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Abstract

We develop an R package fastclime for solving a family of regularized linear program-
ming (LP) problems. Our package efficiently implements the parametric simplex algorithm,
which provides a scalable and sophisticated tool for solving large-scale linear programs. As
an illustrative example, one use of our LP solver is to implement an important sparse pre-
cision matrix estimation method called CLIME (Constrained L1 Minimization Estimator).
Compared with existing packages for this problem such as clime and flare, our package has
three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2)
it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C
and is highly portable. This package is designed to be useful to statisticians and machine
learning researchers for solving a wide range of problems.

1 The Parametric Simplex Method

In this section, we will follow the normal linear programming convention and use x as the normal
linear programming variable which has dimension n. Here we briefly describe the primal simplex
method and introduces the parametric simplex methods.

We give the standard linear programming in inequality form:

max cTx subject to: Ax ≤ b, x ≥ 0 x ∈ Rn (1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given.
For the primal simplex method, we require that b ≥ 0. This property is called primal feasibility.
We change the standard inequality form into equality form by adding slack variables w:

max
[
c 0

] [x
w

]
subject to:

[
A I

] [x
w

]
= b x, w ≥ 0 x ∈ Rn w ∈ Rm (2)

For notation convenience, we rewrite the variable x as:

x =
[
x1 x2 · · · xn w1 · · · wm

]T
=
[
x1 x2 · · · xn x1+1 · · · xn+m

]T
The new variables, xn+1, ..., xn+m, are called slack variables. We separate the m + n variables
into two parts: basic variables and nonbasic variables. Basics variables are used to represent the
nonbasic variables. Initially, the slack variables are basic variables and the original variables are
nonbasic variables. We separate the matrix

[
A I

]
into the basic part and the nonbasic part as

well (with permutation). Initially the matrix A corresponds to nonbasic variables and the identity
matrix part corresponds to basic variables. The vector

[
c 0

]
is separated in the same fashion:
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[
A I

]
=
[
N B

] [
x
w

]
=

[
xN
xB

] [
c
0

]
=

[
cN
cB

]
Now the constraints of (2) will become: NxN +BxB = b. We denote the objective cTx as ζ, then
we have:

xB =B−1b−B−1NxN
=x∗B −B−1NxN

ζ =cTx (3)

=cTBxB + cTNxN

=cTB(B−1b−B−1NxN ) + cTNxN

=cTBB
−1b− ((B−1N)T cB − cN )TxN

=ζ∗ − (z∗N )TxN

(4)

with ζ∗ = cTBB
−1b, x∗B = B−1b and z∗N = (B−1N)T cB − cN .

We call equations (3) and (4) the primal dictionary associated with the current basis B. Primal
feasibility requires that xB ≥ 0, which is initially guaranteed by b ≥ 0 . We read off the specific
values of xB and ζ by setting xN to be zero. For next iteration, we swap one variable from the
basics part and one variable from the nonbasic part, and then we write down the dictionary and
read off the values such that the objective value is always increasing.

The dual of the problem (1) is:

min bT y subject to: AT y ≥ c, y ≥ 0 y ∈ Rm (5)

As with the primal problem, We form by introducing slack variables here as well:

min bT y subject to: AT y − z = c, y, z ≥ 0 y ∈ Rm z ∈ Rn (6)

The dual variables are given by:

z =
[
z1 z2 · · · zn y1 · · · ym

]T
=
[
z1 z2 · · · zn zn+1 · · · zn+m

]T
Similar to (3) and (4), the corresponding dual dictionary is given by:

zN = (B−1N)T cB − cN + (B−1N)T zB = z∗N + (B−1N)T zB (7)

−ξ = −cTBB−1b+ (B−1b)T zB = −ζ∗ − (x∗B)T zB (8)

where ξ denotes the objective function in the dual form.

For each dictionary, we set xN and zB to 0 (complementarity) and read off the solutions to xB
and zN according to (3) and (7). Next, we update the dictionary by removing one basic index
and replacing it with a nonbasic index, then we get an updated dictionary. The simplex method
produces a sequence of steps to adjacent bases such that the value of the objective function is
always increasing at each step. Primal feasibility requires that xB ≥ 0, so while we update the
dictionary, primal feasibility must always be satisfied. This process will stop when zN ≥ 0 (dual
feasibility), and this is the optimality condition since it satisfies primal feasibility, dual feasibility
and complementarity.

Now we introduce the parametric simplex method [Vanderbei, 2008]. Generally speaking, we
cannot make the initial primal feasible assumption (b ≥ 0). The method we use here is to add
some nonnegative perturbation times a positive parameter λ to both objective function (c) and
the right hind side of the primal problem (b). Now (1) becomes:

max(c+ λc)Tx subject to: Ax ≤ b+ λb, x ≥ 0 x ∈ Rn (9)
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The dictionary of equations (3), (4), (7) and (8) will become:

xB = (x∗B + λxB)−B−1NxN (10)

ζ = ζ∗ − (z∗N + λzN )TxN (11)

zN = (z∗N + λzN ) + (B−1N)T zB (12)

−ξ = −ζ∗ − (x∗B + λxB)T zB (13)

with xB = B−1b and zN = (B−1N)T cB − cN .

we choose b and c, so that when λ is large, the dictionary will be both primal and dual feasible
(x∗B + λxB ≥ 0 and z∗N + λzN ≥ 0). At this point, we start to decrease λ. The smallest value of
λ is given by

λ∗ = min{λ : z∗N + λzN ≥ 0 and x∗B + λxB ≥ 0} (14)

We interchange one basic variable and one nonbasic variable and update the dictionary in a way
so that the value of λ will be decreased. Eventually the value of λ will be decreased to zero which
corresponds to the original problem. For each update, we need to make sure that the primal and
dual feasibility is satisfied. The detail of one iteration of the parametric simplex method can be
found in page 119-121 of [Vanderbei, 2008]. This algorithm must stop in finite time because: (1)
the value of λ is decreasing for each iteration; (2) the optimal value corresponding to λ is 0 (3)
there are finitely many bases and it indicates that there are only finitely many steps (unless it
cycles). The linear programming solver based on the algorithm described above is contained in
our package.

This methods allows us to solve a full range of linear programming based regularized learning
problems since the parameter used here corresponds exactly to the regularization parameter in
many learning problems. In fact, if an regularized learning problem can be constructed in form
(9), then the entire solution path of that problem can be obtained by solving the LP only once
with our parametric simplex method. Therefore, we would like to apply this method to learning
problems such as sparse precision matrix estimation.

In Section 2, we introduce CLIME and apply the parametric simplex method to solve CLIME.
In Section 3, we introduce the design of our software and provide some examples. In Section 4,
numerical benchmarks and comparisons with other implementations are provided.

2 CLIME

In this section, Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation
(CLIME) will be discussed and the normal notation for statistical learning will be used.

Estimating large covariance or precision matrices is a fundamental problem which has many
applications in modern statistics and machine learning. This problem is formulated as follows:
Let x1, . . . ,xn ∈ Rd be n observations of a d-dimensional random vector X = (X1, . . . , Xd)T .
Without loss of generality, we assume EX = 0. We denote the population covariance matrix
Σ = EXXT and the precision matrix Ω = Σ−1. Our task is to estimate Ω even when the
dimension d may be larger than the sample size n.

Sparse precision matrices are closely related to undirected graphs. Under a Gaussian model, the
sparse precision matrix Ω encodes the conditional independence relationships among the variables
X1, . . . , Xd. More specifically, we define an undirected graph G = (V,E), where V contains nodes
corresponding to the d variables in X and the edge (j, k) ∈ E if and only if Ωjk 6= 0. Let
X\{j,k} = {X` : ` 6= j, k}. We have Xj is independent of Xk given X\{j,k} for all (j, k) /∈ E.
Therefore, the graph estimation problem is equivalent to estimating the sparse precision matrix
Ω. Besides graphical models, the estimated sparse precision matrix can also be applied for high-
dimensional discriminant analysis and principal component analysis.

Recently, several sparse precision matrix estimation methods have been proposed. See [Friedman
et al., 2007a, 2010a, Liu et al., 2009, 2010]. One famous estimator for the precision matrix is called
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l1 regularized log-determinant program [Banerjee et al., 2008], and it is a Maximum Likelihood
Estimation (MLE)-type method:

Ω = argmin trace(ΣnX)− log(det(X)) + λ‖X‖1, subject to:X � 0 (15)

This estimator can be solved efficiently by solvers such as Graphical Lasso (GLASSO)[Friedman
et al., 2007b, 2010b] and QUIC [Hsieh et al., 2011].
Another particular interesting method called CLIME [Cai et al.], and is based on linear program-
ming. Tt intends to solve the following problem:

min ‖Ω‖1 subject to: |ΣnΩ− Id|max ≤ λ, Ω ∈ Rd×d (16)

where λ is defined as a tuning parameter, Σn is the sample covariance matrix and Id is the
d-dimensional identity matrix. This minimization problem can be further decomposed into d
smaller problems by simply recovering the precision matrix column by column:

min ‖β‖1 subject to: |Σnβ − ei|∞ ≤ λ β ∈ Rd (17)

where ‖β‖1 =
∑d

j=1 |βj | and ei ∈ Rd is the i-th basis vector.

Of course, the estimator we obtain by solving these series of linear programming problems are
not symmetric, but we can simply take the smaller value of Ω̂ij and Ω̂ji as the value chosen
by the estimator. The result can be shown to be positive definite with high probability. The
error between the estimator Ω̂ and Ω satisfies ‖Ω̂ − Ω‖2 = Op(s

√
log(d)/n) and |Ω̂ − Ω|∞ =

Op(
√

log(d)/n), where s denotes the sparsity of the precision matrix. Moreover, it has been shown
numerically that, in terms of accuracy, CLIME uniformly outperforms MLE-type estimator such
as GLASSO [Cai et al.]. The reason is very obvious: there is a primal-dual gap to guarantee
the machine precision in linear programming based approach while the stopping criterion for
MLE-type estimator is to simply control the difference of norm during each iteration. This is the
reason why CLIME is particularly important and useful.

Now we are ready to apply the parametric simplex method to solve CLIME. By setting β =
β+ − β− and ‖β‖1 = β+ + β− and let β+ ≥ 0 β− ≥ 0, and one of β+, β− be 0, equation (18)
of CLIME can be written in the following form:

minβ+ + β− subject to:

(
Σn −Σn

−Σn Σn

)(
β+

β−

)
≤
(
λ+ ei
λ− ei

)
(18)

Equation (19) is clearly an initial setup of a parametric simplex problem. Comparing it with (9),
we have the following identifications:

A =

(
Σn −Σn

−Σn Σn

)
b =

(
ei
−ei

)
c =

−1
...
−1

 c = 0 b =

1
...
1


By constructing this setup and plugging the problem into our parametric simplex linear program-
ming solver, we are able to recover the full piecewise-linear regularization path in a relatively short
time.

3 Design, Implementation and Examples

The package fastclime consists of two major parts: a pair of linear programming solvers and
a series of functions used to estimate precision matrix: data generator, graph estimation, graph
visualization.

For the data generate part, the function fastclime.generator is able to generate multivariate
Gaussian data with different graph structures.

fastclime is the main function used to estimate the graph. It takes three parameters. The first
parameter can be either a data matrix or a sample covariance matrix. The second parameter
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is the required sparsity level. The third parameter is the designed iteration numbers required
for each column (the length of the solution path). The function estimates the precision matrix
column by column, and stops when the required sparsity level has been reached at each column
or the designed iteration number has been reached. The estimator is based on a parametric
simplex linear programming solver written in C. In order to maintain the speed of the program,
the default path length is set to be 50. The user must be very careful when asking for a large
solution path when the dimension d is large. This estimator is designed to take advantage of the
parametric simplex method to recover sparse precision matrix only. When the precision matrix
is not sparse, it will take a long time to recover and the result it not meaningful.
The output object of the main function has several components. The list of precision matrices
is stored in icov and the list of adjacency matrices is stored in path. mu includes the full path
information for every column, with zero filled in when the sparsity level has been achieved in that
column. For each column, we calculate at what mu value the solution changes then store that
value. sparsity shows the sparsity level at each path step. df is a matrix, whose row contains
the number of nonzero coefficients along the solution path. nlambda is the length of the solution
path.

The plotting functions fastclime.plot provides a method to plot the undirected graph at each
path. Please note only the adjacency matrix is allowed for this function. plot provides visual-
izations of the sparsity level versus the tuning parameter λ in the first column and fastclime.roc
is used to plot the region of convergence (ROC) curve.

We illustrate the user interface by two examples. The first one is based on the data generated by
fastclime.generator(),

> library(fastclime) # Load the package

> L = fastclime.generator(n=200,d=50,graph="hub") # Generate data with hub structures

> out = fastclime(L$data) # Estimate the solution path

> fastclime.roc(out$path,L$theta) # Plot the ROC curve

> fastclime.plot(out$path[[3]])

> plot(out)

(a) The solution path (b) The ROC curve

Figure 1: The solution path and the ROC curve of the first example

In this example, we first generate 200 samples from a 50-dimensional Gaussian distribution with
hub structure. All information, such as the true covariance matrix, the sample covariance matrix,
the true precision matrix and the adjacency matrix are stored in object L. We try to estimate
the inverse covariance matrix by fastclime, and we assume the sparsity level is about 0.1, which
is the default value. The estimator we obtain is stored in an object called out. We observe the
result has a path length of 14. The Region of Convergence (ROC) curve and the solution path is
shown in Figure 1(a) and Figure 1(b), respectively. As shown in Figure 1(a), this method gives
a almost perfect ROC curve. The true sparsity level is 0.06. After three iterations, it recovers
all the tree correlation between the variables. The user has to be aware that as the path length
increases, it is likely to obtain additional undirected edges in the graph, as shown in Figure 2(c).
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(a) Truth (b) Graph obtained in 3 iterations (c) Graph obtained in 4 iterations

Figure 2: Graphs estimated by fastclime

The second example is based on some stock market data which is contained in the package. The
data contains stock price from S&P 500 during the period between Jan 1st, 2003 and Jan 1st,
2008. It gives 1258 samples (n) from 452 stocks (d). We give a approximate sparsity ratio to
be 0.05. The program automatically calculates the solution path. We reach the sparsity level
0.05 after 30 iterations. The solution path for the first column is shown in Figure 3, and a few
example of estimated graphs with corresponding sparsity level labeled are shown in Figure 4.

> data(stockdata) #Load the stock data

> Y = log(stockdata$data[2:1258,]/stockdata$data[1:1257,]) #Preprocessing

> out = fastclime(Y,0.06) #Estimate the graph

> plot(out)

> fastclime.plot(out$path[[7]])
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Figure 3: The solution path of the stock data

The linear programming solver function fastlp is used to solve a general linear programming
problem in standard inequality form (1). The solver will automatically give a random perturbation
and solve it by the parametric simple method. If the original problem is not in this form, the
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(a) sparsity=0.0031 (b) sparsity=0.0045 (c) sparsity=0.0058

Figure 4: Graphs estimated by fastclime based on the stock data

user has to convert it into this form. For example, if the original problem has an equation, then
this equation can be separated into two inequalities. If the original variables are not nonnegative,
then the trick mentioned in last section to derive (19) can be used to make sure the variables
be nonnegative. Fastlp has four parameters. The first three are the objective vector (length
n), the constraint matrix (dimension m × n) and the right hand side vector (length m). The
last parameter lambda is used to specify the stopping rule for the linear programming solver.
Whenever the calculated parameter λ in the solver is smaller than this value, the program will
stop at that point and the function will give the optimal solution corresponding to that λ The
default value of lambda is zero, which corresponds to the optimal value of the original LP problem.
The function will also indicate if the input problem is unbounded or infeasible. For example, we
generate a random feasible LP problem and solves it by fastlp.

> n=100

> A=matrix(mvrnorm(n^2,0, 1),nrow=n)

> x=runif(n, min = 0, max = 5)

> y=runif(n, min = 0, max = 5)

> w=runif(n, min = 0, max = 5)

> z=runif(n, min = 0, max = 5)

> b=A%*%x+w

> c=t(A)%*%y-z

> out1<-fastlp(c,A,b)

Another linear programming solver function paralp is used to solve a parameterized LP problem
in form (9). It takes six parameters. The only difference is that this time the user can specify
the two perturbation vectors (b and c). The rest four parameters have the same meaning as
in fastlp. Again, the function stops at the value of lambda provided by the user and give
the optimal solution corresponding to that lambda. Notice the perturbation vectors must be
nonnegative in order to apply the parametric simplex method. Here is a simple example:

> c<-c(1,2,1,1)

> b<-c(8,12,18)

> A<-matrix(c(2,2,3,1,2,1,5,0,2,1,4,0),nrow=4)

> b_bar<-c(1,1,1)

> c_bar<-c(1,1)

> opt2<-paralp(c,A,b,c_bar,b_bar)

4 Performance Benchmark

Since CLIME has many advantages over MLE-type methods, we focus on the comparison between
packages based on CLIME method. We evaluate the timing performance of our package with
comparison to the packages flare and clime while estimating the precision matrix. Flare [Li
et al., 2012] uses Alternating Direction Method of Multiplier (ADMM) as the method to evaluate
CLIME and clime solves a series of LP problems for different values of λ. We simulate the data
from several multivariate normal distributions. We fix the sample size n to be 200 and vary the
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data dimension d from 50 to 800. We generate our data by fastclime.generator, without any
particular data structure.

The error tolerance (primal and dual gap) used for clime and fastclime is 10−5 and the error
tolerance (differences between iterations) used for flare is also 10−5. Our package calculates its
own λ sequences while solving the LP only once, the λ sequence is stored in the output. These
λ sequences used for the other two methods are all the default sequences from the packages. To
be specific, the λ sequence used by clime is of length 100 from 0.8 to 100 and the sequence
used by flare is of length 10 from 0.5λmax to λmax. The default value of λmax is the minimum
regularization parameter, which yields an all-zero off-diagonal estimates.

As can be seen from Table 1, fastclime performance significantly faster than clime when d is
50 or 100. When d is large, we are not able to obtain results directly from clime in one hour. We
also notice that, in most cases, fastclime performances better than flare, and it has a smaller
deviation compared with flare. The units are in seconds and all experiments are carried on a
PC with Intel Core i5-3320 2.6GHz processor and the R version used is 2.15.0.

Table 1: Average Timing Performance of Three Solvers

solve d=50 d=100 d=200 d=400 p=800
clime 103.52(9.11) 937.37(6.77) N/A N/A N/A
flare 0.632(0.335) 1.886(0.755) 10.770(0.184) 74.106(33.940) 763.632(135.724)

fastclime 0.248(0.0148) 0.928(0.0268) 9.928(3.702) 53.038(1.488) 386.880(58.210)

5 Conclusions

We developed a new package named fastclime for generic and parameterized linear programming
problems as well as conditional independence graph estimation and precision matrix recovery. The
package is based on CLIME and the parametric simplex method. Compared with the existing
package clime, it has many additional features: it is much faster and it can recover the full
piece-wise linear regularization solution path. We hope the CRAN community could benefit from
our contributions. We plan to maintain and support this package in the future.
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