MUVR2: Multivariate Methods with Unbiased Variable Selection
Predictive multivariate modelling for metabolomics. 
    Types: Classification and regression. 
    Methods: Partial Least Squares, Random Forest ans Elastic Net 
    Data structures: Paired and unpaired Validation: repeated double cross-validation (Westerhuis et al. (2008)<doi:10.1007/s11306-007-0099-6>, Filzmoser et al. (2009)<doi:10.1002/cem.1225>) 
    Variable selection: Performed internally, through tuning in the inner cross-validation loop.
| Version: | 
0.1.0 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
stats, graphics, randomForest, ranger, pROC, doParallel, foreach, caret, glmnet, splines, dplyr, psych, magrittr, mgcv, grDevices, parallel | 
| Suggests: | 
testthat (≥ 3.0.0) | 
| Published: | 
2024-09-16 | 
| DOI: | 
10.32614/CRAN.package.MUVR2 | 
| Author: | 
Carl Brunius [aut],
  Yingxiao Yan [aut, cre] | 
| Maintainer: | 
Yingxiao Yan  <yingxiao at chalmers.se> | 
| BugReports: | 
https://github.com/MetaboComp/MUVR2/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/MetaboComp/MUVR2 | 
| NeedsCompilation: | 
no | 
| Materials: | 
README  | 
| CRAN checks: | 
MUVR2 results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=MUVR2
to link to this page.