
HMSC-R 3.0: Getting started with Hmsc-R: spatial models

Gleb Tikhonov Øystein H. Opedal Nerea Abrego Aleksi Lehikoinen
Melinda M. J. de Jonge Jari Oksanen Otso Ovaskainen

10 August 2022

Introduction

The Hierarchical Modelling of Species Communities (HMSC) framework is a statistical framework for analysis
of multivariate data, typically from species communities. We assume that the reader has already gone through
the vignette “Hmsc-R 3.0: Getting started with Hmsc-R: univariate models” and “Hmsc-R 3.0: Getting
started with Hmsc-R: low-dimensional multivariate models”. In the first vignette we shortly discussed how to
fit spatially explicit models to the univariate case. Here, we continue to demonstrate how to use HMSC to
make spatially explicit models for the multivariate case and for large datasets.

To get Hmsc-R in use, you need to load it and other needed packages.

library(Hmsc)
library(MASS)
set.seed(6)

We also set the random number seed to make the results presented here reproducible.

Generating simulated data

To illustrate how to use spatial models in Hmsc, we generate data for 5 species (ns) on 100 sampling units
(n). We include only one environmental predictor (x1) and give the true intercept (alpha) and slope (beta1)
parameters to construct the matrix of the linear predictors. So far, this is similar to what we did in the
low-dimensional multivariate case, but note that we now call this linear predictor Lf instead of L. This
indicates that this is the fixed effects part of the linear predictor, i.e. the effect that can be explained by the
environmental covariates. In addition to the effect from the environmental covariates, we now add spatially
structured residuals which follow the same spatial structure for all species, indicated by Lr. To generate
these spatial residuals, we first simulate some random x and y coordinates for all sampling units (xycoords).
We then generate a spatially structured latent predictor (eta1) using an exponentially decreasing spatial
covariance function where we have set the spatial scale parameter (alpha) to 0.35. Next, we set the true slope
parameters (lambda1) for the species responses to the latent predictor and compute the spatial residuals for
each species in Lr.

n = 100
ns = 5
beta1 = c(-2,-1,0,1,2)
alpha = rep(0,ns)
beta = cbind(alpha,beta1)
x = cbind(rep(1,n),rnorm(n))

1

Lf = x%*%t(beta)

xycoords = matrix(runif(2*n),ncol=2)
colnames(xycoords) = c("x-coordinate","y-coordinate")
rownames(xycoords) = 1:n

sigma.spatial = c(2)
alpha.spatial = c(0.35)
Sigma = sigma.spatial^2*exp(-as.matrix(dist(xycoords))/alpha.spatial)
eta1 = mvrnorm(mu=rep(0,n), Sigma=Sigma)
lambda1 = c(1,2,-2,-1,0)
Lr = eta1%*%t(lambda1)
L = Lf + Lr
y = as.matrix(L + matrix(rnorm(n*ns),ncol=ns))
yprob = 1*((L +matrix(rnorm(n*ns),ncol=ns))>0)
XData = data.frame(x1=x[,2])

We can now visualize the species response matrix y as function of the x and y coordinates (Fig. 1). This
shows that indeed nearby sampling units have similar responses for species that have a non-zero loading
(lambda) to the spatially structured latent variable.

rbPal = colorRampPalette(c('cyan','red'))
par(mfrow=c(2,3))
Col = rbPal(10)[as.numeric(cut(x[,2],breaks = 10))]
plot(xycoords[,2],xycoords[,1],pch = 20,col = Col,main=paste('x'), asp=1)
for(s in 1:ns){

Col = rbPal(10)[as.numeric(cut(y[,s],breaks = 10))]
plot(xycoords[,2],xycoords[,1],pch = 20,col = Col,main=paste('Species',s), asp=1)

}

A spatially explicit model in Hmsc

To fit a spatially explicit model with Hmsc, we construct the random effect using the sData input argument
where we give the coordinates of the sampling units.

studyDesign = data.frame(sample = as.factor(1:n))
rL.spatial = HmscRandomLevel(sData = xycoords)
rL.spatial = setPriors(rL.spatial,nfMin=1,nfMax=1) #We limit the model to one latent variables for visualization purposes
m.spatial = Hmsc(Y=yprob, XData=XData, XFormula=~x1,
studyDesign=studyDesign, ranLevels=list("sample"=rL.spatial),distr="probit")

Model fitting and evaluation of explanatory and predictive power can be done as before. We first set the
MCMC sampling parameters.

nChains = 2
test.run = FALSE
if (test.run){

with this option, the vignette runs fast but results are not reliable
thin = 1
samples = 10

2

0.0 0.4 0.8
0.

0
0.

4
0.

8

x

xycoords[, 2]

xy
co

or
ds

[,
1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

Species 1

xycoords[, 2]

xy
co

or
ds

[,
1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

Species 2

xycoords[, 2]

xy
co

or
ds

[,
1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

Species 3

xycoords[, 2]

xy
co

or
ds

[,
1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

Species 4

xycoords[, 2]

xy
co

or
ds

[,
1]

0.0 0.4 0.8

0.
0

0.
4

0.
8

Species 5

xycoords[, 2]

xy
co

or
ds

[,
1]

Figure 1: Plots of simulated spatially structured data.

transient = 5
verbose = 0

} else {
with this option, the vignette evaluates slow but it reproduces the results of
the .pdf version
thin = 10
samples = 1000
transient = 1000
verbose = 0

}

m.spatial = sampleMcmc(m.spatial, thin = thin, samples = samples, transient = transient,
nChains = nChains, nParallel = nChains, verbose = verbose,

updater=list(GammaEta=FALSE))

The explanatory and predictive power of the model can now be calculated in the same way as before.

#Explanatory power
preds.spatial = computePredictedValues(m.spatial)
MF.spatial = evaluateModelFit(hM=m.spatial, predY=preds.spatial)
MF.spatial

$RMSE
[1] 0.3091492 0.1754021 0.2169934 0.2733723 0.3012047
##
$AUC
[1] 0.9355159 0.9964564 0.9863548 0.9562500 0.9504831

3

##
$TjurR2
[1] 0.4633737 0.6563903 0.5702667 0.4507603 0.6204287

#Predictive power
partition = createPartition(m.spatial, nfolds = 2, column = "sample")
cvpreds.spatial = computePredictedValues(m.spatial, partition=partition,

nParallel = nChains, updater=list(GammaEta=FALSE))

Cross-validation, fold 1 out of 2
Cross-validation, fold 2 out of 2

cvMF.spatial = evaluateModelFit(hM=m.spatial, predY=cvpreds.spatial)
cvMF.spatial

$RMSE
[1] 0.3713470 0.3274451 0.3972121 0.3847737 0.3049903
##
$AUC
[1] 0.8477183 0.8540043 0.6484730 0.7487500 0.9480676
##
$TjurR2
[1] 0.3056688 0.2307223 0.1036863 0.1378335 0.5898362

As the model includes a spatially structured random effect, its predictive power is based on both the fixed
and the random effects. Concerning the latter, the model can utilize observed data from nearby sampling
units included in model fitting when predicting the response for a focal sampling unit that is not included in
model fitting.

The estimated spatial scale of the random effect is given by the parameter Alpha[[1]]. Let’s have a look at
the MCMC trace plot for this parameter (Fig. 3).

mpost.spatial = convertToCodaObject(m.spatial)
plot(mpost.spatial$Alpha[[1]])

summary(mpost.spatial$Alpha[[1]])

##
Iterations = 1010:11000
Thinning interval = 10
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
0.315962 0.141999 0.003175 0.009288
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
0.1538 0.2237 0.2797 0.3636 0.6712

4

2000 6000 10000

0.
2

0.
6

1.
0

1.
4

Iterations

Trace of Alpha1[factor1]

0.0 0.4 0.8 1.2

0
1

2
3

4

Density of Alpha1[factor1]

N = 1000 Bandwidth = 0.02419

Figure 2: Posterior trace plot of the spatial scale parameter of the spatial model.

For comparison, let us fit a non-spatial model to the same data.

m = Hmsc(Y=yprob, XData=XData, XFormula=~x1, studyDesign = studyDesign, distr="probit")
m = sampleMcmc(m, thin = thin, samples = samples, transient = transient,

nChains = nChains, nParallel = nChains, verbose = verbose)

setting updater$GammaEta=FALSE due to absence of random effects included to the model

preds = computePredictedValues(m)
MF = evaluateModelFit(hM=m, predY=preds)
MF

$RMSE
[1] 0.3739998 0.3663219 0.3915200 0.3868995 0.3017580
##
$AUC
[1] 0.8462302 0.6661942 0.5549058 0.6693750 0.9504831
##
$TjurR2
[1] 0.302421330 0.050626190 0.003699863 0.065105405 0.615085221

partition = createPartition(m, nfolds = 2, column = "sample")
preds = computePredictedValues(m, partition=partition, nParallel = nChains)

Cross-validation, fold 1 out of 2

setting updater$GammaEta=FALSE due to absence of random effects included to the model

5

Cross-validation, fold 2 out of 2

setting updater$GammaEta=FALSE due to absence of random effects included to the model

MF = evaluateModelFit(hM=m, predY=preds)
MF

$RMSE
[1] 0.4192901 0.3914698 0.4074970 0.4251382 0.3033754
##
$AUC
[1] 0.7876984 0.5527994 0.3788174 0.5725000 0.9496779
##
$TjurR2
[1] 0.205837218 -0.005808632 -0.024262993 -0.017350160 0.586847605

We observe that both the explanatory and the predictive power is lower than for the model with a spatial
random effect for those species that had spatially structured respones.

Spatial models for big datasets

For large datasets, i.e. those with > 1000 sampling units, the standard spatial models as described above
may become computationally infeasible. For such datasets, we implemented two alternative approaches to
account for the spatial structure in the data: the ‘Nearest Neighbour Gaussian Process (NNGP)’ and the
‘Gaussian Predictive Process (GPP)’. The detailes of this method are described in Tikhonov et al. (2020).

NNGP models

If we want to fit a NNGP model we have to set sMethod to ‘NNGP’ when constructing the random level.
Additionally, we can specify how many neighbours we want to use by setting the nNeighbours argument.
When we do not explicitely set nNeighbours when constructing the random level, this parameters is set to
10 as a standard.

rL.nngp = HmscRandomLevel(sData = xycoords, sMethod = 'NNGP', nNeighbours = 10)
rL.nngp = setPriors(rL.nngp,nfMin=1,nfMax=1)

Running the model and checking the fit is done in the same way as earlier.

m.nngp = Hmsc(Y=yprob, XData=XData, XFormula=~x1,
studyDesign=studyDesign, ranLevels=list("sample"=rL.nngp),distr="probit")

m.nngp = sampleMcmc(m.nngp, thin = thin, samples = samples, transient = transient,
nChains = nChains, nParallel = nChains, verbose = verbose,

updater=list(GammaEta=FALSE))
preds.nngp = computePredictedValues(m.nngp, updater=list(GammaEta=FALSE))
MF.nngp = evaluateModelFit(hM=m.nngp, predY=preds.nngp)
MF.nngp

$RMSE
[1] 0.3075589 0.1695808 0.2384079 0.2749256 0.3012406

6

##
$AUC
[1] 0.9350198 0.9978738 0.9759584 0.9512500 0.9504831
##
$TjurR2
[1] 0.4722842 0.6747540 0.5242392 0.4519238 0.6182675

partition = createPartition(m.nngp, nfolds = 2, column = "sample")
cvpreds.nngp = computePredictedValues(m.nngp, partition=partition,

nParallel = nChains, updater=list(GammaEta=FALSE))

Cross-validation, fold 1 out of 2
Cross-validation, fold 2 out of 2

cvMF.nngp = evaluateModelFit(hM=m.nngp, predY=cvpreds.nngp)
cvMF.nngp

$RMSE
[1] 0.3580700 0.3384529 0.3460084 0.3675442 0.3032842
##
$AUC
[1] 0.8745040 0.7725018 0.8096166 0.7687500 0.9516908
##
$TjurR2
[1] 0.3245595 0.1742985 0.1699876 0.1729812 0.5901203

Let’s have a look at the MCMC trace plots for the spatial scale parameter Alpha[[1]].

mpost.nngp = convertToCodaObject(m.nngp)
plot(mpost.nngp$Alpha[[1]])

summary(mpost.nngp$Alpha[[1]])

##
Iterations = 1010:11000
Thinning interval = 10
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
0.600469 0.295459 0.006607 0.017048
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
0.1958 0.3636 0.5314 0.7831 1.2725

7

2000 6000 10000

0.
2

0.
6

1.
0

1.
4

Iterations

Trace of Alpha1[factor1]

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Density of Alpha1[factor1]

N = 1000 Bandwidth = 0.06849

Figure 3: Posterior trace plot of the spatial scale parameter of the nngp spatial model.

GPP models

The Gaussian Predictive Process (GPP) assumes that all information on the spatial structure of the data
can be summarized at a small number of so called ‘knot’ locations. The locations of these knots have to be
specified by the user. To help the user with this, we implemented a function to construct a uniform grid of
knots based on the locations of the dataset. This function either need the wanted number of knots along
the shortest spatial axis nKnots or the wanted distance between knots KnotDist. Additionally, the user can
specify the maximum distance of a knot to the nearest data point, this ensures that the created grid does
contain knots in locations with no datapoints.

Setting the knots
Knots = constructKnots(xycoords, knotDist = 0.2, minKnotDist = 0.4)

plot(xycoords[,1],xycoords[,2],pch=18, asp=1)
points(Knots[,1],Knots[,2],col='red',pch=18)

We can now construct the random level by by setting sMethod to ‘GPP’ and supplying the knot locations to
sKnot.

rL.gpp = HmscRandomLevel(sData = xycoords, sMethod = 'GPP', sKnot = Knots)
rL.gpp = setPriors(rL.gpp,nfMin=1,nfMax=1)
m.gpp = Hmsc(Y=yprob, XData=XData, XFormula=~x1,

studyDesign=studyDesign, ranLevels=list("sample"=rL.gpp),distr="probit")
m.gpp = sampleMcmc(m.gpp, thin = thin, samples = samples, transient = transient,

nChains = nChains, nParallel = nChains, verbose = verbose,
updater=list(GammaEta=FALSE))

preds.gpp = computePredictedValues(m.gpp, updater=list(GammaEta=FALSE))
MF.gpp = evaluateModelFit(hM=m.gpp, predY=preds.gpp)
MF.gpp

8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xycoords[, 1]

xy
co

or
ds

[,
2]

Figure 4: Locations of the created knots in red together with the locations of the plots in black.

9

$RMSE
[1] 0.3142618 0.1745938 0.2253715 0.2647191 0.3011961
##
$AUC
[1] 0.9290675 0.9971651 0.9785575 0.9600000 0.9504831
##
$TjurR2
[1] 0.4496146 0.6446291 0.5380593 0.4665333 0.6193788

cvpreds.gpp = computePredictedValues(m.gpp, partition=partition,
nParallel = nChains, updater=list(GammaEta=FALSE))

Cross-validation, fold 1 out of 2
Cross-validation, fold 2 out of 2

cvMF.gpp = evaluateModelFit(hM=m.gpp, predY=cvpreds.gpp)
cvMF.gpp

$RMSE
[1] 0.3665233 0.3522914 0.3629053 0.3745847 0.3033572
##
$AUC
[1] 0.8576389 0.7080085 0.7810266 0.7262500 0.9516908
##
$TjurR2
[1] 0.2967510 0.1162420 0.1064924 0.1257334 0.5879655

mpost.gpp = convertToCodaObject(m.gpp)
plot(mpost.gpp$Alpha[[1]])

summary(mpost.gpp$Alpha[[1]])

##
Iterations = 1010:11000
Thinning interval = 10
Number of chains = 2
Sample size per chain = 1000
##
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
##
Mean SD Naive SE Time-series SE
0.357142 0.132670 0.002967 0.006510
##
2. Quantiles for each variable:
##
2.5% 25% 50% 75% 97.5%
0.1958 0.2657 0.3216 0.4195 0.6995

For this small dataset of 200 sampling units, you will notice that the sampling times for the three spatial
models are very similar. However, for larger datasets, the sampling times of the NNGP and GPP method are
much shorter than for the standard spatial model.

10

2000 6000 10000

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

Trace of Alpha1[factor1]

0.0 0.4 0.8 1.2

0
1

2
3

4

Density of Alpha1[factor1]

N = 1000 Bandwidth = 0.02661

Figure 5: Posterior trace plot of the spatial scale parameter of the ggp spatial model.

As a last remark, you may have noticed that we set the updater parameter in sampleMCMC when running the
NNGP and GPP method. With this parameter we specify which MCMC updaters we want to include during
the MCMC sampling. The standard setting is to use all available updaters. However, the GammaEta updater
is currently not available for these methods. This is not a problem however because this is an optional
updater which helps reach convergence in less iterations in some situations.

References

Tikhonov, G., L. Duan, N. Abrego, G. Newell, M. White, D. Dunson, and O. Ovaskainen. 2020. “Com-
putationally Efficient Joint Species Distribution Modeling of Big Spatial Data.” Ecology 101: e02929.
doi:10.1002/ecy.2929.

11

https://doi.org/10.1002/ecy.2929

	Introduction
	Generating simulated data
	A spatially explicit model in Hmsc
	Spatial models for big datasets
	NNGP models
	GPP models

	References

