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1 Introduction

Data on child mortalities for 167 census districts have been collected for a nine year
period. Some census districts had very few cases, others larger numbers of cases. The
underlying population at risk is taken as the 1981 census totals of children under 5.
These data are only recorded for a single year, so need to be altered by a factor of
nine to make them comparable to the mortality data. The data set is used by Marshall
(1991), and presented in detail by Bailey and Gatrell (1995). It is their analysis we will
be following here.

> library(maptools)

Loading required package: foreign
Loading required package: sp

> library(spdep)

Loading required package: tripack
Loading required package: SparseM
[1] "SparseM library loaded"

> data(auckland)

2 Analysis of counts and proportions

If the counts data were collected from census aggregates all having the same popula-
tion of under-five children, the mortality rates (numbers per thousand per year) would
already be standardised for variations in the sizes of the populations at risk. Since they
are not — as we can see from the summary ofUnder.5.1981 in theauckland data
frame, we need to standardise.

> summary(auckland$Under.5.1981)

Min. 1st Qu. Median Mean 3rd Qu. Max.
6.0 184.5 306.0 354.5 435.0 1407.0

> summary(auckland$Deaths.1977.85)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 4.000 6.000 8.401 11.000 38.000

> res <- probmap(auckland$Deaths.1977.85, 9 * auckland$Under.5.1981)
> str(res)

`data.frame': 167 obs. of 4 variables:
$ raw : num 0.00353 0.00494 0.00154 0.00243 0.00206 ...
$ expCount: num 5.97 1.07 8.53 8.67 1.28 ...
$ relRisk : num 133.9 187.5 58.6 92.2 78.1 ...
$ pmap : num 0.850 0.907 0.147 0.499 0.634 ...
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The probmap() function provides four measures as columns of a data frame, when
given a vector of countsyi , and a vector of population at risk levelsni . The first that
we map (Figure 1), using “pretty” class intervals, is for crude (raw) ratesr i = yi/ni , per
thousand per year.

> brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)
> cols <- c("#F7F7F7", "#CCCCCC", "#969696", "#636363", "#252525")

> plot(auckpolys, col = cols[findInterval(res$raw * 1000, brks)],
+ forcefill = FALSE)
> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
+ bty = "n")
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Figure 1: Crude (raw) estimates of infant mortality per 1000 per year, 1977–1985,
Auckland

> brks <- c(-Inf, 47, 83, 118, 154, 190, Inf)
> cols <- c("#F7F7F7", "#CCCCCC", "#969696", "#636363", "#252525")

> plot(auckpolys, col = cols[findInterval(res$relRisk, brks)],
+ forcefill = FALSE)
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> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
+ bty = "n")

Next, we calculate the mean (expected) count as ˆµi = ni( ∑yi
∑ni

), (Bailey and Gatrell p.
300). These values are also returned by the function, but not mapped here. Dividing
the observed count in each census district by the expected count, and multiplying by
100, we get the standardised mortality rate, shown in Figure 2; here the class intervals
follow the book, Figure 8.1.
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Figure 2: Standardised mortality ratios for child deaths per year, 1977–1985, Auckland

> brks <- c(0, 0.05, 0.1, 0.2, 0.8, 0.9, 0.95, 1)
> cols <- c("#2166AC", "#67A9CF", "#D1E5F0", "#F7F7F7", "#FDDBC7",
+ "#EF8A62", "#B2182B")

> plot(auckpolys, col = cols[findInterval(res$pmap, brks)], forcefill = FALSE)
> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
+ bty = "n")

Finally, we show a probability map in Figure 3. This is derived by passing the observed
and expected counts as arguments to theppois() distribution function for the Poisson
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distribution, and has two tails — this differs from the derivation given by Bailey and
Gatrell on p. 302. The values can be read as indicating how probable it is that a value
as large as the observed count compared to the expected count could have arisen at
random. Values close to zero indicate unusually small observed counts in relation to
the expected counts, values close to unity indicate unusually large observed counts in
relation to the expected counts.
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Figure 3: Poisson probabilities for child deaths per year, 1977–1985, Auckland

3 Empirical Bayes estimates

Section 8.2.2, pp. 303–308, describes in detail the background for calculating Empiri-
cal Bayes estimates of rates. Briefly, in census districts with small populations at risk,
we place less weight on the local rate, and more on the global rate for all the districts
considered together.

> res <- EBest(auckland$Deaths.1977.85, 9 * auckland$Under.5.1981)
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Using the method of moments, the estimated values of the meanφ̂ = 7.2842e-07, and
variancêγ = 2.6334e-03 (returned as attributes of the data frame yielded byEBest() )
correspond to those on p. 306. The mapped values (Figure 4) are essentially the same
as Figure 8.3, but with the grey scale reversed, “shrinking” the rates of districts with
small populations at risk towards the overall mean.

> brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)
> cols <- c("#F7F7F7", "#CCCCCC", "#969696", "#636363", "#252525")

> plot(auckpolys, col = cols[findInterval(res$estmm * 1000, brks)],
+ forcefill = FALSE)
> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
+ bty = "n")
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Figure 4: Empirical Bayes global moment estimator of infant mortality per year, 1977–
1985, Auckland
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4 Local Empirical Bayes estimates

It is also possible, as Bailey and Gatrell indicate on p. 307, and in the exercises to
the chapter on pp. 328–330, to “shrink” the estimates of census district rates not to
the overall mean, but to neighbourhood means, where neighbourhoods are taken to be
defined by districts sharing a boundary with the district of interest. Here, these shared
boundaries have been listed in advance in the neighbours list objectauckland.nb .

> summary(auckland.nb)

Neighbour list object:
Number of regions: 167
Number of nonzero links: 772
Percentage nonzero weights: 2.768116
Average number of links: 4.622754
Link number distribution:

1 2 3 4 5 6 7 8 9 10
1 9 39 42 26 27 13 7 1 2

1 least connected region:
128 with 1 link
2 most connected regions:
231 246 with 10 links

> res <- EBlocal(spNamedVec("Deaths.1977.85", auckland), 9 * spNamedVec("Under.5.1981",
+ auckland), auckland.nb)

As we can see, some neighbourhoods contain few districts, others relatively many. The
idea is to “shrink” towards mean values that are appropriate for the part of the city that
the district lies in, rather than to the overall mean value. On the other hand, the results
will critically depend on our definition of neighbourhood.

> brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)
> cols <- c("#F7F7F7", "#CCCCCC", "#969696", "#636363", "#252525")

> plot(auckpolys, col = cols[findInterval(res$est * 1000, brks)],
+ forcefill = FALSE)
> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
+ bty = "n")

Figure 5 shows the results of the use of this function for the given definition of neigh-
bours. You may like to compare the two Empirical Bayes estimates of the rates with the
crude rates shown in Figure 1. Do you still feel as confident as you did in the beginning
about which census districts are reporting high rates?
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Figure 5: Empirical Bayes local moment estimator of infant mortality per year, 1977–
1985, Auckland
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