Package 'SIPmg'

February 22, 2023

Title Statistical Analysis to Identify Isotope Incorporating MAGs

Version 1.4.1

Description Statistical analysis as part of a stable isotope probing (SIP) metagenomics study to identify isotope incorporating taxa recovered as metagenome-assembled genomes (MAGs). Helpful reading and a vignette in bookdown format is provided on the package site https://zielslab.github.io/SIPmg.github.io/.

URL https://zielslab.github.io/SIPmg.github.io/

BugReports https://github.com/ZielsLab/SIPmg

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.3

Imports HTSSIP, dplyr, lazyeval, phyloseq, plyr, stringr, tibble, tidyr, magrittr, ggplot2, ggpubr, purrr, rlang, MASS, DESeq2, data.table, utils

VignetteBuilder knitr

NeedsCompilation yes

Depends R (>= 3.5.0)

Suggests rmarkdown, knitr, EBImage, readr, BiocManager

LazyData true

Author Pranav Sampara [aut, cre], Kate Waring [ctb], Ryan Ziels [aut]

Repository CRAN

Date/Publication 2023-02-22 00:40:10 UTC

2 atomX

R topics documented:

atomX	Atom fraction excess table	
Index		23
	taxonomy_uooic	<i>_</i> 2
	taxonomy_tibble	
	taxonomy.object	
	tax.table	
	seq dil	
	sequins	
	scale_features_rlm	
	scale_features_lm	
	samples.object	
	sample.table	
	qSIP_bootstrap_fcr	
	qSIP_atom_excess_MAGs	
	qSIP_atom_excess_format_MAGs	
	phylo.table	
	mag.table	
	incorporators_taxonomy	
	HRSIP	11
	GC_content	9
	f_tibble	8
	fractions	8
	filter_na	7
	filter_12fc	7
	df_atomX_boot	6
	DESeq2_12fc	5
	coverage_normalization	4
	calc_Mheavymax_MAGs	3
	calc_atom_excess_MAGs	3
	atom X	2

Description

Data table generated from the "qSIP_atom_excess_MAGs" function

Usage

data(atomX)

Format

An object of class "list"

calc_atom_excess_MAGs Calculate atom fraction excess

Description

See Hungate et al., 2015 for more details

Usage

```
calc_atom_excess_MAGs(Mlab, Mlight, Mheavymax, isotope = "13C")
```

Arguments

Mlab The molecular wight of labeled DNA
Mlight The molecular wight of unlabeled DNA

Mheavymax The theoretical maximum molecular weight of fully-labeled DNA isotope

The isotope for which the DNA is labeled with ('13C' or '18O')

Value

numeric value: atom fraction excess (A)

calc_Mheavymax_MAGs Calculate Mheavymax

Description

This script was adapted from https://github.com/buckleylab/HTSSIP/blob/master/R/qSIP_atom_excess.R for use with genome-centric metagenomics. See Hungate et al., 2015 for more details

Usage

```
calc_Mheavymax_MAGs(Mlight, isotope = "13C", Gi = Gi)
```

Arguments

Mlight The molecular wight of unlabeled DNA

isotope The isotope for which the DNA is labeled with ('13C' or '18O')

Gi The G+C content of unlabeled DNA

Value

numeric value: maximum molecular weight of fully-labeled DNA

coverage_normalization

Normalize feature coverages to estimate absolute abundance or relative coverage using MAG/contig coverage values with or without multiplying total DNA concentration of the fraction

Description

Normalize feature coverages to estimate absolute abundance or relative coverage using MAG/contig coverage values with or without multiplying total DNA concentration of the fraction

Usage

```
coverage_normalization(
  f_tibble,
  contig_coverage,
  sequencing_yield,
  fractions_df,
  approach = "relative_coverage"
)
```

Arguments

f_tibble

Can be either of (1) a tibble with first column "Feature" that contains bin IDs, and the rest of the columns represent samples with bins' coverage values. (2) a tibble as outputted by the program "checkm coverage" from the tool CheckM. Please check CheckM documentation - https://github.com/Ecogenomics/CheckM on the usage for "checkm coverage" program

contig_coverage

tibble with contig ID names ("Feature" column), sample columns with **same** sample names as in f_tibble containing coverage values of each contig, contig length in bp ("contig_length" column), and the MAG the contig is associated ("MAG" column) with same MAGs as in Feature column of f_tibble dataset.

sequencing_yield

tibble containing sample ID ("sample" column) with **same sample names as in f_tibble** and number of reads in bp recovered in that sample ("yield" column).

fractions_df

fractions data frame A fractions file with the following columns

- Replicate: Depends on how many replicates the study has
- Fractions: Typically in the range of 2-24
- Buoyant_density: As calculated from the refractometer for each fraction and replicate
- Isotope: "12C", "13C", "14N", "15N" etc.
- DNA concentration
- Sample: In the format "'isotope' rep#fraction#". For instance, "12C_rep_1_fraction_1"

DESeq2_12fc 5

approach Please choose the method for coverage normalization as "relative_coverage",

"greenlon", "starr" to estimate only relative coverage without multiplying DNA

22 or Starr et al. - https://journals.asm.org/doi/10.1128/mSphere.00085-21

Value

tibble containing normalized coverage in required format with MAG name as first column and the normalized coverage values in each sample as the rest of the columns.

Examples

```
data(f_tibble)
rel.cov = coverage_normalization(f_tibble)
```

DESeq2_12fc

Calculating log2 fold change for HTS-SIP data.

Description

The 'use_geo_mean' parameter uses geometric means on all non-zero abundances for estimateSize-Factors instead of using the default log-tranformed geometric means.

Usage

```
DESeq2_12fc(
   physeq,
   density_min,
   density_max,
   design,
   12fc_threshold = 0.25,
   sparsity_threshold = 0.25,
   sparsity_apply = "all",
   size_factors = "geoMean"
)
```

Arguments

physeq Phyloseq object

density_min Minimum buoyant density of the 'heavy' gradient fractions density_max Maximum buoyant density of the 'heavy' gradient fractions

design design parameter used for DESeq2 analysis. See DESeq2::DESeq for more

details.

6 df_atomX_boot

12fc_threshold log2 fold change (12fc) values must be significantly above this threshold in order to reject the hypothesis of equal counts.

sparsity_threshold

All OTUs observed in less than this portion (fraction: 0-1) of gradient fraction samples are pruned. A a form of indepedent filtering, The sparsity cutoff with the most rejected hypotheses is used.

sparsity_apply Apply sparsity threshold to all gradient fraction samples ('all') or just heavy

fraction samples ('heavy')

size_factors Method of estimating size factors. 'geoMean' is from (Pepe-Ranney et. al., 2016) and removes all zero-abundances from the calculation. 'default' is the default for estimateSizeFactors. 'iterate' is an alternative when every OTU has

a zero in >=1 sample.

Value

dataframe of HRSIP results

Examples

```
data(phylo.qSIP)

df_12fc = DESeq2_12fc(phylo.qSIP, density_min=1.71, density_max=1.75, design=~Isotope)
```

df_atomX_boot

Bootstrapped atom fraction excess table

Description

Data table generated from bostrapping the AFE table using the "qSIP_bootstrap_fcr" function

Usage

```
data(df_atomX_boot)
```

Format

An object of class "data.frame"

filter_12fc 7

filter_12fc

Filter l2fc table

Description

filter_12fc filters a 12fc table to 'best' sparsity cutoffs & bouyant density windows.

Usage

```
filter_12fc(df_12fc, padj_cutoff = 0.1)
```

Arguments

df_12fc

data.frame of log2 fold change values

padj_cutoff

Adjusted p-value cutoff for rejecting the null hypothesis that 12fc values were

not greater than the l2fc_threshold.

Value

filtered df_12fc object

filter_na

Remove MAGs with NAs from atomX table

Description

This function enables removing NAs from the atomX table.

Usage

```
filter_na(atomX)
```

Arguments

atomX

A list object created by qSIP_atom_excess_MAGs()

Value

A list of 2 data.frame objects without MAGs which have NAs. 'W' contains the weighted mean buoyant density (W) values for each OTU in each treatment/control. 'A' contains the atom fraction excess values for each OTU. For the 'A' table, the 'Z' column is buoyant density shift, and the 'A' column is atom fraction excess.

f_tibble

Examples

```
data(atomX)
### Remove NAs in atomX table
atomx_no_na = filter_na(atomX)
```

fractions

Fractions table

Description

Fractions data used for many functions in the package

Usage

```
data(fractions)
```

Format

An object of class "data.frame"

f_tibble

Coverage table

Description

Coverage data used for many functions in the package

Usage

```
data(f_tibble)
```

Format

An object of class "data.frame"

GC_content 9

GC_content

GC content table

Description

GC_content data

Usage

```
data(GC_content)
```

Format

An object of class "data.frame"

HRSIP

(MW-)HR-SIP analysis

Description

Conduct (multi-window) high resolution stable isotope probing (HR-SIP) analysis.

Usage

```
HRSIP(
   physeq,
   design,
   density_windows = data.frame(density_min = c(1.7), density_max = c(1.75)),
   sparsity_threshold = seq(0, 0.3, 0.1),
   sparsity_apply = "all",
   l2fc_threshold = 0.25,
   padj_method = "BH",
   padj_cutoff = NULL,
   parallel = FALSE
)
```

Arguments

physeq

Phyloseq object

design

design parameter used for DESeq2 analysis. This is usually used to differentiate labeled-treatment and unlabeld-control samples. See DESeq2::DESeq for more details on the option.

density_windows

The buoyant density window(s) used for for calculating log2 fold change values. Input can be a vector (length 2) or a data.frame with a 'density_min' and a 'density_max' column (each row designates a density window).

10 HRSIP

sparsity_threshold

All OTUs observed in less than this portion (fraction: 0-1) of gradient fraction samples are pruned. This is a form of indepedent filtering. The sparsity cutoff

with the most rejected hypotheses is used.

sparsity_apply Apply sparsity threshold to all gradient fraction samples ('all') or just 'heavy'

fraction samples ('heavy'), where 'heavy' samples are designated by the density_windows.

12fc_threshold log2 fold change (l2fc) values must be significantly above this threshold in order

to reject the hypothesis of equal counts. See DESeq2 for more information.

padj_method Method for global p-value adjustment (See p.adjust()).

padj_cutoff Adjusted p-value cutoff for rejecting the null hypothesis that 12fc values were

not greater than the l2fc_threshold. Set to NULL to skip filtering of results to the sparsity cutoff with most rejected hypotheses and filtering each OTU to the

buoyant density window with the greatest log2 fold change.

parallel Process each parameter combination in parallel. See plyr::mdply() for more

information.

Details

The (MW-)HR-SIP workflow is as follows:

1. For each sparsity threshold & BD window: calculate log2 fold change values (with DESeq2) for each OTU

- 2. Globally adjust p-values with a user-defined method (see p.adjust())
- 3. Select the sparsity cutoff with the most rejected hypotheses
- 4. For each OTU, select the BD window with the greatest log2 fold change value

Value

dataframe of HRSIP results

Examples

incorporators_taxonomy 11

```
incorporators_taxonomy
```

Isotope incorporator list with GTDB taxonomy

Description

This function provides a table with MAGs and their corresponding GTDB taxonomy as an output. This would be useful in identifying the taxa that have incorporation

Usage

```
incorporators_taxonomy(taxonomy, bootstrapped_AFE_table)
```

Arguments

taxonomy

A taxonomy tibble obtained in the markdown. This taxonomy tibble is typically a concatenated list of archaeal and bacterial taxonomy from GTDB-Tk Please check GTDB-Tk documentation for running the tool

bootstrapped_AFE_table

A data frame indicating bootstrapped atom fraction excess values

Value

A tibble with two columns, OTU and Taxonomy, with taxonomy of the incorporator MAGs

Examples

mag.table

MAG abundance table in phyloseq format

Description

MAG abundances in the format of phyloseq object to be used in the qSIP and (MW-)HR-SIP pipeline

phylo.table

Usage

```
data(mag.table)
```

Format

An object of class "phyloseq"

phylo.qSIP

Master phyloseq object

Description

Master phyloseq object

Usage

```
data(phylo.qSIP)
```

Format

An object of class "phyloseq"

phylo.table

Master phyloseq object using the MAG phyloseq objects

Description

Creates a phyloseq-style object using processed phyloseq objects for otu table (here, MAG table), taxa table, and sample table

Usage

```
phylo.table(mag, taxa, samples)
```

Arguments

mag phyloseq-styled MAG table taxa phyloseq-styled taxa table samples sample information table

Value

phyloseq object for MAGs

Examples

```
data(mag.table,taxonomy.object,samples.object,fractions,taxonomy_tibble)
###Making phyloseq table from fractions metadata
samples.object = sample.table(fractions)
taxonomy.object = tax.table(taxonomy_tibble)
```

Making master phyloseq table from scaled MAG data, taxa and fractions phyloseq data
phylo.qSIP = phylo.table(mag.table,taxonomy.object,samples.object)

```
qSIP_atom_excess_format_MAGs
```

Reformat a phyloseq object of qSIP_atom_excess_MAGs analysis

Description

Reformat a phyloseq object of qSIP_atom_excess_MAGs analysis

Usage

```
qSIP_atom_excess_format_MAGs(physeq, control_expr, treatment_rep)
```

Arguments

physeq A phyloseq object

control_expr An expression for identifying unlabeled control samples in the phyloseq object

(eg., "Substrate=='12C-Con'")

treatment_rep Which column in the phyloseq sample data designates replicate treatments

Value

numeric value: atom fraction excess (A)

qSIP_atom_excess_MAGs Calculate atom fraction excess using q-SIP method

Description

Calculate atom fraction excess using q-SIP method

Usage

```
qSIP_atom_excess_MAGs(
   physeq,
   control_expr,
   treatment_rep = NULL,
   isotope = "13C",
   df_OTU_W = NULL,
   Gi
)
```

Arguments

physeq A phyloseq object

control_expr Expression used to identify control samples based on sample_data.

treatment_rep Which column in the phyloseq sample data designates replicate treatments

isotope The isotope for which the DNA is labeled with ('13C' or '18O')

df_OTU_W Keep NULL

Gi GC content of the MAG

Value

A list of 2 data.frame objects. 'W' contains the weighted mean buoyant density (W) values for each OTU in each treatment/control. 'A' contains the atom fraction excess values for each OTU. For the 'A' table, the 'Z' column is buoyant density shift, and the 'A' column is atom fraction excess.

Examples

qSIP_bootstrap_fcr 15

qSIP_bootstrap_fcr	Calculate adjusted bootstrap CI after for multiple testing for atom
	fraction excess using q-SIP method. Multiple hypothesis tests are cor-
	rected by

Description

Calculate adjusted bootstrap CI after for multiple testing for atom fraction excess using q-SIP method. Multiple hypothesis tests are corrected by

Usage

```
qSIP_bootstrap_fcr(
  atomX,
  isotope = "13C",
  n_sample = c(3, 3),
  ci_adjust_method = "fcr",
  n_boot = 10,
  parallel = FALSE,
  a = 0.1
)
```

Arguments

atomX	A list object created by qSIP_atom_excess_MAGs()			
isotope	The isotope for which the DNA is labeled with ('13C' or '18O')			
n_sample	A vector of length 2. The sample size for data resampling (with replacement) for 1) control samples and 2) treatment samples.			
ci_adjust_method				
	Confidence interval adjustment method. Please choose 'FCR', 'Bonferroni', or 'none' (if no adjustment is needed). Default is FCR and also provides unadjusted CI.			
n_boot	Number of bootstrap replicates.			
parallel	Parallel processing. See .parallel option in dplyr::mdply() for more details.			
a	A numeric value. The alpha for calculating confidence intervals.			

Value

A data.frame of atom fraction excess values (A) and atom fraction excess confidence intervals adjusted for multiple testing.

sample.table

Examples

sample.table

phyloseq-styled sample table

Description

Creates a phyloseq-styled sample table from fractions metadata containing data on fraction number, number of replicates, buoyant density calculated from a refractometer, type of isotope, and DNA concentration of each fraction, and isotope type. See below for information on "fractions" file.

Usage

```
sample.table(fractions_df)
```

Arguments

fractions_df fractions data frame A fractions file with the following columns

- Replicate: Depends on how many replicates the study has
- Fractions: Typically in the range of 2-24
- Buoyant_density: As calculated from the refractometer for each fraction and replicate
- Isotope: "12C", "13C", "14N", "15N" etc.
- DNA concentration
- Sample: In the format "'isotope' rep#fraction#". For instance, "12C_rep_1_fraction_1"

Value

data frame: phyloseq-style sample table

samples.object 17

Examples

```
data(fractions)

### Making phyloseq table from fractions metadata
samples.object = sample.table(fractions)
```

samples.object

Fractions table in phyloseq format

Description

Fractions metadata in the format of phyloseq object to be used in the qSIP and (MW-)HR-SIP pipeline

Usage

```
data(samples.object)
```

Format

An object of class "phyloseq"

scale_features_lm

Scale feature coverage values to estimate their absolute abundance

Description

Calculates global scaling factors for features (contigs or bins),based on linear regression of sequin coverage. Options include log-transformations of coverage, as well as filtering features based on limit of detection. This function must be called first, before the feature abundance table, feature detection table, and plots are retrieved.

Usage

```
scale_features_lm(
  f_tibble,
  sequin_meta,
  seq_dilution,
  log_trans = TRUE,
  coe_of_variation = 250,
  lod_limit = 0,
  save_plots = TRUE,
  plot_dir = tempdir(),
  cook_filtering = TRUE
)
```

18 scale_features_lm

Arguments

f_tibble Can be either of (1) a tibble with first column "Feature" that contains bin IDs, and the rest of the columns represent samples with bins' coverage values. (2) a tibble as outputted by the program "checkm coverage" from the tool CheckM. Please check CheckM documentation - https://github.com/Ecogenomics/CheckM on the usage for "checkm coverage" program tibble containing sequin names ("Feature column") and concentrations in attasequin_meta moles/uL ("Concentration") column. tibble with first column "Sample" with same sample names as in f_tibble, and seq_dilution a second column "Dilution" showing ratio of sequins added to final sample volume (e.g. a value of 0.01 for a dilution of 1 volume sequin to 99 volumes sample) log_trans Boolean (TRUE or FALSE), should coverages and sequin concentrations be logscaled? coe_of_variation Acceptable coefficient of variation for coverage and detection (eg. 20 - for 20 % threshold of coefficient of variation). Coverages above the threshold value will be flagged in the plots. lod_limit (Decimal range 0-1) Threshold for the percentage of minimum detected sequins per concentration group. Default = 0Boolean (TRUE or FALSE), should sequin scaling be saved? Default = TRUE save_plots Directory where plots are to be saved. Will create a directory "sequin scaling plots lm" plot_dir if it does not exist. cook_filtering Boolean (TRUE or FALSE), should data points be filtered based on Cook's distance metric. Cooks distance can be useful in detecting influential outliers in an ordinary least square's regression model, which can negatively influence the model. A threshold of Cooks distance of 4/n (where n is the sample size) is chosen, and any data point with Cooks distance > 4/n is filtered out. It is typical to choose 4/n as the threshold in detecting the outliers in the data. Default = TRUE

Value

a list of tibbles containing

- mag_tab: a tibble with first column "Feature" that contains bin (or contig IDs), and the rest of the columns represent samples with features' scaled abundances (attamoles/uL)
- mag_det: a tibble with first column "Feature" that contains bin (or contig IDs),
- plots: linear regression plots for scaling MAG coverage values to absolute abundance
- scale_fac: a master tibble with all of the intermediate values in above calculations

Examples

data(f_tibble, sequins, seq_dil)

19 scale_features_rlm

```
### scaling sequins from coverage values
scaled_features_lm = scale_features_lm(f_tibble,sequin_meta, seq_dil)
```

scale_features_rlm

Scale feature coverage values to estimate their absolute abundance

Description

Calculates global scaling factors for features (contigs or bins), based on linear regression of sequin coverage. Options include log-transformations of coverage, as well as filtering features based on limit of detection. This function must be called first, before the feature abundance table, feature detection table, and plots are retrieved.

Usage

```
scale_features_rlm(
  f_tibble,
  sequin_meta,
  seq_dilution,
  log_trans = TRUE,
  coe_of_variation = 250,
  lod_limit = 0,
  save_plots = TRUE,
  plot_dir = tempdir()
)
```

Arguments

f_tibble Can be either of (1) a tibble with first column "Feature" that contains bin IDs, and the rest of the columns represent samples with bins' coverage values. (2) a tibble as outputted by the program "checkm coverage" from the tool CheckM. Please check CheckM documentation - https://github.com/Ecogenomics/CheckM on the usage for "checkm coverage" program tibble containing sequin names ("Feature column") and concentrations in attasequin_meta

moles/uL ("Concentration") column.

tibble with first column "Sample" with same sample names as in f_tibble, and a second column "Dilution" showing ratio of sequins added to final sample volume (e.g. a value of 0.01 for a dilution of 1 volume sequin to 99 volumes

Boolean (TRUE or FALSE), should coverages and sequin concentrations be logscaled? Default = TRUE

coe_of_variation

seq_dilution

log_trans

Acceptable coefficient of variation for coverage and detection (eg. 20 - for 20 % threshold of coefficient of variation). Coverages above the threshold value will be flagged in the plots. Default = 250

20 sequins

lod_limit	(Decimal range 0-1) Threshold for the percentage of minimum detected sequins per concentration group. Default = 0
save_plots	Boolean (TRUE or FALSE), should sequin scaling be saved? Default = TRUE
plot_dir	Directory where plots are to be saved. Will create a directory "sequin_scaling_plots_rlm" if it does not exist.

Value

a list of tibbles containing

- mag_tab: a tibble with first column "Feature" that contains bin (or contig IDs), and the rest of the columns represent samples with features' scaled abundances (attamoles/uL)
- mag_det: a tibble with first column "Feature" that contains bin (or contig IDs),
- plots: linear regression plots for scaling MAG coverage values to absolute abundance (optional)
- scale_fac: a master tibble with all of the intermediate values in above calculations

Examples

```
data(f_tibble, sequins, seq_dil)
### scaling sequins from coverage values
scaled_features_rlm = scale_features_rlm(f_tibble, sequins, seq_dil)
```

sequins

Sequins table

Description

Sequins metadata

Usage

```
data(sequins)
```

Format

An object of class "data.frame"

seq_dil 21

seq_dil

Sequins dilution table

Description

Sequins dilution data

Usage

```
data(seq_dil)
```

Format

An object of class "data.frame"

tax.table

phyloseq taxa table from GTDB taxonomy input

Description

A MAG table, similar to OTU table in phyloseq, will be generated from a concantenated GTDB taxa table for bacteria and archaea

Usage

```
tax.table(taxonomy)
```

Arguments

taxonomy

GTDB taxonomy data frame. A taxonomy file in the GTDB output format. Load the bacteria and archaea taxonomy outputs separately. The markdown requires loading the standard output files from GTDB-Tk separately for bacteria and archaea

Value

phyloseq-style taxonomy table, but for MAGs

Examples

```
data(taxonomy_tibble)
```

```
### Making phyloseq table from taxonomy metadata
taxonomy.object = tax.table(taxonomy_tibble)
```

22 taxonomy_tibble

taxonomy.object

Taxonomy table in phyloseq format

Description

Taxonomy table in the format of phyloseq object to be used in the qSIP and (MW-)HR-SIP pipeline

Usage

```
data(taxonomy.object)
```

Format

An object of class "phyloseq"

taxonomy_tibble

Taxonomy table

Description

Taxonomy table from GTDB-Tk output - combining both bacterial and archaeal taxonomy

Usage

```
data(taxonomy_tibble)
```

Format

An object of class "data.frame"

Index

```
* datasets
                                                  qSIP_bootstrap_fcr, 15
    atomX, 2
                                                  sample.table, 16
    df_atomX_boot, 6
                                                  samples.object, 17
    f_tibble, 8
                                                  scale_features_lm, 17
    fractions, 8
                                                  scale_features_rlm, 19
    GC_content, 9
                                                  seq_dil, 21
    mag.table, 11
                                                  sequins, 20
    phylo.qSIP, 12
    samples.object, 17
                                                  tax.table, 21
    seq_dil, 21
                                                  taxonomy.object, 22
    sequins, 20
                                                  taxonomy_tibble, 22
    taxonomy.object, 22
    taxonomy_tibble, 22
atomX, 2
calc_atom_excess_MAGs, 3
calc_Mheavymax_MAGs, 3
coverage_normalization, 4
DESeq2_12fc, 5
df_atomX_boot, 6
f_tibble, 8
filter_12fc, 7
filter_na, 7
fractions, 8
GC_content, 9
HRSIP, 9
incorporators_taxonomy, 11
mag.table, 11
phylo.qSIP, 12
phylo.\,table,\,\textcolor{red}{12}
qSIP_atom_excess_format_MAGs, 13
qSIP_atom_excess_MAGs, 14
```