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1 Introduction

Twin and family studies have been the standard approach for heritability estimation, where
differences between monozygotic and dizygotic twin pairs are attributed to genetics and familial
relationships are linked with a polygenic effect. Usually the estimate from twin studies is higher
than that from family studies. It is difficult to tease out influence of the common environment
for both types of data.

There has been a lot of interest recently in use of genomic relationship matrices (GRMs)
regardless their famiilial background so unrelated individuals can also be used (Yang et al.
(2010)). The GRM associated with a polygenic component in a random effects or mixed model
mirrors the role of a relationship matrix based on family structures. A dedicated computer
program called GCTA (genome-wide complex trait analysis) is available (Yang et al. (2011)).
Work has been done to show the utility of GRM in linkage studies (Day-Williams et al. (2011))
and heritability estimation (Klimentidis et al. (2013)).

Here we use a very simple family to illustrate heritability estimation. As GRMs typically
involve large quantity of genomic data, we will use the relationship matrix derived from the
family structure as if it was a GRM. We then provide examples to read/write GRMs either in
text or binary format as required by GCTA. A version showing estimated GRM in the computer
program PLINK is also provided.

2 A toy example

2.1 Data

The data is on a single family from the computer program Morgan.

> library(gap)

> head(l51,10)

id fid mid sex aff qt
1 1 0 0 1 1 -0.9642
2 2 0 0 2 1 1.0865
3 3 0 0 1 1 -0.5363
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4 4 0 0 2 1 0.4514
5 5 1 2 1 1 0.0538
6 6 1 2 1 1 -1.2667
7 7 3 4 2 1 NA
8 8 3 4 2 1 0.1743
9 9 0 0 2 1 0.2923
10 10 0 0 1 1 NA

> library(kinship2)

> ped <- with(l51,pedigree(id,fid,mid,sex))

> pdf("figures/l51.pdf")

> plot(ped)

> dev.off()

null device
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and the pedigree diagram is as follows,

1 2 3 4

5 9 6 7 10 19 8 20 21

26 27 11 28 12 13 29 14 15 16 17 18 30 22 23 24 25 31

32 35 33 34 35 36 37 38 39 40 41 42 43 44 45

48 47 46

49 50

51
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2.2 Model

We can obtain a linear mixed model for the quantitative trait (qt) in l51 above.

> library(gap)

> k2 <- kin.morgan(l51)$kin.matrix*2

> k2[1:10,1:10]

1 2 3 4 5 6 7 8 9 10
1 1.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0 0
2 0.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0 0
3 0.0 0.0 1.0 0.0 0.0 0.0 0.5 0.5 0 0
4 0.0 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0 0
5 0.5 0.5 0.0 0.0 1.0 0.5 0.0 0.0 0 0
6 0.5 0.5 0.0 0.0 0.5 1.0 0.0 0.0 0 0
7 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.5 0 0
8 0.0 0.0 0.5 0.5 0.0 0.0 0.5 1.0 0 0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1

> library(regress)

> r <- regress(qt ~ 1, ~k2, data=l51)

> r$sigma

k2 In
0.2817099 0.4444962

> r$sigma.cov

k2 In
k2 0.07163300 -0.03991478
In -0.03991478 0.04042731

The function kin.morgan is readily used for the well-ordered pedigree. The relationship matrix
is supplied to regress function for parameter estimation. We can also generate a binary trait
(bt) and run through the regression model similarly,

> N <- dim(l51)[1]

> w <- with(l51,quantile(qt,probs=0.75,na.rm=TRUE))

> l51 <- within(l51, bt <- ifelse(qt<=w,0,1))

> with(l51,table(bt))

bt
0 1
32 11

> d <- regress(bt ~ 1, ~k2, data=l51)

> d$sigma
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k2 In
0.0307703 0.1678370

> d$sigma.cov

k2 In
k2 0.003615481 -0.002525622
In -0.002525622 0.003492826

2.3 Heritabilities

Once the mixed models are obtained, we can get the heritability estimates. Note that although
we set a population prevalence (K) to be 0.25, there were 11 cases and 40 controls from the
simulation, leading to a case/control proportion (P) of 11/51=0.2156863.

The heritability estimate is a ratio of polygenic and phenotypic variance and available from
function h2G which also gives the associate variance estimate. Internally, this involves function
VR for calculating variance of a ratio. We illustrate with the example given above,

> library(gap)

> # qt

> sigma <- c(0.2817099, 0.4444962)

> sigma.cov <- matrix(

+ c(0.07163300, -0.03991478,

+ -0.03991478, 0.04042731), 2, 2)

> h2G(sigma,sigma.cov)

Vp = 0.7262061 SE = 0.1795292
h2G = 0.38792 SE = 0.3136308

> # bt

> sigma <- c(0.0307703, 0.1678370)

> sigma.cov <- matrix(

+ c(0.003615481, -0.002525622,

+ -0.002525622, 0.003492826), 2, 2)

> h2G(sigma,sigma.cov)

Vp = 0.1986073 SE = 0.04535486
h2G = 0.1549304 SE = 0.2904298

As only a single family is involved in the analysis, it is not surprising to see large standard
errors. For a case-control study, the heritability estimation is based on a liability threshold model
and the connection is furnished through the function h2l taking into account the population
prevalence and the proportion of cases in the sample (Lee et al. (2011)).

> h2l(K=0.25, P=11/51, h2=0.1549304, se=0.2904298)

K = 0.25 P = 0.2156863
h2 = 0.1549304 SE = 0.2904298 h2l = 0.3188476 SE = 0.597706
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which yields a larger point estimate nevertheless with larger standard error. The relationship
between population prevalence and heritability will be seen more clearly later.

It makes sense to illustrate with real data. Before doing that, we would like to indicate that
when a model includes gene-environment interaction, (restricted) maximum likelihood estimate-
ors would involve three variance components, heritabilities associated with both polygenic and
interaction are obtained via function h2GE.

Below is an example from a real session of GCTA analysis but we only keep the variance
components and their (lower-triangular) variance-covariance matrix as input to the relevant
functions described above.

> library(gap)

> V <- c(0.017974, 0.002451, 0.198894)

> VCOV <- matrix(0,3,3)

> diag(VCOV) <- c(0.003988, 0.005247, 0.005764)^2

> VCOV[2,1] <- -7.93348e-06

> VCOV[3,1] <- -5.54006e-06

> VCOV[3,2] <- -1.95297e-05

> z <- h2GE(V,VCOV)

Vp = 0.219319 SE = 0.003263797
h2G = 0.08195368 SE = 0.01799574 h2GE = 0.0111755 SE = 0.02392398

3 Oberved vs scaled heritabilities

Here we explore the relationship between observed and scaled heritability estimates based on a
case-control analysis,

> library(gap)

> P <- 0.496404

> R <- 50

> kk <- h2all <- seall <- h2alls <- sealls <- rep(0,R)

> for(i in 1:R)

+ {

+ kk[i] <- i/R

+ h2 <- 0.274553

+ se <- 0.067531

+ z <- h2l(kk[i],P=P,h2=h2,se=se,verbose=FALSE)

+ h2all[i] <- z$h2l

+ seall[i] <- z$se

+ h2 <- 0.044

+ se <- 0.061

+ z <- h2l(kk[i],P=P,h2=h2,se=se,verbose=FALSE)

+ h2alls[i] <- z$h2l

+ sealls[i] <- z$se

+ }

> pdf("figures/h2l.pdf")
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> par(mfrow=c(1,2))

> plot(kk,h2all,type="l",ylab="Adjusted heritability",xlab="Prevalence")

> lines(kk,h2all-seall,lty="dashed")

> lines(kk,h2all+seall,lty="dashed")

> title("(a) h2 = .274 and cases% = 50")

> plot(kk,h2alls,type="l",ylab="Adjusted heritability",xlab="Prevalence",ylim=c(0,0.15))

> lines(kk,h2alls-sealls,lty="dashed")

> lines(kk,h2alls+sealls,lty="dashed")

> title("(b) h2 = .044 and cases% = 50")

> dev.off()

null device
1

where we set disease prevalence over a grid of 50, as shown in the following figure,
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This suggests a nonlinear relationship between the observed and adjusted estimtes and as a
function of prevalence.

4 Exchange of GRMs between software

We can read or write the GRMs used by GCTA for the example above with the following code,

> p <- matrix(0,N,4)

> for(i in 1:N) p[i,] <- with(l51[i,],c(i,i,qt,bt))

> write(t(p),file="51.txt",4,sep="\t")

> NN <- rep(51, N * (N + 1)/2)

> WriteGRM(51,p[,1:2],NN,k2)

> one <- ReadGRM(51)

> grm <- one$grm

> WriteGRMBin(51,grm,NN,p[,1:2])

> two <- ReadGRMBin(51,TRUE)

> sum(one$GRM-two$GRM)

As well as illustrating how to manipulate GRMs in two formats, we also generate a phenotypic
file called 51.txt. Note the function kin.morgan result has an elemenet called kin which is
similar to the vector grm above.

GRM from PLINK, i.e., the .genome file, can be read via a function called ReadGRMPLINK.
On reviewing earlier work in relation to package kinship, a simpler implementation is possible
esp. with integer ID’s with the bdsmatrix.ibd function in package bdsmatrix, therefore it is
added to gap’s suggested package list.

Another function is called WriteGRMSAS can be used to output an ldata as required by
type=LIN(1) in SAS PROC MIXED and PROC GLIMMIX. As for phenotypic data, we again
turn to our pedigree l51 and issue commands,

> library(foreign)

> write.dta(l51, "l51.dta")

to save the data as an external file in Stata format so that software system such as SAS can read
it directly. Together with relationship matrix we can take a whole range of facilities available
from there. Of course with this particular example, one could use PROC INBREED to generate
a relationship matrix.

Morgan actually provides the relevant result for this pedigree as well. It is possible to work
on kinship matrix generated from SOLAR, Earlier we discussed how to do this kind of analysis
using SAS in Zhao and Luan (2012).

5 Inference based on Markov chain Monte Carlo (MCMC)

5.1 The toy data

The exmaple also prompts us to seek alternative strategies for inference. Fortunately, we have
been able to do so with available facilities in R as detailed below,

First we can take advantage of the family structure,
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> library(gap)

> library(MCMCglmm)

> prior<-list(R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002)))

> m <- MCMCglmm(qt~sex,random=~id,data=l51,prior=prior,burnin=10000,nitt=100000,verbose=FALSE)

> summary(m)

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: 15.05609

G-structure: ~id

post.mean l-95% CI u-95% CI eff.samp
id 0.3641 0.0002488 0.8915 205

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.3721 0.0001684 0.8951 210.9

Location effects: qt ~ sex

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.74278 -0.05606 1.55213 4470 0.0733 .
sex -0.29516 -0.80960 0.22011 6113 0.2524
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> pdf("figures/MCMCglmm1.pdf")

> plot(m)

> dev.off()

null device
1

8



2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
5

1.
0

1.
5

Iterations

Trace of id

0.0 0.5 1.0 1.5

0
1

2
3

4

Density of id

N = 9000   Bandwidth = 0.05544

2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
5

1.
0

1.
5

Iterations

Trace of units

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
Density of units

N = 9000   Bandwidth = 0.05531

We next seek to use the kinship matrix directly.

> library(gap)

> km <- kin.morgan(l51)

> k2 <- km$kin.matrix*2

> N <- 51

> i <- rep(1:N,rep(N,N))

> j <- rep(1:N,N)

> library(Matrix)

> s <-spMatrix(N,N,i,j,as.vector(k2))

> Ginv<-solve(s)

> class(Ginv) <- "dgCMatrix"

> rownames(Ginv) <- Ginv@Dimnames[[1]] <- with(l51,id)

> library(MCMCglmm)

> prior<-list(R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002)))

> m <- MCMCglmm(qt~1, random=~id, ginverse=list(id=Ginv), data=l51, prior=prior,

+ burnin=10000, nitt=100000, verbose=FALSE)

> summary(m)
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> save(m,file="MCMCglmm.fit")

> pdf("MCMCglmm2.pdf")

> plot(m$VCV)

> dev.off()

It ran fairely fast on the Linux system and the summary statistics are as follows,

> summary(m)

Iterations = 10001:99991
Thinning interval = 10
Sample size = 9000

DIC: 82.43772

G-structure: ~id

post.mean l-95% CI u-95% CI eff.samp
id 0.3811 0.0003015 1.166 620.9

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.4564 0.000302 0.855 817.7

Location effects: qt ~ 1

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 0.469000 0.004706 1.028013 2207 0.0364 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The convergence plots are shown as the following graph,
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In the code, we also saved the model for examination. This example actually led to addition
of packages Matrix and MCMCglmm (Hadfield (2010)) to gap’s suggested package list. As the
procedure is fairly general, it is worthwhile and much simpler to wrap up as a dedicated function
(MCMCgrm) in which case the call becomes,

> s <- kin.morgan(l51)

> K <- with(s,kin.matrix*2)

> prior <- list(R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002)))

> m <- MCMCgrm(qt~1,prior,l51,K,n.burnin=10000, n.iter=100000)

> save(m,file="l51.m")

> plot(m)

Interestingly, inside the function solve needs to have a scope operator, i.e., Matrix::solve, to
enable Ginv to be S4 object. This is a nuisance but not a big overhead.
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5.2 A simulated data

The next example is according to Meyer (1989); Tempelman and Rosa (2004) on 282 animals
from 24 populations, from which we obtain the restricted maximum likelihood (REML) estimates
first, to be followed by two versions of MCMC.

> meyer <- within(meyer,{

+ g1 <- ifelse(generation==1,1,0)

+ g2 <- ifelse(generation==2,1,0)

+ })

> # library(kinship)

> # A <- with(meyer,kinship(animal,sire,dam))*2

> # Here we convert NAs to 0s to be compatible with kin.morgan

> meyer0 <- within(meyer,{

+ id <- animal

+ animal <- ifelse(!is.na(animal),animal,0)

+ dam <- ifelse(!is.na(dam),dam,0)

+ sire <- ifelse(!is.na(sire),sire,0)

+ g1 <- ifelse(generation==1,1,0)

+ g2 <- ifelse(generation==2,1,0)

+ })

> A <- kin.morgan(meyer0)$kin.matrix*2

> library(regress)

> r <- regress(y~-1+g1+g2,~A,data=meyer0)

> summary(r)

Likelihood kernel: K = g1+g2

Maximized log likelihood with kernel K is -754.555

Linear Coefficients:
Estimate Std. Error

g1 220.321 1.725
g2 236.695 1.999

Variance Coefficients:
Estimate Std. Error

A 43.955 16.998
In 50.953 10.594

> with(r,h2G(sigma,sigma.cov))

Vp = 94.9083 SE = 10.58581
h2G = 0.4631322 SE = 0.1410644

> library(MCMCglmm)

> m <-MCMCglmm(y~-1+g1+g2,random=animal~1,pedigree=meyer[,1:3],data=meyer,verbose=FALSE)

> summary(m)
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Iterations = 3001:12991
Thinning interval = 10
Sample size = 1000

DIC: 2001.223

G-structure: ~animal

post.mean l-95% CI u-95% CI eff.samp
animal 45.01 18.98 71.17 327.9

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 51.51 35.3 68.58 378.2

Location effects: y ~ -1 + g1 + g2

post.mean l-95% CI u-95% CI eff.samp pMCMC
g1 220.4 217.3 224.0 1000 <0.001 ***
g2 236.8 232.9 240.4 1000 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(m)

> prior <- list(R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002)))

> m2 <- MCMCgrm(y~-1+g1+g2,prior,meyer0,A,singular.ok=TRUE,verbose=FALSE)

> summary(m2)

Iterations = 3001:12991
Thinning interval = 10
Sample size = 1000

DIC: 2000.553

G-structure: ~id

post.mean l-95% CI u-95% CI eff.samp
id 44.74 20.11 67.37 286.9

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 51.32 33.64 67.75 412

Location effects: y ~ -1 + g1 + g2
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post.mean l-95% CI u-95% CI eff.samp pMCMC
g1 220.3 217.0 223.7 1000 <0.001 ***
g2 236.7 233.0 240.5 1000 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(m2)

The MCMC procedures use pedigree structures or genetic relationships, respectively. It is good
to have narrawer confidence intervals for the variance components from these.

5.3 Using OpenBUGS and JAGS

It is handy to use MCMCgrm as described above, but there are two aspects which we would like
to explore. I found it still very slow with moderate sample size. Instead of ploughing into the
implementation could we use the simpler and familiar syntax in OpenBUGS and JAGS? and if
that is the case we can resort to faster setup such as Stan (http://mc-stan.org/).

We start with OpenBUGS and for illustrative purpose with the toy data in section 5.1 but
impute the missing data for variable qt. Unfortunately, there is mixed success of OpenBUGS
across systems and here we but only show the R code as follows,

library(gap)
set.seed(1234567)
ped51 <-
within(l51, {qt[is.na(qt)] <- rnorm(length(qt[is.na(qt)]),

mean(qt,na.rm=TRUE),sd(qt,na.rm=TRUE));})
l51 <- rbind(subset(ped51,fid==0),subset(ped51,fid!=0))
data=with(l51,list(n=51,f=15,f1=16,m=2,Y=qt,X=sex,FID=fid,MID=mid,

sd.u.add=0.9,sd.u.err=0.9))
inits=function()list(beta=c(0,0))
library(R2OpenBUGS)
bugs.data(data,data.file="data.txt")
bugs.inits(inits,n.chains=3,digits=3)
bugsfit <- bugs(data,

inits,
parameters.to.save=c("beta","sigma2.add","sigma2.err","h2"),
model.file="model.txt",
n.chains=3,
n.burnin=1000,
n.iter=10000,
codaPkg=TRUE)

library(coda)
pdf("figures/bugs.pdf")
bugsfit.coda <- read.bugs(bugsfit)
summary(bugsfit.coda)
plot(bugsfit.coda)
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dev.off()

where model.txt is taken directly from Waldmann (2009), which requires founders precede the
nonfounders and that is the reason we have the statement containing two subset commands.

model
{
# Loop over all individuals for inference of error precision
for(i in 1 : n) {
Y[i] ~ dnorm(mu[i], tau.err)

}
# Loop over founders for inference of additive values and precision
for (i in 1 : f){
mu[i] <- mean(beta[]) + add[i]
add[i] ~ dnorm(0, tau.add)

}
# Loop over descendants for inference of additive values and precision
for (i in f1 : n){
mu[i] <- beta[X[i]] + add[i]
par.add[i] <- (add[FID[i]] + add[MID[i]])/2.0
add[i] ~ dnorm(par.add[i], prec.add)

}
# Specification of prior distributions
for (i in 1: m){
beta[i] ~ dnorm(0.0, 1.0E-6)

}
tau.add <- 1 / sigma2.add
sigma.add ~ dunif(0, sd.u.add)
sigma2.add <- sigma.add * sigma.add
tau.err <- 1 / sigma2.err
sigma.err ~ dunif(0, sd.u.err)
sigma2.err <- sigma.err * sigma.err
prec.add <- 2 * tau.add
# Specification of functions of model parameters of inferential interest
h2 <- sigma2.add / (sigma2.add + sigma2.err)

}

To streamline the results, we resort to package coda. In the coding we also output data and
initial values which allow for use in OpenBUGS itself.

As before, we would still be keen to use GRM rather than a pedigree structure. We alter
the coding above slightly and use JAGS instead, As before, we take advantage of the facility in
package regress for the familiar REML estimation.

> library(gap)

> set.seed(1234567)

> km <- kin.morgan(l51)

> k2 <- km$kin.matrix*2
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> l51 <-

+ within(l51, {qt[is.na(qt)] <- rnorm(length(qt[is.na(qt)]),

+ mean(qt,na.rm=TRUE),sd(qt,na.rm=TRUE))})

> N <- dim(l51)[1]

> data=with(l51,list(N=N,qt=qt,sex=sex,GI=solve(k2),u=rep(0,N)))

> library(regress)

> r <- regress(qt ~ sex, ~k2, data=data)

> r

Likelihood kernel: K = (Intercept)+sex

Maximized log likelihood with kernel K is -14.253

Linear Coefficients:
Estimate Std. Error

(Intercept) 0.793 0.367
sex -0.300 0.230

Variance Coefficients:
Estimate Std. Error

k2 0.290 0.236
In 0.435 0.177

> with(r,{

+ print(sqrt(sigma+1.96*sqrt(diag(sigma.cov))))

+ h2G(sigma,sigma.cov)

+ })

k2 In
0.867537 0.884864
Vp = 0.7254864 SE = 0.1643443
h2G = 0.4001416 SE = 0.2739208

> inits=function()list(b1=0,b2=0,sigma.p=0.001,sigma.r=0.001)

> modelfile=function() {

+ b1 ~ dnorm(0, 0.001)

+ b2 ~ dnorm(0, 0.001)

+ sigma.p ~ dunif(0,0.9)

+ sigma.r ~ dunif(0,0.9)

+ p <- pow(sigma.p, 2)

+ r <- pow(sigma.r, 2)

+ h2 <- p / (p + r)

+ tau <- pow(sigma.r, -2)

+ xi ~ dnorm(0,tau.xi)

+ tau.xi <- pow(0.9,-2)

+ g[1:N] ~ dmnorm(u[],GI[,]/p)

+ for(i in 1:N) {qt[i] ~ dnorm(b1 + b2 * sex[i] + xi*g[i],tau)}
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+ }

> library(R2jags)

> jagsfit <- jags(data,

+ inits,

+ parameters.to.save=c("b1","b2","p","r","h2"),

+ model.file=modelfile,

+ n.chains=3,

+ n.burnin=1000,

+ n.iter=10000)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 2930

Initializing model

> save(jagsfit,file="jags.fit")

> print(jagsfit)

Inference for Bugs model at "/tmp/RtmpiIJiSc/model76e225cca161.txt", fit using jags,
3 chains, each with 10000 iterations (first 1000 discarded), n.thin = 9
n.sims = 3000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
b1 0.759 0.361 0.072 0.512 0.756 0.995 1.472 1.001 3000
b2 -0.288 0.230 -0.737 -0.441 -0.289 -0.135 0.162 1.001 3000
h2 0.370 0.201 0.009 0.214 0.377 0.522 0.746 1.122 75
p 0.332 0.221 0.006 0.148 0.303 0.500 0.767 1.098 88
r 0.513 0.159 0.191 0.400 0.523 0.631 0.786 1.003 710
deviance 107.955 18.462 61.603 100.159 111.690 121.147 129.330 1.006 390

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 169.7 and DIC = 277.6
DIC is an estimate of expected predictive error (lower deviance is better).

> pdf("figures/jags.pdf")

> plot(jagsfit)

> library(lattice)

> jagsfit.mcmc <- as.mcmc(jagsfit)

> traceplot(jagsfit.mcmc)

> xyplot(jagsfit.mcmc)

> densityplot(jagsfit.mcmc)

> dev.off()
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We see that the results are largely comparable though it appears that the BUGS version
deviates somewhat more from MCMCgrm. We are hopeful though to get the idea through to Stan
but we omit that for now.

5.4 Uncertainty in heritability estimation

By now we have probably seen enough of MCMC for the toy data, but there is still one more
point to give.

The results shown in this section follow closely to Furloette et al. (2014), which is quite similar
to the implementation above but uses multivariate t distribution instead. Again we use the toy
data from 5.1, and the R and JAGS code are as follows, We can see that it is straightforward to
take the kinship and identity matrices into JAGS, leading to a greatly simplified program.

> library(gap)

> set.seed(1234567)
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> ped51 <-

+ within(l51, {

+ qt[is.na(qt)] <- rnorm(length(qt[is.na(qt)]),mean(qt,na.rm=TRUE),sd(qt,na.rm=TRUE))

+ })

> km <- kin.morgan(l51)

> k2 <- km$kin.matrix*2

> N <- dim(l51)[1]

> data=with(ped51,list(N=N,qt=qt,sex=sex,G=k2,I=diag(N),alpha=1,gamma=1))

> inits=function()list(b1=0,b2=0,h2=0.4)

> modelfile=function() {

+ h2 ~ dunif(0,1)

+ Omega <- inverse((h2*G[,] + (1-h2)*I[,])*gamma/alpha)

+ qt[1:N] ~ dmt(mu[],Omega[,],2*alpha)

+ mu[1:N] <- b1 + b2 * sex[]

+ b1 ~ dnorm(0, 0.001)

+ b2 ~ dnorm(0, 0.001)

+ }

> library(R2jags)

> jagsfit <- jags(data,inits,parameters.to.save=c("b1","b2","h2"),

+ model.file=modelfile, n.chains=3, n.burnin=1000, n.iter=10000)

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 5277

Initializing model

> save(jagsfit,file="h2.fit")

> print(jagsfit)

Inference for Bugs model at "/tmp/RtmpiIJiSc/model76e22ef3d7c1.txt", fit using jags,
3 chains, each with 10000 iterations (first 1000 discarded), n.thin = 9
n.sims = 3000 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
b1 0.779 0.380 0.035 0.524 0.778 1.033 1.488 1.001 3000
b2 -0.293 0.239 -0.760 -0.460 -0.300 -0.134 0.191 1.001 3000
h2 0.431 0.211 0.055 0.271 0.422 0.587 0.844 1.001 3000
deviance 128.734 2.280 126.132 127.077 128.135 129.734 134.846 1.002 1200

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 2.6 and DIC = 131.3
DIC is an estimate of expected predictive error (lower deviance is better).
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> pdf("figures/h2.pdf")

> plot(jagsfit)

> library(lattice)

> jagsfit.mcmc <- as.mcmc(jagsfit)

> traceplot(jagsfit.mcmc)

> xyplot(jagsfit.mcmc)

> densityplot(jagsfit.mcmc)

> dev.off()

pdf
2

with sigma and alpha both setting to be one, the h2 takes the position of variance compoenent
for polygeneic effects. We now have
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i.e., the distribution with respect to a single variable h2. This serves as a good correspondence
to what we have seen in section 3. A major difference betwee results from pedigree structure and
kinship matrix is with respect to the distribution of h2, due to the similarity in the two JAGS

21



implementations their greater agreement is perhaps not surprising.
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