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Overview of simulated annealing

The primary algorithm used in GMSE to model manager and user decision-making is the genetic algorithm.
As of version 1.0, GMSE also allows for the use of a simulated annealing algorithm (Kirkpatrick et al.,
1983; Černý, 1985; Rutenbar, 1989). Simulated annealing searches a space of potential solutions (in GMSE,
decisions made by agents to maximise their own utility) in an iterative way. Unlike the genetic algorithm, it
is not a population focused approach. The simulated annealing algorithm of GMSE instead iterates from
an initial k = 0 to a maximum kmax. For each iteration, a single solution exists (agent decision; i.e. either
a set of user actions or manager policy choices, depending on the agent), then a new potential solution is
considered. Under some conditions, the new solution is adopted and the old discarded.

More specifically, the simulated annealing algorithm of GMSE first initialises a fixed set of potential agent
decisions (size ga_popsize, 100 by default). These potential decisions are randomly initialised within the
search space of possible decisions using the same function as in the genetic algorithm. The fitness of each
decision is then checked, and the highest fitness decision initialised is selected to be the initial random agent
decision at k = 0 (this initial seeding of a population of ga_popsize has been found to greatly improve
performance).

In each iteration from k = 0 to kmax, the agent decision is first checked to ensure that it is not over the
agent’s budget using the same cost constraint procedure as in the genetic algorithm. If over budget, then an
actions are randomly removed until the decision is again within budget. Next, the fitness of the current agent
decision is assessed (again using the same fitness function as in the genetic algorithm).

After checking the fitness of the current agent decision, the mutation function of the genetic algorithm is
used to explore a new potential agent decision. The potential agent decision is checked and constrained to be
within budget if necessary, then the fitness of the potential agent decision is compared with the fitness of the
current agent decision. If the fitness of the potential agent decision is higher, then it replaces the current
agent decision. If the fitness of the current agent decision is higher, then the potential agent decision replaces
it with a probability of,

Pr(replace) = exp

(
− (Wcurrent −Wpotential)

1− (1+k)
kmax

)
.

In the above, Wcurrent is the fitness of the current strategy, and Wpotential is the fitness of the potential
strategy. Note that as k → kmax, the probability of the potential strategy replacing the current strategy
decreases when the latter has higher fitness.

Overall, the simulated annealing approach has the potential to be faster than the genetic algorithm approach
because it does not require a full population of evolving agent decisions. Below, we show how to use the
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simulated annealing algorithm in place of the genetic algorithm for users and managers, then we compare the
performance of the two approaches.

Example use of simulated annealing

Here we use the same example of resource management as was used in the main introduction to the GMSE
package. This example considers a population of waterfowl that feed off of farmland, causing conservation
conflict with farmers (e.g., Fox and Madsen, 2017; Mason et al., 2017; Tulloch et al., 2017), while managers
attempt to maintain waterfowl density at a target level. To replicate the example from the main introduction
using simulated annealing, we can set arguments in the gmse function (or gmse_apply) for user_annealing
and mana_annealing (TRUE or FALSE whether simulated annealing is used in place of the genetic algorithm
for users and managers, respectively). An additional parameter kmax_annealing sets the value for kmax.
Additional relevant parameters (e.g., mutation rate) are set using the same arguments as used in the genetic
algorithm; below we set mu_magnitude = 1000 to be aggressive in exploring new areas of parameter space
(note the default mu_magnitude = 10). The code below runs the example using simulated annealing for agent
decision-making.
sim <- gmse(land_ownership = TRUE, stakeholders = 5, observe_type = 0,

res_death_K = 2000, manage_target = 1000, RESOURCE_ini = 1000,
user_budget = 1000, manager_budget = 1000, res_consume = 1,
scaring = TRUE, plotting = FALSE, user_annealing = TRUE,
mana_annealing = TRUE, kmax_annealing = 100, mu_magnitude = 1000);

## [1] "Initialising simulations ... "
## [1] "Generation 23 of 40"

All other gmse parameters are set to default values. Figure 1 shows the output, which can be compared with
the same output from using the genetic algorithm.

Note that the output is the same as is produced the the genetic algorithm, and any combination of simulated
annealing and the genetic algorithm can be used between managers and users with the user_annealing
and mana_annealing arguments (but all users must use the same algorithm for decision-making). Overall,
simulated annealing can give faster simulation results, and often performs better than the genetic algorithm,
except when decision-making is complex for managers. Details of the performance are described in the next
section.

Performance of simulated annealing

Here we show the results of some simulations to compare the performance of the GMSE genetic algorithm
and simulated annealing algorithm. The purpose here is to provide some guidance as to when the simulated
annealing algorithm might be preferred. The best choice will likely be a trade-off between simulation time and
the decision-making ability of GMSE agents. And because agents are, by design, not intended to be perfectly
rational, what constitutes desirable ‘decision-making ability’ might also vary with simulation objectives. In
other words, there might be situations in which it is desirable for agents to make decisions that are very
closely aligned with their goals, and other situations in which it might desirable to have agents make fast but
sub-optimal decisions.

Performance in terms of real computation time

First, we show the results of test runs from a highly simplified example in which a single user is modelled
(i.e., a lone farmer). In these test runs, the resource, observation, and manager model are simplified to run as
quickly possible using the alternative functions introduced for demonstrating the gmse_apply function.
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Figure 1: Example GMSE simulation in which a natural resource is managed on the land of five farmers. The
upper left panel shows locations of the resource (black dots) on the landscape. The upper right panel shows
each farmers land (different colours). The middle left panel shows the abundance of the resource (black line)
and its estimate from the perspective of the manager (blue line with 95 per cent confidence itnervals). The
middle right planel shows farmer agricultural yield by colour. The lower left panel shows manager policy
(costs of farmer actions) over time, and the lower right panel shows farmer actions chosen over time.
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# Alternative resource sub-model
alt_res <- function(X, K = 2000, rate = 1){

X_1 <- X + rate*X*(1 - X/K);
return(X_1);

}
# Alternative observation sub-model
alt_obs <- function(resource_vector){

X_obs <- resource_vector - 0.1 * resource_vector;
return(X_obs);

}

# Alternative manager sub-model
alt_man <- function(observation_vector){

policy <- observation_vector - 1000;
if(policy < 0){

policy <- 0;
}
return(policy);

}

The default user sub-model is then used with a single stakeholder.
sim_old <- gmse_apply(res_mod = alt_res, obs_mod = alt_obs, man_mod =

alt_man, get_res = "Full", stakeholders = 1,
X = 10000, ga_seedrep = 0, ga_mingen = ga_min,
user_annealing = FALSE, mana_annealing = FALSE,
kmax_annealing = kmx, user_budget = 10000);

The gmse_apply function is then looped for 40 time steps across different values of ga_min (number of
generations for the genetic algorithm) and kmx (number of iterations for simulated annealing). Higher ga_min
and kmx result in longer computation times, but also potentially better user decision-making (code is available
in the appendix below). For simulated annealing, we set mu_magnitude = 1000, but left it at the default
mu_magnitude = 10 for the genetic algorithm. The decision-making scenario is highly simplified; resources
are initialised to be super-abundant and managed to maintain this abundance (i.e., there are a lot of resources
and managers consistently try to keep it that way). The best decision for the user is therefore clear. The
user should simply apply their budget to culling as much as possible. Hence, the number of resources that
the user culls can be used as a metric of decision-making performance. We can therefore investigate the
trade-off between computation time and performance in for the genetic algorithm and simulated annealing.
The results show simulations from a PC running Xubuntu 18.04 LTS with a Intel(R) Xeon(R) W-2295 CPU
(3.00 GHz) processor, 18 dual threaded cores, and 32 GB RAM.

Results from Figure 2 show that given sufficient time, agents will decide to use all of their actions to cull the
highest possible number of resources (1000). But the simulated annealing algorithm finds this solution in less
time than the genetic algorithm, suggesting that it can be an effective tool when simulation time is limited
(especially if many users need to be modelled within simulations).

The situation of only culling is highly simplified. Users clearly benefit from each additional cull, with no other
option to maximise their utility. Note that while this case of decision-making performance is straightforward,
performance cannot be as easily measured when multiple actions are available to the user; nor can it be
measured easily for the manager. As a proxy for quality of decision-making, we use the fitness measurement
produced by the fitness function in the genetic algorithm. That is, we assume that decisions assessed to have
higher fitness in GMSE will also be better decisions overall.
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Figure 2: Comparison of stakeholder culls (a metric of decision-making performance) across different
simulation times when running a genetic algorithm versus a simulated annealing algorithm in GMSE. Each
point represents a unique simulation of 40 time steps run at a specific number of genetic algorithm generations
(ga_min) or simulated annealing iterations (kmx).
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User fitness increase fitness function call

We can compare the two algorithms in a slightly different way by looking at their ‘fitness’ in terms of utility
within GMSE. This fitness is explained in detail in the overview of the genetic algorithm. Since fitness is
calculated the same way in both algorithms, we can compare how fitness increases in genetic algorithm
generations versus how it increases with iterations of the simulated annealing algorithm (keeping in mind
that generation and iteration times will vary in practice given other parameters specified in GMSE). For this,
we now use the gmse function parameterised as below.
sim <- gmse(land_ownership = TRUE, kmax_annealing = 2000, ga_popsize = 100,

user_annealing = FALSE, mana_annealing = FALSE, ga_seedrep = 0,
plotting = FALSE, scaring = FALSE, culling = TRUE,
castration = FALSE, feeding = FALSE, help_offspring = FALSE,
tend_crops = FALSE, kill_crops = FALSE, mu_magnitude = 10);

Note that land ownership has been turned on, but only culling is available (e.g., as modelling farmers
attempting to cull waterfowl before they damage their agricultural yield). For simulations with simulated
annealing, we instead set user_annealing = TRUE and mana_annealing = TRUE in the code above, and set
mu_magnitude = 1000. Instead of recording an agent’s decision after it has been made, we will now look at
how each generation (genetic algorithm) or iteration (simulated annealing) increases user or manager fitness
(see below) on average. Figure 3 shows how user fitness increases on average as the number of generations in
the genetic algorithm or iterations of the simulated annealing algorithm increases (note that there are 5 users
in these simulations, but Figure 3 only looks at the actions of a single user).
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Figure 3: Comparison of user fitness across different genetic algorithm generation numbers or simulated
annealing iteration numbers in GMSE when users only have culling available as an action. Shaded areas
around the means for the genetic algorithm (black) and simulated annealing (read) show 95% confidence
intervals over 100 replicate simulations with identical starting conditions.

From Figure 3, we can see that expected user fitness increases for each algorithm, but the simulated annealing
algorithm requires fewer calls to the fitness function than the genetic algorithm to maximise user fitness.
Further, the mean scaled user fitness asymptotes to a higher value for the simulated annealing algorithm
(unscaled fitness values are much larger, and since the units of these values are arbitrary, we scale them by
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subtracting the same constant).

This is still, however, a highly simplified case in which culling is the only action available to users. We can
compare this with the opposite extreme, in which all seven possible actions are available to users to maximise
their fitness. Figure 4 shows fitness increases for each algorithm under these more complex conditions.
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Figure 4: Comparison of user fitness across different genetic algorithm generation numbers or simulated
annealing iteration numbers in GMSE when users have all actions available to them. Shaded areas around
the means for the genetic algorithm (black) and simulated annealing (read) show 95% confidence intervals
over 100 replicate simulations with identical starting conditions.

Under the more complex conditions in which all actions are possible, the simulated annealing algorithm again
performs better by finding a higher fitness solution more quickly than the genetic algorithm. Hence, for
modelling the decision-making of user agents in GMSE, the simulated annealing algorithm might often be
preferred.

Manager fitness increase by iteration or generation

We can now look at the same scenarios of only culling versus all actions from the perspective of the manager.
Figure 5 shows the fitness increase for each algorithm when the manager is attempting to maintain natural
resources at a target level and culling is the only policy option that they have to use.

Figure 5 shows that both algorithms appear to be equally capable of finding a solution that maximises
manager fitness. But the simulated annealing algorithm finds the solution with fewer calls to the fitness
function. The genetic algorithm requires about 15 generations to find the solution (the fitness function is
called 100 times in each generation), while the simulated annealing algorithm finds the solution around
kmax = 100. For simple management decision-making, the simulated annealing algorithm therefore appears
to perform at least as well as the genetic algorithm and requires less computation.

The performance of the simulated annealing algorithm versus the genetic algorithm differs, however, when
managers have all policy options at their disposal (Figure 6). Under these conditions, the genetic algorithm
consistently finds decisions that have higher fitness than the simulated annealing algorithm.
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Figure 5: Comparison of manager fitness across different genetic algorithm generation numbers or simulated
annealing iteration numbers in GMSE when managers only have culling available as a policy option. Shaded
areas around the means for the genetic algorithm (black) and simulated annealing (read) show 95% confidence
intervals over 100 replicate simulations with identical starting conditions.

0 1000 2000 3000 4000

60
00

00
70

00
00

80
00

00
90

00
00

Calls to fitness function

S
ca

le
d 

m
an

ag
er

 fi
tn

es
s

Genetic Algorithm
Simulated AnnealingAll actions

Figure 6: Comparison of manager fitness across different genetic algorithm generation numbers or simulated
annealing iteration numbers in GMSE when managers have all policy options available to them. Shaded areas
around the means for the genetic algorithm (black) and simulated annealing (read) show 95% confidence
intervals over 100 replicate simulations with identical starting conditions.
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Given the highly complex situation in which managers must choose from a range of policy options, the genetic
algorithm appears to perform more strongly in terms of maximising the utility of the manager.

Conclusion

Simulated annealing can be useful for modelling simple user decision-making. For user agents, the simulated
annealing algorithm is likely to be preferable to the genetic algorithm, at least for the current version of
GMSE. For manager agents, the simulated annealing algorithm should be used more cautiously, and only
when the number of potential policy options that the manager needs to consider is low. Future versions of
GMSE might include more complex decision-making for both user and manager agents, potentially limiting
the usefulness of simulated annealing. For GMSE v1.0, however, simulated annealing can be highly effective
for reducing simulation time and even improving agent decision-making performance.

Appendix code

The code below runs a comparison of the simulated annealing algorithm and genetic algorithm used in Figure
2.
count <- 1;
AN_summary <- NULL;
GA_summary <- NULL;
while(count < 200){

time_steps <- 40;
ga_min <- 1 * count;
kmx <- 1 * count;
##############################################################################
# Genetic algorithm
##############################################################################
st_time <- Sys.time();
gal_count <- 0;
ann_count <- 0;
sim_old <- gmse_apply(res_mod = alt_res, obs_mod = alt_obs, man_mod =

alt_man, get_res = "Full", stakeholders = 1,
X = 10000, ga_seedrep = 0, ga_mingen = ga_min,
user_annealing = FALSE, mana_annealing = FALSE,
kmax_annealing = kmx, user_budget = 10000);

gal_count <- gal_count + sim_old$PARAS[[141]];
ann_count <- ann_count + sim_old$PARAS[[142]];
sim_sum_1 <- matrix(data = NA, nrow = time_steps, ncol = 9);
for(time_step in 1:time_steps){

sim_new <- gmse_apply(get_res = "Full",
old_list = sim_old,
res_mod = alt_res,
obs_mod = alt_obs,
man_mod = alt_man);

sim_sum_1[time_step, 1] <- time_step;
sim_sum_1[time_step, 2] <- sim_new$basic_output$resource_results[1];
sim_sum_1[time_step, 3] <- sim_new$basic_output$observation_results[1];
sim_sum_1[time_step, 4] <- sim_new$basic_output$manager_results[3];
sim_sum_1[time_step, 5] <- sum(sim_new$basic_output$user_results[,3]);
sim_sum_1[time_step, 6] <- sim_old$PARAS[[141]];
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sim_sum_1[time_step, 7] <- sim_old$PARAS[[142]];
sim_sum_1[time_step, 8] <- sim_new$COST[1,9,2];
sim_sum_1[time_step, 9] <- sim_new$user_budget;
gal_count <- gal_count + sim_old$PARAS[[141]];
ann_count <- ann_count + sim_old$PARAS[[142]];

}
colnames(sim_sum_1) <- c("Time", "Pop_size", "Pop_est", "Cull_cost",

"Cull_count", "GA_count", "AN_count", "Cull_cost",
"User_budget");

end_time <- Sys.time();
tot_time <- end_time - st_time;
gal_fcal <- sum(sim_sum_1[,6]);
GA_stats <- c(time_steps, tot_time, gal_fcal, mean(sim_sum_1[31:40,5]));
##############################################################################

##############################################################################
# Simulated Annealing
##############################################################################
st_time <- Sys.time();
gal_count <- 0;
ann_count <- 0;
sim_old <- gmse_apply(res_mod = alt_res, obs_mod = alt_obs,

man_mod = alt_man, get_res = "Full", stakeholders = 1,
X = 10000, ga_seedrep = 0, ga_mingen = ga_min,
mu_magnitude = 1000, user_annealing = TRUE,
mana_annealing = FALSE, kmax_annealing = kmx,
user_budget = 10000);

gal_count <- gal_count + sim_old$PARAS[[141]];
ann_count <- ann_count + sim_old$PARAS[[142]];
sim_sum_2 <- matrix(data = NA, nrow = time_steps, ncol = 9);
for(time_step in 1:time_steps){

sim_new <- gmse_apply(get_res = "Full",
old_list = sim_old,
res_mod = alt_res,
obs_mod = alt_obs,
man_mod = alt_man);

sim_sum_2[time_step, 1] <- time_step;
sim_sum_2[time_step, 2] <- sim_new$basic_output$resource_results[1];
sim_sum_2[time_step, 3] <- sim_new$basic_output$observation_results[1];
sim_sum_2[time_step, 4] <- sim_new$basic_output$manager_results[3];
sim_sum_2[time_step, 5] <- sum(sim_new$basic_output$user_results[,3]);
sim_sum_2[time_step, 6] <- sim_old$PARAS[[141]];
sim_sum_2[time_step, 7] <- sim_old$PARAS[[142]];
sim_sum_2[time_step, 8] <- sim_new$COST[1,9,2];
sim_sum_2[time_step, 9] <- sim_new$user_budget;
gal_count <- gal_count + sim_old$PARAS[[141]];
ann_count <- ann_count + sim_old$PARAS[[142]];

}
colnames(sim_sum_2) <- c("Time", "Pop_size", "Pop_est", "Cull_cost",

"Cull_count", "GA_count", "AN_count", "Cull_cost",
"User_budget");

end_time <- Sys.time();
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tot_time <- end_time - st_time;
ann_fcal <- sum(sim_sum_2[,7]);
AN_stats <- c(time_steps, tot_time, ann_fcal, mean(sim_sum_2[31:40,5]));
##############################################################################
AN_summary <- rbind(AN_summary, AN_stats);
GA_summary <- rbind(GA_summary, GA_stats);
count <- count + 1;
print(count);

}
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