3136 2170.2682 0.010 0.992
factor(alpha)7 20.6918 2170.2682 0.010 0.992
factor(alpha)8 21.0027 2170.2682 0.010 0.992
factor(alpha)9 -0.8226 3182.4092 -0.000258 1.000
factor(alpha)10 17.6670 2170.2682 0.008 0.994
factor(alpha)11 17.9902 2170.2682 0.008 0.993
factor(alpha)12 18.9552 2170.2682 0.009 0.993
factor(alpha)13 21.7355 2170.2682 0.010 0.992
factor(alpha)14 20.7316 2170.2682 0.010 0.992
factor(alpha)15 19.9737 2170.2682 0.009 0.993
factor(alpha)16 20.3374 2170.2682 0.009 0.993
factor(class)1:factor(surv)0 -0.8577 0.1573 -5.451 5.00e-08 ***
factor(class)2:factor(surv)0 0.1604 0.1738 0.923 0.356
factor(class)3:factor(surv)0 0.9201 0.1486 6.192 5.93e-10 ***
factor(class)1:factor(surv)1 NA NA NA NA
factor(class)2:factor(surv)1 NA NA NA NA
factor(class)3:factor(surv)1 NA NA NA NA
factor(age)1:factor(surv)0 1.0615 0.2440 4.350 1.36e-05 ***
factor(age)1:factor(surv)1 NA NA NA NA
factor(sex)1:factor(surv)0 2.4201 0.1404 17.236 < 2e-16 ***
factor(sex)1:factor(surv)1 NA NA NA NA

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4953.14 on 31 degrees of freedom
Residual deviance: 112.57 on 10 degrees of freedom
AIC: 283.97

Number of Fisher Scoring iterations: 15

8

The varianble alpha is added to correspond to the αi terms from (2). Consider the gender effect
in specific. Here, 2.42 suggests the odds of surviving for a male were roughly 9% that of a female.
Furthermore, the estimate is highly significant. To calculate an exact P-value for this problem we use
simulateConditional to simulate tables conditioning on all of the parameters except the one corre-
sponding to the factor(surv) : factor(sex) interaction.

> chain <- simulateConditional(y ~ factor(surv) + (factor(class) +

+ factor(age)):factor(surv) + factor(alpha), dat = titanic.dat,

+ nosim = 10^3, method = "cab", p = 0.1)

A P-value for a score test of H0 : γ = 0 versus Ha : γ < 0 simply counts the proportion of tables with
sufficient statistic for γ is smaller than the observed value. Using the notation from (2) the sufficient
statistic for γ is sγ =

∑
i ziyi ≡ z′y. We calculate the chain of sufficient statistics and the observed

sufficient statistic below.

> z <- titanic.dat$sex * titanic.dat$surv

> sgamma <- chain %*% z

> sgamma.obs <- titanic.dat$y %*% z

> mean(sgamma <= sgamma.obs[1])

[1] 0.001

Apparently, none of the simulated tables have sufficient statistics for γ below that of the observed, which
agrees closely with large sample results above.

5 Discussion and To Do

In this manual we investigated three straightforward examples of exactLoglinTest and considered two
useful extensions of the program. The program was initially constructed calculate P-values for goodness
of fit tests for contingency tables. However, the latter examples suggest a more user friendly interface
for those problems would be useful.

Finally, it should be noted that only the inner-most calculations have been migrated to C. Possibly
great gains in the speed of the algorithm could be attained by migrating more of the code (or more
efficient R coding).

References

[1] Alan Agresti. Categorical Data Analysis. Wiley, New York, 1990.

[2] J.G. Booth and R.W. Butler. An importance sampling algorithm for exact conditional test in log-
linear models. Biometrika, 86:321–332, 1999.

[3] Brian S. Caffo and James G. Booth. A markov chain monte carlo algorithm for approximating exact
conditional probabilities. the Journal of Compuatational and Graphical Statistics, 10:730–745, 2001.

[4] Adrian Dobra, Claudia Tebaldi, and Mike West. Reconstruction of contingency tables with missing
data. Technical report, Duke University, 2002.

[5] D. E. Edwards and T. Havranek. A fast procedure for model search in multidimesional contingency
tables. Biometrika, 72:339–351, 1985.

[6] Friedrich Leisch. Sweave User Manual.

[7] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth
edition, 2002.

9

A Tables

Residence Residence in 1985
in 1980 Northeast Midwest South West
Northeast 11,607 100 366 124
Midwest 87 13,677 515 302
South 172 225 17,819 270
West 63 176 286 10,192

Source [1]

Table 1: Residency Data

Pathologist B
Pathologist A 1 2 3 4 5

1 22 2 2 0 0
2 5 7 14 0 0
3 0 2 36 0 0
4 0 1 14 7 0
5 0 0 3 0 3

Source [1]

Table 2: Pathologist Agreement Data

Primary Food Choice
Lake Gender Size Fish Invert Reptile Bird Other
1 Male Small 7 1 0 0 5

Male Large 4 0 0 1 2
Female Small 16 3 2 2 3
Female Large 3 0 1 2 3

2 Male Small 2 2 0 0 1
Male Large 13 7 6 0 0
Female Small 3 9 1 0 2
Female Large 0 1 0 1 0

3 Male Small 3 7 1 0 1
Male Large 8 6 6 3 5
Female Small 2 4 1 1 4
Female Large 0 1 0 0 0

4 Male Small 13 10 0 2 2
Male Large 9 0 0 1 2
Female Small 3 9 1 0 1
Female Large 8 1 0 0 1

Source [1]
Model (FG, FL, FS, LGS) where F=food choice, L=lake, S=size, G=gender.

Table 3: Alligator Data

10

B no yes
F E D C A no yes no yes

neg small small no 44 40 112 67
yes 129 145 12 23

large no 35 12 80 33
yes 109 67 7 9

large small no 23 32 70 66
yes 50 80 7 13

large no 24 25 73 57
yes 51 63 7 16

pos small small no 5 7 21 9
yes 9 17 1 4

large no 4 3 11 8
yes 14 17 5 2

large small no 7 3 14 14
yes 9 16 2 3

large no 4 0 13 11
yes 5 14 4 4

Source [4] originally appeared in [5].

Table 4: Czech Auto Workers Data

Class
Surv Sex Age Crew First Second Third
no F Child 0 0 0 17

Adult 3 4 13 89
M Child 0 0 0 35

Adult 670 118 154 387
yes F Child 0 1 13 14

Adult 20 140 80 76
M Child 0 5 11 13

Adult 192 57 14 75

11

