Package ‘SUNGEQO’

November 4, 2023

Type Package

Title Sub-National Geospatial Data Archive: Geoprocessing Toolkit
Version 1.2.1

Date 2023-11-03

Author Yuri M. Zhukov, Jason Byers, Marty Davidson

Maintainer Yuri M. Zhukov <zhukov@umich.edu>

Description Tools for integrating spatially-misaligned GIS datasets. Part of the Sub-
National Geospatial Data Archive System.

URL <https://github.com/zhukovyuri/SUNGEO>
License GPL-2

Encoding UTF-8

LazyData TRUE

Depends R (>=2.10)

Imports
sf,data.table,dplyr,RCurl,jsonlite,terra,raster,stringr,stats,methods, purrr,measurements,RANN,cartogram,packcircles,rmap

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-11-04 00:30:08 UTC

R topics documented:

available_data e 2
cC diCt L s 4
clea_deu2009 e e e e e 4
clea_deu2009_df e 5
clea_deu2009_pt L 6
df2sf . . L e e e e 7
fiX_geom e e e 8
geoCOode_OSM e e e 9

https://github.com/zhukovyuri/SUNGEO>

2 available_data

geocode_osm_batch. 10
get_data L 12
get_info L 14
gpwd_deu2010 16
hex_05_deu 16
highways_deul992 17
hot_spot L e 17
line2poly 19
NESHING o ot e e e e e e e e e e e e 21
point2poly_krige e 24
point2poly_SImpo L e e e e e e 27
POINt2POly_teSS e e e e e e e e 28
poly2poly_ap e e e e 31
Sf2rastero e 34
SUNGEO 37
utm_select e 37

Index 39

available_data Data availability through SUNGEO API
Description

Census of geospatial and processed data files available to download using SUNGEO: : get_data().

Usage

available_data

Format

List of 42 data.table objects Geoset: GADM :Classes ‘data.table’ and ’data.frame’: 249 obs. of 4
variables Geoset: GAUL :Classes ‘data.table’ and *data.frame’: 242 obs. of 4 variables Geoset:geoBoundaries
:Classes ‘data.table’ and ’data.frame’: 197 obs. of 4 variables Geoset:GRED :Classes ‘data.table’

and ’data.frame’: 74 obs. of 4 variables Geoset: HEXGRID :Classes ‘data.table’ and ’data.frame’:

199 obs. of 4 variables Geoset:MPIDR :Classes ‘data.table’ and ’data.frame’: 52 obs. of 4 variables
Geoset:NHGIS :Classes ‘data.table’ and ’data.frame’: 1 obs. of 4 variables Geoset:PRIOGRID
:Classes ‘data.table’ and ’data.frame’: 199 obs. of 4 variables Geoset:SHGIS :Classes ‘data.table’

and ’data.frame’: 68 obs. of 4 variables

country_iso3 Codes for available countries (ISO 3166-1 alpha-3). Character string.
country_name Names of available countries. Character string.

geoset_years Years of available historical boundary files. Character string.

space_units Available spatial units of analysis. Character string.

available data 3

Elections:LowerHouse:CLEA :Classes ‘data.table’ and ’data.frame’: 168 obs. of 6 variables Demo-
graphics:Ethnicity:EPR :Classes ‘data.table’ and ’data.frame’: 180 obs. of 6 variables Demograph-
ics:Ethnicity:GREG :Classes ‘data.table’ and ’data.frame’: 234 obs. of 6 variables Demograph-
ics:Population:GHS :Classes ‘data.table’ and ’data.frame’: 257 obs. of 6 variables Events:Political Violence: ABADarfur
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:PoliticalViolence: ACLED

:Classes ‘data.table’ and *data.frame’: 100 obs. of 6 variables Events:Political Violence:BeissingerProtest
:Classes ‘data.table’ and ’data.frame’: 15 obs. of 6 variables Events:Political Violence:BeissingerRiot
:Classes ‘data.table’ and ’data.frame’: 15 obs. of 6 variables Events:Political Violence:BeissingerUkraine
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence: COCACW
:Classes ‘data.table’ and *data.frame’: 1 obs. of 6 variables Events:Political Violence: ESOCAfghanistanWITS
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:ESOCIragSIGACT
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:ESOCIraqWITS
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:ESOCMexicoDrugRelatedMurders
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence: ESOCMexicoHomicide
:Classes ‘data.table’ and *data.frame’: 1 obs. of 6 variables Events:Political Violence:ESOCPakistanBFRS
:Classes ‘data.table’ and *data.frame’: 1 obs. of 6 variables Events:Political Violence:ESOCPakistanWITS
:Classes ‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:GED :Classes
‘data.table’ and ’data.frame’: 121 obs. of 6 variables Events:PoliticalViolence:Lankina :Classes
‘data.table’ and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:NIRI :Classes ‘data.table’

and ’data.frame’: 12 obs. of 6 variables Events:PoliticalViolence:NVMS :Classes ‘data.table’

and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:PITF :Classes ‘data.table’ and
’data.frame’: 133 obs. of 6 variables Events:PoliticalViolence:SCAD :Classes ‘data.table’ and
’data.frame’: 60 obs. of 6 variables Events:Political Violence:yzCaucasus2000 :Classes ‘data.table’

and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:yzChechnya :Classes ‘data.table’

and ’data.frame’: 1 obs. of 6 variables Events:Political Violence:yzLibya :Classes ‘data.table’ and
’data.frame’: 1 obs. of 6 variables Events:Political Violence:yzUkraine2014 :Classes ‘data.table’

and ’data.frame’: 1 obs. of 6 variables Infrastructure:Roads:gRoads :Classes ‘data.table’ and ’data.frame’:
240 obs. of 6 variables Infrastructure:NightLights:DMSP :Classes ‘data.table’ and ’data.frame’:

257 obs. of 6 variables PublicHealth:Covid19:JHUCSSEC19 :Classes ‘data.table’ and *data.frame’:

207 obs. of 6 variables Terrain:Elevation:ETOPOI1 :Classes ‘data.table’ and ’data.frame’: 256 obs.

of 6 variables Terrain:LandCover:GLCC :Classes ‘data.table’ and ’data.frame’: 257 obs. of 6 vari-

ables Weather: AirTemperatureAndPrecipitation:NOAA :Classes ‘data.table’ and ’data.frame’: 209

obs. of 6 variables

country_iso3 Codes for available countries (ISO 3166-1 alpha-3). Character string.
country_name Names of available countries. Character string.

year_range Range of available years for data topic. Character string.

time_units Available time units. Character string.

space_units Available spatial units. Character string.

geosets Names of available geographic boundary data sources. Character string.

Source

Sub-National Geospatial Data Archive System: Geoprocessing Toolkit (updated March 17, 2023).

4 clea_deu2009

cc_dict Country code dictionary

Description

Reference table of country names and ISO-3166 codes, adapted from countrycode package.

Usage

cc_dict

Format

data.table object, with 8626 obs. of 3 variables:

country_name Country names. Character string.

country_name_alt Alternative spellings of country names, ASCII characters only. Character
string.

country_iso3 Country codes (ISO 3166-1 alpha-3). Character string.

Source

Vincent Arel-Bundock. Package countrycode: Convert Country Names and Country Code, version
1.40. CRAN (October 12, 2022).

clea_deu2009 Constituency level results for lower chamber legislative elections,
Germany 2009.

Description

A simple feature collection containing the spatial geometries of electoral constituency borders, and
data on turnout levels, votes shares and other attributes of lower chamber legislative elections.

Usage

clea_deu2009

clea_deu2009_df 5

Format

Simple feature collection with 16 features and 10 fields. geometry type: MULTIPOLYGON. di-
mension: XY. bbox: xmin: 5.867281 ymin: 47.27096 xmax: 15.04388 ymax: 55.05902. epsg
(SRID): 4326. proj4string: +proj=longlat +datum=WGS84 +no_defs.

cst Constituency number. Numeric.

cst_n Constituency name. Character.

ctr Country number. Numeric.

ctr_n Country name. Character.

yrmo Year and month of election (YYYYMM). Character.

tol Turnout in first round. Numeric.

vvl Number of valid votes in first round. Numeric.

pvsl_margin Popular vote share margin in first round. Numeric.

incumb_pty_n Incumbent party name.

winl_pty_n Party name of popular vote share winner in first round. Character.

Source

Constituency-Level Elections Archive (CLEA) https://electiondataarchive.org/

clea_deu2009_df Constituency level results for lower chamber legislative elections,
Germany 2009.

Description

A data.frame object containing the geographic centroids of electoral contituencies, and data on
turnout levels, votes shares and other attributes of lower chamber legislative elections.

Usage
clea_deu2009_df

Format
data.frame with 16 observations and 12 variables.

cst Constituency number. Numeric.

cst_n Constituency name. Character.

ctr Country number. Numeric.

ctr_n Country name. Character.

yrmo Year and month of election (YYYYMM). Character.

tol Turnout in first round. Numeric.

https://electiondataarchive.org/

6 clea_deu2009_pt

vvl Number of valid votes in first round. Numeric.

pvsl_margin Popular vote share margin in first round. Numeric.
incumb_pty_n Incumbent party name.

winl_pty_n Party name of popular vote share winner in first round. Character.
longitude Longitude of constituency centroid. Numeric.

latitude Latitude of constituency centroid. Numeric.

Source

Constituency-Level Elections Archive (CLEA) https://electiondataarchive.org/

clea_deu2009_pt Constituency level results for lower chamber legislative elections,
Germany 2009.

Description

A simple feature collection containing the geographic centroids of electoral contituencies, and data
on turnout levels, votes shares and other attributes of lower chamber legislative elections.

Usage
clea_deu2009_pt

Format

Simple feature collection with 16 features and 10 fields. geometry type: POINT. dimension: XY.
bbox: xmin: 6.953882 ymin: 48.54535 xmax: 13.40315 ymax: 54.18635. epsg (SRID): 4326.
proj4string: +proj=longlat +datum=WGS84 +no_defs.

cst Constituency number. Numeric.

cst_n Constituency name. Character.

ctr Country number. Numeric.

ctr_n Country name. Character.

yrmo Year and month of election (YYYYMM). Character.

tol Turnout in first round. Numeric.

vvl Number of valid votes in first round. Numeric.

pvsl_margin Popular vote share margin in first round. Numeric.

incumb_pty_n Incumbent party name.

winl_pty_n Party name of popular vote share winner in first round. Character.

Source

Constituency-Level Elections Archive (CLEA) https://electiondataarchive.org/

https://electiondataarchive.org/
https://electiondataarchive.org/

df2sf

df2sf

Convert data.frame object into simple features object

Description

Function takes in x-, y-coordinates, and a data.frame of variables (optional) and returns an SFC

object
Usage

df2sf(
x_coord,
y_coord,
input_data =
file = NULL,
n_max = Inf,
start = 0,

NULL,

projection_input = "EPSG:4326",

zero.policy =

show_removed

Arguments

x_coord

y_coord

input_data

file
n_max

start

FALSE,
= FALSE

Numeric vector with longitude or easting projected coordinates. When input_data
or file is supplied, can be either column name or numeric vector of the same
length as nrow(input_data).

Numeric vector with latitude or northing projected coordinates. Must be equal to
the vector length of x_coord. When input_data or file is supplied, can be ei-
ther column name or numeric vector of the same length as nrow(input_data).

Optional data frame object, containing x_coord and y_coord. nrow(input_data)
must be equal to the vector length of x_coord. NOTE: Rows corresponding to
non-usable coordinates are removed from the final output.

Optional path to csv file. Overrides input_data.
Maximum number of rows to read in file. Default is Inf.

Number of rows to skip in file. Default is O (start on first row).

projection_input

zero.policy

show_removed

Projection string associated with x_coord and y_coord. Defaultis '+proj=longlat'.

If TRUE, removes rows where corresponding coordinates equals (0,0). Default is
FALSE.

If TRUE, returns a vector of indices corresponding to non-usable coordinates.
Default is FALSE.

8 fix_geom

Value

If show_removed==FALSE, returns an sf object, with rows corresponding to non-usable coordinates
removed. If show_removed==TRUE, returns a list, with an sf object (Spatial_Coordinates), and
a vector of indices corresponding to non-usable coordinates removed (Removed_Rows).

Examples

Coordinates supplied as vectors

Not run:

data(clea_deu2009_df)

out_1 <- df2sf(x_coord=clea_deu2009_df$longitude,y_coord = clea_deu2009_df$latitude)
class(out_1)

plot(out_1$geometry)

End(Not run)

Coordinates supplied as column mames

Not run:

out_2 <- df2sf(x_coord="longitude"”,y_coord ="latitude"”, input_data = clea_deu2009_df)
plot(out_2["geometry"”])

End(Not run)

Load from external file

Not run:

tmp <- tempfile()

write.csv(clea_deu2009_df,file=tmp)

out_3 <- df2sf(x_coord="longitude"”,y_coord ="latitude”, file=tmp)
plot(out_3["geometry"])

End(Not run)

fix_geom Fix polygon geometries

Description

Function to check validity and fix broken geometries in simple features polygon objects

Usage

fix_geom(x, n_it = 10)

Arguments
X Polygon layer to be checked and fixed. sf object.
n_it Number of iterations. Default is 10. Numeric..
Value

Returns a sf polygon object, with self-intersections and other geometry problems fixed.

geocode_osm 9

Examples

Assignment of a single variable (sums)
Not run:

data(clea_deu2009)

out_1 <- fix_geom(clea_deu2009)

End(Not run)

geocode_osm Geocode addresses with OpenStreetMap

Description

Function to find geographic coordinates of addresses and place names, using OpenStreetMap’s
Nominatum API.

Usage

geocode_osm(
query,
match_num = 1,
return_all = FALSE,
details = FALSE,
user_agent = NULL

)
Arguments
query Address or place name to be geocoded. Character string.
match_num If query matches multiple locations, which match to return? Defaultis 1 (highest-
ranking match, by relevance). Numeric.
return_all Should all matches be returned? Overrides match_num if TRUE. Default is FALSE.
Logical.
details Should detailed results be returned? Default is FALSE. Logical.
user_agent Valid User-Agent identifying the application for OSM-Nominatum. If none sup-
plied, function will attempt to auto-detect. Character string.
Details

Note that Nominatim Usage Policy stipulates an absolute maximum of 1 request per second (https:
//operations.osmfoundation.org/policies/nominatim/). For batch geocoding of multiple
addresses, please use geocode_osm_batch.

https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/

10 geocode_osm_batch

Value

A data. frame object. If details=FALSE, contains fields

e "query". User-supplied address query(ies). Character string.
* "osm_id". OpenStreetMap ID. Character string.

* "address". OpenStreetMap address. Character string.

* "longitude". Horizontal coordinate. Numeric.

e "latitude". Vertical coordinate. Numeric.
If details=TRUE, contains additional fields

* "osm_type". OpenStreetMap ID. Character string.

* "importance". Relevance of Nominatum match to query, from O (worst) to 1 (best). Numeric.
* "bbox_ymin". Minimum vertical coordinate of bounding box. Numeric.

* "bbox_ymax". Maximum vertical coordinate of bounding box. Numeric.

* "bbox_xmin". Minimum horizontal coordinate of bounding box. Numeric.

* "bbox_xmax". Maximum horizontal coordinate of bounding box. Numeric.

Examples

Geocode an address (top match only)
Not run:
geocode_osm("Michigan Stadium™)

End(Not run)

Return detailed results for top match

Not run:

geocode_osm("Michigan Stadium”, details=TRUE)

End(Not run)

Return detailed results for all matches

Not run:

geocode_osm("Michigan Stadium”, details=TRUE, return_all = TRUE)

End(Not run)

geocode_osm_batch Batch geocode addresses with OpenStreetMap

Description

Function to find geographic coordinates of multiple addresses and place names, using OpenStreetMap’s
Nominatum API.

geocode_osm_batch 11

Usage
geocode_osm_batch(
query,
delay = 1,

return_all = FALSE,
match_num = 1,
details = FALSE,
user_agent = NULL,
verbose = FALSE

)
Arguments
query Addresses or place names to be geocoded. Character string.
delay Delay between requests. Default is 1 second. Numeric.
return_all Should all matches be returned? Overrides match_num if TRUE. Default is FALSE.
Logical.
match_num If query matches multiple locations, which match to return? Defaultis 1 (highest-
ranking match, by relevance). Numeric.
details Should detailed results be returned? Default is FALSE. Logical.
user_agent Valid User-Agent identifying the application for OSM-Nominatum. If none sup-
plied, function will attempt to auto-detect. Character string.
verbose Print status messages and progress? Default is FALSE. Logical.
Details

Wrapper function for geocode_osm. Because Nominatim Usage Policy stipulates an absolute max-
imum of 1 request per second, this function facilitates batch geocoding by adding a small delay
between queries (https://operations.osmfoundation.org/policies/nominatim/).

Value
A data. frame object. If details=FALSE, contains fields

* "query". User-supplied address query(ies). Character string.
* "osm_id". OpenStreetMap ID. Character string.

* "address". OpenStreetMap address. Character string.

* "longitude". Horizontal coordinate. Numeric.

* "latitude". Vertical coordinate. Numeric.

If details=TRUE, contains additional fields

* "osm_type". OpenStreetMap ID. Character string.

* "importance". Relevance of Nominatum match to query, from O (worst) to 1 (best). Numeric.
* "bbox_ymin". Minimum vertical coordinate of bounding box. Numeric.

* "bbox_ymax". Maximum vertical coordinate of bounding box. Numeric.

* "bbox_xmin". Minimum horizontal coordinate of bounding box. Numeric.

* "bbox_xmax". Maximum horizontal coordinate of bounding box. Numeric.

https://operations.osmfoundation.org/policies/nominatim/

12 get_data

Examples

Geocode multiple addresses (top matches only)
Not run:
geocode_osm_batch(c("Ann Arbor”,"East Lansing”,"Columbus"))

End(Not run)

With progress reports

Not run:

geocode_osm_batch(c("Ann Arbor"”,"East Lansing”,"Columbus”), verbose = TRUE)

End(Not run)

Return detailed results for all matches

Not run:

geocode_osm_batch(c("Ann Arbor","East Lansing”,"”Columbus”),
details = TRUE, return_all = TRUE)

End(Not run)

get_data Download data from SUNGEO server

Description

Function to download data files through the SUNGEO API. Function produces a data.table object,
corresponding to the user’s choice of countries, topics, sources, and spatial and temporal units.

Usage

get_data(
country_names = NULL,
country_iso3 = NULL,

geoset = "geoBoundaries”,
geoset_yr = 2020,
space_unit = "adm1”,
time_unit = "year",

topics = NULL,
year_min = 1990,
year_max = 2017,
print_url = TRUE,
print_time = TRUE,
error_stop = FALSE,
by_topic = TRUE,
skip_missing = TRUE,
cache_param = FALSE,
short_message = TRUE

get_data 13

Arguments

country_names

country_iso3

geoset

geoset_yr

space_unit

time_unit

topics

year_min

year_max

print_url
print_time

error_stop

by_topic

skip_missing

Country name(s). Character string (single country) or vector of character strings
(multiple countries).

Country code (ISO 3166-1 alpha-3). Character string (single country) or vector
of character strings (multiple countries).

Name of geographic boundary set. Can be one of "GADM" (Database of Global

Administrative Areas), "GAUL" (Global Administrative Unit Layers), "geoBoundaries”,

"GRED" (GeoReferenced Electoral Districts Datasets), "HEXGRID" (SUNGEO
Hexagonal Grid), "MPIDR" (Max Planck Institute for Demographic Research
Population History GIS Collection), "NHGIS" (National Historical Geographic
Information System), "PRIOGRID" (PRIO-GRID 2.0), "SHGIS" (SUNGEO His-
torical GIS). Default is "geoBoundaries”. Character string.

Year of geographic boundaries. See get_info()['geosets'] for availability.
Default is 2020. Integer.

Geographic level of analysis. Can be one of "adm@” (country), "adm1" (province),
"adm2" (district), "cst” (GRED electoral constituency), "hex05" (SUNGEO
Hexagonal Grid cell), "prio” (PRIO-GRID cell). See get_info()['geosets']
for availability by geoset, country and topic. Default is "adm1”. Character
string.

Temporal level of analysis. Can be one of "year”, "month", "week". See
get_info()['topics'] for availability by topic. Default is "year". Character
string.

Data topics. See get_info()['summary'] for full list. Character string (single
topic) or vector of character strings (multiple topics).

Time range of requested data: start year. See get_info()['topics'] for avail-
ability by topic. Default is 1990. Integer.

Time range of requested data: end year. See get_info()['topics'] for avail-
ability by topic. Default is 2017. Integer.

Print url string of requested data to console? Default is TRUE. Logical.
Print processing time for API query to console? Default is TRUE. Logical.

Error handling. If TRUE, function terminates request if an error is encountered. If
FALSE, error is skipped and error message is recorded in a new message column.
Default is FALSE. Logical.

Break query down by topic and country? If TRUE, a separate request is sent to
the API for each country and topic, and the results are combined on the client
side. This ensures that data that are available for some, but not all countries are
returned, rather than resulting in a failed request. If FALSE, a single request is
sent to the API for all countries and topics, and the results are combined on the
server side. Only data that are available for all countries are returned. Default is
TRUE. Logical.

Skip missing data topics? If TRUE, missing data topics are skipped, columns
are populated with NAs, and corresponding error message is recorded in a new
message column. If FALSE, returns NULL results for missing topics. Default is
TRUE. Logical.

14 get_info

cache_param Store cached query on server? This can speed up processing for repeated queries.
Default is FALSE. Logical.

short_message Shorten error messages? If TRUE, a short, informative error message is recorded
in the message column. If FALSE, full error message is recorded. Default is
TRUE. Logical.

Value

data.table object, with requested data from SUNGEO API.

See Also

get_info

Examples

Single country, single topic

Not run:

out_1 <- get_data(country_name="Afghanistan", topics="Demographics:Population:GHS")
out_1

End(Not run)

Not run:

out_2 <- get_data(

country_name=c("Afghanistan”, "Moldova"),
topics=c("Demographics:Ethnicity:EPR", "Demographics:Population:GHS"))
out_2

End(Not run)

Other boundary sets, spatial and time units

Not run:

out_3 <- get_data(

country_name="Albania”,
topics="Weather:AirTemperatureAndPrecipitation:NOAA",
geoset="GAUL",geoset_yr=1990, space_unit="adm2",time_unit="month",
year_min=1990,year_max=1991)

out_3

End(Not run)

get_info Information on available SUNGEO data files

Description

This function reports the availability of data files on the SUNGEO server, searchable by country
and topic.

get_info 15

Usage

get_info(country_names = NULL, country_iso3s = NULL, topics = NULL)

Arguments

country_names Country name(s). Character string (single country) or vector of character strings
(multiple countries).

country_iso3s Country code (ISO 3166-1 alpha-3). Character string (single country) or vector
of character strings (multiple countries).

topics Data topics. See get_info() for full list. Character string (single topic) or
vector of character strings (multiple topics).
Value

list object, with three slots: ’summary’, “topics’, and "geoset’.

See Also

get_data

Examples

Get list of all available data
Not run:

out_1 <- get_info()
out_1["summary"]

out_1["topics"]

out_1["geosets"]

End(Not run)

Get list of available data for a single country

Not run:
out_2 <- get_info(country_names="Afghanistan")
out_2

End(Not run)

Get list of available data for a single topic

Not run:
out_3 <- get_info(topics="Elections:LowerHouse:CLEA")
out_3

End(Not run)

Get list of available data for a multiple countries and topics
Not run:
out_4 <- get_info(
country_names=c("Afghanistan”,"Zambia"),
topics=c("Elections:LowerHouse:CLEA","Events:PoliticalViolence:GED"))
out_4

16 hex 05 deu

End(Not run)

gpw4_deu2010 Population count raster for Germany, 2010.

Description

2.5 arc-minute resolution raster of estimates of human population (number of persons per pixel),
consistent with national censuses and population registers, for the year 2010.

Usage
gpw4_deu2010

Format

class : SpatRaster dimensions : 186, 220, 1 (nrow, ncol, nlyr) resolution : 0.04166667, 0.04166667
(x,y) extent : 5.875, 15.04167, 47.29167, 55.04167 (xmin, xmax, ymin, ymax) coord. ref. : lon/lat
WGS 84 (EPSG:4326) source(s) : memory name : gpw_v4_population_count_revl1_2010_2pt5_min
min value : 0.00 max value : 92915.66

Source

Gridded Population of the World (GPW) v4: Population Count, v4.11 <doi:10.7927/H4JW8BX5>.

hex_05_deu Hexagonal grid for Germany.

Description

Regular hexagonal grid of 0.5 degree diameter cells, covering territory of Germany (2020 borders).

Usage
hex_05_deu

Format

Simple feature collection with 257 features and 3 fields. geometry type: POLYGON. dimension:
XY. bbox: xmin: 5.375001 ymin: 46.76568 xmax: 15.375 ymax: 55.13726. epsg (SRID): 4326.
proj4string: +proj=longlat +datum=WGS84 +no_defs.

HEX_ID Unique cell identifier. Character.

HEX_X Longitude of cell centroid. Numeric.

HEX_Y Latitude of cell centroid. Numeric.

highways_deul992 17

Source

SUNGEO

highways_deu1992 Roads polylines for Germany, 1992

Description

Roads thematic layer from Digital Chart of the World. Subset: divided multi-lane highways.

Usage

highways_deu1992

Format

Simple feature collection with 1741 features and 5 fields. geometry type: MULTILINESTRING.
dimension: XY. bbox: xmin: 5.750933 ymin: 47.58799 xmax: 14.75109 ymax: 54.80712 epsg
(SRID): 4326. proj4string: +proj=longlat +datum=WGS84 +no_defs.

MED_DESCRI Is the road a divided multi-lane highway with a median? Character string.
RTT_DESCRI Primary or secondary route? Character string.

F_CODE_DES Feature code description (road or trail). Character string.

ISO ISO 3166-1 alpha-3 country code. Character string.

ISOCOUNTRY Country name. Character string.

Source

Defense Mapping Agency (DMA), 1992. Digital Chart of the World. Defense Mapping Agency,
Fairfax, Virginia. (Four CD-ROMs). Available through DIVA-GIS: http://www.diva-gis.org/
gData (accessed August 12, 2021).

hot_spot Automatically calculate Local G hot spot intensity

Description

Function automatically calculates the Local G hot spot intensity measure for spatial points, spatial
polygons, and single raster layers. Uses RANN for efficient nearest neighbor calculation (spatial
points and single raster layers only); users can specify the number of neighbors (k). Users can
specify the neighborhood style (see spdep::nb2listw) with default being standardized weight matrix
(W).

http://www.diva-gis.org/gData
http://www.diva-gis.org/gData

18 hot_spot

Usage
hot_spot(
insert,
variable = NULL,
style = "W",
k =09,
remove_missing = TRUE,
NA_Value = 0,
include_Moran = FALSE
)
Arguments
insert Spatial point, spatial polygon, or single raster layer object. Acceptable formats
include sf, SpatialPolygonsDataFrame, SpatialPointsDataFrame, and RasterlLayer.
variable Column name or numeric vector containing the variable from which the local G
statistic will be calculated. Must possess a natural scale that orders small and
large observations (i.e. number, percentage, ratio and not model residuals).
style Style can take values 'W', 'B', 'C', 'U', 'mimax', 'S' (see nb2listw). Char-
acter string.
k Number of neighbors. Default is 9. Numeric.

remove_missing Whether to calculate statistic without missing values. If FALSE, substitute value
must be supplied to NA_Value.

NA_Value Substitute for missing values. Default value is 0. Numeric.

include_Moran Calculate local Moran’s I statistics. Default is FALSE. Logical.

Value

If input is sf, SpatialPolygonsDataFrame or SpatialPointsDataFrame object, returns sf ob-
ject with same geometries and columns as input, appended with additional column containing Lo-
cal G estimates (LocalG). If input is RasterLayer object, returns RasterBrick object containing
original values (Original) and Local G estimates (LocalG).

Examples

Calculate Local G for sf point layer

Not run:

data(clea_deu2009_pt)

out_1 <- hot_spot(insert=clea_deu2009_pt, variable = clea_deu2009_pt$tol)
class(out_1)

plot(out_1["LocalG"])

End(Not run)

Calculate Local G for sf polygon layer (variable as numeric vector)

Not run:

lineZpoly 19

data(clea_deu2009)

out_2 <- hot_spot(insert=clea_deu2009, variable = clea_deu2009%tol)
summary (out_2%$LocalG)

plot(out_2["LocalG"])

End(Not run)
Calculate Local G for sf polygon layer (variable as column name)

Not run:

out_3 <- hot_spot(insert=clea_deu2009, variable = "tol1")
summary (out_3$LocalG)

plot(out_3["LocalG"])

End(Not run)
Calculate Local G for sf polygon SpatialPolygonsDataFrame (variable as column name)

Not run:

out_4 <- hot_spot(insert=as(clea_deu2009, "Spatial”), variable = "tol1")
summary (out_4$LocalG)

plot(out_4["LocalG"])

End(Not run)

Calculate Local G for RasterLayer
Not run:

data(gpw4_deu2010)

out_5 <- hot_spot(insert=gpw4_deu2010)
class(out_5)

terra::plot(out_5%$LocalG)

End(Not run)

line2poly Line-in-polygon analysis

Description

Function for basic geometry calculations on polyline features, within an overlapping destination
polygon layer.

Usage

line2poly(
linez,
polyz,
poly_id,
measurez = c("length”, "density”, "distance"),
outvar_name = "line",

20 line2poly
unitz = "km",
reproject = TRUE,
na_val = NA,
verbose = TRUE
)
Arguments
linez Source polyline layer. sf object.
polyz Destination polygon layer. Must have identical CRS to 1linez. sf object.
poly_id Name of unique ID column for destination polygon layer. Character string.
measurez Desired measurements. Could be any of "length" (sum of line lengths by poly-
gon), "density" (sum of line lengths divided by area of polygon) and/or "dis-
tance" (distance from each polygon to nearest line feature). Default is to report
all three. Character string or vector of character strings.
outvar_name Name (root) to be given to output variable. Default is "1ine”. Character string.
unitz Units of measurement (linear). Defaul is "km". Character string.
reproject Temporarily reproject layers to planar projection for geometric operations? De-
faul is TRUE. Logical.
na_val Value to be assigned to missing values (line lengths and densities only). Defaul
is NA. Logical or list.
verbose Print status messages and progress? Default is TRUE. Logical.
Value

An sf polygon object, with summary statisics of linez features aggregated to the geometries of
polyz.

If measurez = "lengths”, contains fields with suffixes
* "_length". Sum of line lengths within each polygon, in km or other units supplied in unitz.
If measurez = "density"”, contains fields with suffixes

e "_length". Sum of line lengths within each polygon, in km or other units supplied in unitz.
* "_area". Area of each polygon, in km”2 or the square of linear units supplied in unitz.

e "_density". Sum of line lengths divided by area of each polygon, in km/km”2 or other units
supplied in unitz.

If measurez = "distance”, contains fields with suffixes

» "_distance". Distance from each polygon to nearest line feature, in km or other units supplied
inunitz.

If measurez = c("length”,"density”, "distance") (default), contains all of the above.

nesting 21

Examples

Road lengths, densities and distance from polygon to nearest highway
Not run:
data(hex_05_deu)
data(highways_deu1992)
out_1 <- line2poly(linez = highways_deu1992,
polyz = hex_05_deu,
poly_id = "HEX_ID")
plot(out_1["line_length"])
plot(out_1["line_density"])
plot(out_1["line_distance”])

End(Not run)

Replace missing road lengths and densities with @'s, rename variables
Not run:
out_2 <- line2poly(linez = highways_deu1992,
polyz = hex_05_deu,
poly_id = "HEX_ID",
outvar_name = "road”,
na_val = @)
plot(out_2["road_length"])
plot(out_2["road_density"])
plot(out_2["road_distance"])

End(Not run)

nesting Relative scale and nesting coefficients

Description
Function to calculate relative scale and nesting metrics for changes of support from a source polygon
layer to an overlapping (but spatially misaligned) destination polygon layer.

Usage

nesting(
poly_from = NULL,
poly_to = NULL,

metrix = "all”,
tol_ = 0.001,
by_unit = FALSE
)
Arguments

poly_from Source polygon layer. sf object (polygon or multipolygon).

22 nesting

poly_to Destination polygon layer. Must have identical CRS to poly_from. sf object
(polygon or multipolygon).

metrix Requested scaling and nesting metrics. See "details". Default is "all". Character

string or vector of character strings.

tol_ Minimum area of polygon intersection, in square meters. Default is 0.001. Nu-
meric.
by_unit Include a by-unit decomposition of requested nesting metrics (if available)? De-
fault is FALSE. Logical.
Details

Currently supported metrics (metrix) include:

Relative scale ("rs"). Measures whether a change-of-support (CoS) task is one of aggregation
or disaggregation, by calculating the share of source units that are smaller than destination
units. Its range is from O to 1, where values of 1 indicate pure aggregation (all source units are
smaller than destination units) and values of 0 indicate no aggregation (all source units are at
least as large as destination units). Values between 0 and 1 indicate a hybrid (i.e. some source
units are smaller, others are larger than target units).

Relative nesting ("rn"). Measures how closely source and destination boundaries align, by
calculating the share of source units that cannot be split across multiple destination units. Its
range is from O to 1, where values of 0 indicate no nesting (every source unit can be split
across multiple destination units) and values of 1 indicate full nesting (no source unit can be
split across multiple destination units).

Relative scale, symmetric ("rs_sym"). Alternative measure of "rs", which ranges from -1 to
1. It calculates a difference between two proportions: the share of source units that is smaller
than destination units (i.e. "rs" from standpoint of source units), and the share that is larger
(i.e. "rs" from standpoint of destination units). Values of -1 indicate pure disaggregation (all
source units are larger than destination units), 1 indicates pure aggregation (all source units
are smaller than destination units). Values of O indicate that all source units are the same size
as target units.

Relative nesting, symmetric ("rn_sym"). Alternative measure of "rn", which ranges from -1
to 1. It calculates a difference between two components: the nesting of source units within
destination units (i.e. "rn" from standpoint of source units), and the nesting of destination units
within source units (i.e. "rn" from standpoint of destination units. Values of 1 indicate that
source units are perfectly nested within destination units; -1 indicates that destination units are
perfectly nested within source units.

Relative scale, alternative ("rs_alt"). Alternative measure of "rs", rescaled as a proportion of
destination unit area. This measure can take any value on the real line, with positive values
indicating aggregation and negative values indicating disaggregation.

Relative nesting, alternative ("rn_alt"). Alternative measure of "rn", which places more weight
on areas of maximum overlap. The main difference between this measure and "rn" is its use of
the maximum intersection area for each source polygon instead of averaging over the quadratic
term. Two sets of polygons are considered nested if one set is completely contained within
another, with as few splits as possible. If none or only a sliver of a source polygon area falls
outside a single destination polygon, those polygons are "more nested" than a case where half
of a source polygon falls in destination polygon A and half falls into another polygon B.

nesting 23

e Relative scale, conditional ("rs_nn"). Alternative measure of "rs", calculated for the subset of
source units that are not fully nested within destination units.

* Relative nesting, conditional ("rn_nn"). Alternative measure of "rn", calculated for the subset
of source units that are not fully nested within destination units.

 Proportion intact ("p_intact"). A nesting metric that requires no area calculations at all. This
measure ranges from O to 1, where 1 indicates full nesting (i.e. every source unit is intact/no
splits), and 0 indicates no nesting (i.e. no source unit is intact/all are split).

* Proportion fully nested ("full_nest"). A stricter version of "p_intact". This measure ranges
from O to 1, where 1 indicates full nesting (i.e. every source unit is intact/no splits AND falls
completely inside the destination layer), and O indicates no nesting (i.e. no source unit is both
intact and falls inside destination layer).

* Relative overlap ("ro"). Assesses extent of spatial overlap between source and destination
polygons. This measure is scaled between -1 and 1. Values of 0 indicate perfect overlap (there
is no part of source units that fall outside of destination units, and vice versa). Values between
0 and 1 indicate a "source underlap” (some parts of source polygons fall outside of destination
polygons; more precisely, a larger part of source polygon area falls outside destination poly-
gons than the other way around). Values between -1 and 0 indicate a "destination underlap"
(some parts of destination polygons fall outside of source polygons; a larger part of destina-
tion polygon area falls outside source polygons than the other way around). Values of -1 and
1 indicate no overlap (all source units fall outside destination units, and vice versa). This is a
theoretical limit only; the function returns an error if there is no overlap.

* Gibbs-Martin index of diversification ("gmi"). Inverse of "rn", where values of 1 indicate
that every source unit is evenly split across multiple destination units, and O indicates that no
source unit is split across any destination units.

It is possible to pass multiple arguments to metrix (e.g. metrix=c(”"rn"”,"rs")). The default
(metrix="all") returns all of the above metrics.

The function automatically reprojects source and destination geometries to Lambert Equal Area
prior to calculation, with map units in meters.

Values of tol_ can be adjusted to increase or decrease the sensitivity of these metrics to small
border misalignments. The default value discards polygon intersections smaller than 0.001 square
meters in area.

Value

Named list, with numeric values for each requested metric in metrix. If by_unit==TRUE, last
element of list is a data.table, with nesting metrics disaggregated by source unit, where the first
column is a row index for the source polygon layer.

Examples

Calculate all scale and nesting metrics for two sets of polygons
Not run:
data(clea_deu2009)
data(hex_05_deu)
nest_1 <- nesting(
poly_from = clea_deu2009,
poly_to = hex_05_deu

24

nest_1

End(Not run)

metrix = "rn

)

nest_2

End(Not run)

point2poly_krige

Calculate just Relative Nesting, in the opposite direction
Not run:

nest_2 <- nesting(
poly_from = hex_05_deu,
poly_to = clea_deu2009,

" ”

point2poly_krige

Point-to-polygon interpolation,
method

ordinary and universal Kriging

Description

Usage

point2poly_krige(
pointz,
polyz,
rasterz = NULL,
yvarz = NULL,
xvarz = NULL,

pycno_yvarz = NULL,
funz = base::mean,
use_grid = FALSE,

nz_grid = 25,

blockz = 0,

pointz_x_coord = NULL,

pointz_y_coord = NULL,

polyz_x_coord = NULL,

polyz_y_coord = NULL,

messagez = ""
Arguments

pointz

Function for interpolating values from a source points layer to an overlapping destination polygon
layer, using ordinary and universal kriging with automatic variogram fitting

Source points layer. sf, sp, or data frame object.

point2poly_krige

polyz

rasterz

yvarz

Xxvarz

pycno_yvarz

funz

use_grid

nz_grid

blockz

pointz_x_coord

pointz_y_coord

polyz_x_coord

polyz_y_coord

messagez

Details

25

Destination polygon layer. Must have identical CRS to pointz. sf, sp, or data
frame object.

Source raster layer (or list of raster), with covariate(s) used for universal kriging.
Must have identical CRS to polyz. RasterLayer object or list of RasterLayer
objects.

Names of numeric variable(s) to be interpolated from source points layer to
destination polygons. Character string or vector of character strings.

Names of numeric variable(s) for universal Kriging, in which yvarz is linearly
dependent. Character string or vector of character strings.

Names of spatially extensive numeric variables for which the pycnophylactic
(mass-preserving) property should be preserved. Must be a subset of yvarz.
Character string or vector of character strings.

Aggregation function to be applied to values in rasterz and to interpolated
values. Must take as an input a vector x. Default is mean. Function.

Use regular grid as destination layer for interpolation, before aggregating to
polygons? Default is FALSE.

Number of grid cells in x and y direction (columns, rows). Integer of length 1
or 2. Default is 25. Ignored if use_grid=FALSE.

Size of blocks used for Block Kriging, in meters. Integer of length 1 or 2.
Default is 0.

Name of numeric variable corresponding to a measure of longitude (Easting) in
a data frame object for pointz. Character string.

Name of numeric variable corresponding to a measure of Latitude (Northing) in
a data frame object for pointz. Character string.

Name of numeric variable corresponding to a measure of longitude (Easting) in
a data frame object for polyz. Character string.

Name of numeric variable corresponding to a measure of Latitude (Northing) in
a data frame object for polyz. Character string.

Optional message to be printed during Kriging estimation. Character string.

This function performs Ordinary and Universal Kriging, automatically selecting a variogram model
with the smallest residual sum of squares from the sample variogram. See autofitVariogram.

Unlike other available point-to-polygon interpolation techniques, this function currently only ac-
cepts numeric variables in varz and does not support interpolation of character strings.

Value

sf polygon object, with variables from pointz interpolated to the geometries of polyz.

26 point2poly_krige

Examples

Ordinary Kriging with one variable
Not run:
data(clea_deu2009)
data(clea_deu2009_pt)
out_1 <- point2poly_krige(pointz = clea_deu2009_pt,
polyz = clea_deu2009,
yvarz = "tol")
par(mfrow=c(1,2))
plot(clea_deu2009["to1"], key.pos = NULL, reset = FALSE)
plot(out_1["tol.pred"], key.pos = NULL, reset = FALSE)

End(Not run)

Ordinary Kriging with multiple variables
Not run:
out_2 <- point2poly_krige(pointz = clea_deu2009_pt,

polyz = clea_deu2009,

yvarz = c("to1”,"pvs1_margin"))
par(mfrow=c(1,2))
plot(clea_deu2009["pvsi_margin"], key.pos = NULL, reset = FALSE)
plot(out_2["pvs1_margin.pred”], key.pos = NULL, reset = FALSE)

End(Not run)

Universal Kriging with one variable from a raster
Not run:
data(gpw4_deu2010)
data(clea_deu2009)
data(clea_deu2009_pt)
out_3 <- point2poly_krige(pointz = clea_deu2009_pt,
polyz = clea_deu2009,
yvarz = "tol1",
rasterz = gpw4_deu2010)
par(mfrow=c(1,2))
plot(clea_deu2009["to1"], key.pos = NULL, reset = FALSE)
plot(out_3["tol.pred”], key.pos = NULL, reset = FALSE)

End(Not run)

Block Kriging with block size of 100 km
Not run:
data(clea_deu2009)
data(clea_deu2009_pt)
out_4 <- point2poly_krige(pointz = clea_deu2009_pt,
polyz = clea_deu2009,
yvarz = "tol",
blockz = 100000)
par(mfrow=c(1,2))
plot(clea_deu2009["to1"], key.pos = NULL, reset = FALSE)
plot(out_4["tol.pred"], key.pos = NULL, reset = FALSE)

point2poly_simp 27

End(Not run)

point2poly_simp Point-to-polygon interpolation, simple overlay method

Description

Function for assigning values from a source point layer to a destination polygon layer, using simple
point-in-polygon overlays

Usage

point2poly_simp(
pointz,
polyz,
varz,
char_varz = NULL,
funz = list(function(x) {
sum(x, na.rm = TRUE)

1,
na_val = NA,
drop_na_cols = FALSE
)
Arguments
pointz Source points layer. sf object.
polyz Destination polygon layer. Must have identical CRS to pointz. sf object.
varz Names of variable(s) to be assigned from source polygon layer to destination
polygons. Character string or vector of character strings.
char_varz Names of character string variable(s) in varz. Character string or vector of
character strings.
funz Aggregation function to be applied to variables specified in varz. Must take as
an input a vector x. Function or list of functions.
na_val Value to be assigned to missing values. Defaul is NA. Logical or list.

drop_na_cols Drop columns with completely missing values. Defaul is FALSE. Logical.

Details

Assignment procedures are the same for numeric and character string variables. All variables sup-
plied in varz are passed directly to the function specified in funz. If different sets of variables
are to be aggregated with different functions, both varz and funz should be specified as lists (see
examples below).

Value

Returns a sf polygon object, with variables from pointz assigned to the geometries of polyz.

28 point2poly_tess

Examples

Assignment of a single variable (sums)

Not run:

data(hex_05_deu)

data(clea_deu2009_pt)

out_1 <- point2poly_simp(pointz=clea_deu2009_pt,
polyz=hex_05_deu,
varz="vv1")

plot(out_1["vv1"])

End(Not run)

Replace NA's with @'s
Not run:
out_2 <- point2poly_simp(pointz = clea_deu2009_pt,
polyz = hex_05_deu,
varz = "wv1",
na_val = 0)
plot(out_2["vv1"])

End(Not run)

Multiple variables, with different assignment functions
Not run:
out_3 <- point2poly_simp(pointz = clea_deu2009_pt,
polyz = hex_05_deu,
varz = list(
c("tol”,"pvsi_margin”),
c("vvl"),
c("incumb_pty_n","winl_pty_n")),
funz = list(
function(x){mean(x,na.rm=TRUE)},
function(x){sum(x,na.rm=TRUE)},
function(x){paste@(unique(na.omit(x)),collapse=" | ") }),
na_val = list(NA_real_,@,NA_character_))

End(Not run)

point2poly_tess Point-to-polygon interpolation, tessellation method

Description
Function for interpolating values from a source point layer to a destination polygon layer, using
Voronoi tessellation and area/population weights.

Usage

point2poly_tess(

point2poly_tess

pointz,
polyz,
poly_id,

char_methodz = "aw",

methodz =
pop_raster

varz = NULL,

29

n

n

aw”,

NULL,

pycno_varz = NULL,

char_varz =

NULL,

char_assign = "biggest_overlap”,
funz = function(x, w) {
stats::weighted.mean(x, w, na.rm = TRUE)

b

return_tess

seed = 1

Arguments

pointz
polyz
poly_id

char_methodz

methodz

pop_raster

varz

pycno_varz

char_varz

char_assign

funz

return_tess

seed

= FALSE,

Source points layer. sf object.
Destination polygon layer. Must have identical CRS to pointz. sf object.
Name of unique ID column for destination polygon layer. Character string.

Interpolation method(s) for character strings. Could be either of "aw" (areal
weighting, default) or "pw" (population weighting). See "details". Character
string.

Interpolation method(s) for numeric covariates. Could be either of "aw" (areal
weighting, default) and/or "pw" (population weighting). See "details". Charac-
ter string or vector of character strings.

Population raster to be used for population weighting, Must be supplied if methodz="pw".
Must have identical CRS to poly_from. raster or SpatRaster object.

Names of numeric variable(s) to be interpolated from source polygon layer to
destination polygons. Character string or list of character strings.

Names of spatially extensive numeric variables for which the pycnophylactic
(mass-preserving) property should be preserved. Character string or vector of
character strings.

Names of character string variables to be interpolated from source polygon layer
to destination polygons. Character string or vector of character strings.

Assignment rule to be used for variables specified in char_varz. Could be either
"biggest_overlap" (default) or "all_overlap". See "details". Character string or
vector of character strings.

Aggregation function to be applied to variables specified in varz. Must take as
an input a numeric vector x and vector of weights w. Function or list of functions.

Return Voronoi polygons, in addition to destinaton polygon layer? Default is
FALSE. Logical.

Seed for generation of random numbers. Default is 1. Numeric.

30 point2poly_tess

Details

This function interpolates point data to polygons with a two-step process. In the first step (tessel-
lation), each point is assigned a Voronoi cell, drawn such that (a) the distance from its borders to
the focal point is less than or equal to the distance to any other point, and (b) no gaps between
cells remain. The second step (interpolation) performs a polygon-in-polygon interpolation, using
the Voronoi cells as source polygons.

Currently supported integration methods in the second step (methodz) include:

* Areal weighting ("aw"). Values from poly_from weighted in proportion to relative area of
spatial overlap between source features and geometries of poly_to.

 Population weighting ("pw"). Values from poly_from weighted in proportion to relative pop-
ulation sizes in areas of spatial overlap between source features and geometries of poly_to.
This routine uses a third layer (supplied in pop_raster) to calculate the weights.

When a list of variables are supplied and one methods argument specified, then the chosen method
will be applied to all variables.

When a list of of variables are supplied and multiple methods arguments specified, then weighting

methods will be applied in a pairwise order. For example, specifying varz = list(c("to1", "pvs1_margin”),
c("vv1")) and methodz = c('aw', 'pw') will apply areal weighting to the the first set of variables

(tol and pvs1_margin) and population weighing to the second set (vv1).

Interpolation procedures are handled somewhat differently for numeric and character string vari-
ables. For numeric variables supplied in varz, "aw" and/or "pw" weights are passed to the function
specified in funz. If different sets of numeric variables are to be aggregated with different functions,
both varz and funz should be specified as lists (see examples below).

For character string (and any other) variables supplied in char_varz, "aw" and/or "pw" weights are
passed to the assignment rule(s) specified in char_assign. Note that the char_varz argument may
include numerical variables, but varz cannot include character string variables.

Currently supported assignment rules for character strings (char_assign) include:
* "biggest_overlap". For each variable in char_varz, the features in poly_to are assigned

a single value from overlapping poly_from features, corresponding to the intersection with
largest area and/or population weight.

 "all_overlap". For each variable in char_varz, the features in poly_to are assigned all values
from overlapping poly_from features, ranked by area and/or population weights (largest-to-
smallest) of intersections.

n on

Itis possible to pass multiple arguments to char_assign (e.g. char_assign=c("biggest_overlap”,"all_overlap")),
in which case the function will calculate both, and append the resulting columns to the output.

Value

If return_tess=FALSE, returns a sf polygon object, with variables from pointz interpolated to the
geometries of polyz.

If return_tess=TRUE, returns a list, containing

 "result". The destination polygon layer. sf object.

* "tess". The (intermediate) Voronoi tessellation polygon layer. sf object.

polyZ2poly_ap

Examples

Interpolation of a single variable, with area weights

Not run:

data(hex_05_deu)

data(clea_deu2009_pt)

out_1 <- point2poly_tess(pointz = clea_deu2009_pt,
polyz = hex_05_deu,
poly_id = "HEX_ID",
varz = "to1")

plot(out_1["tol_aw"])

End(Not run)

Extract and inspect tessellation polygons

Not run:

out_2 <- point2poly_tess(pointz = clea_deu2009_pt,
polyz = hex_05_deu,
poly_id = "HEX_ID",
varz = "tol",
return_tess = TRUE)

plot(out_2%$tess["to1"])

plot(out_2$result["tol_aw"])

End(Not run)

Interpolation of multiple variables, with area and population weights
Not run:
data(gpw4_deu2010)
out_3 <- point2poly_tess(pointz = clea_deu2009_pt,
polyz = hex_05_deu,
poly_id = "HEX_ID",
methodz = c("aw”,"pw"),
varz = list(
c("tol","pvsi_margin”),
c("wvl™)
),
pycno_varz = "vv1",
funz = list(
function(x,w){stats: :weighted.mean(x,w)},
function(x,w){sum(x*w)}
),
char_varz = c("incumb_pty_n","win1_pty_n"),
pop_raster = gpw4_deu2010)
plot(out_3["vvl_pw"])

End(Not run)

31

poly2poly_ap Area and population weighted polygon-to-polygon interpolation

32 poly2poly_ap

Description

Function for interpolating values from a source polygon layer to an overlapping (but spatially mis-
aligned) destination polygon layer, using area and/or population weights.

Usage

poly2poly_ap(
poly_from,
poly_to,
poly_to_id,
geo_vor = NULL,
methodz = "aw",
char_methodz = "aw",
pop_raster = NULL,
varz = NULL,
pycno_varz = NULL,
char_varz = NULL,
char_assign = "biggest_overlap”,
funz = function(x, w) {

stats::weighted.mean(x, w, na.rm = TRUE)

b
seed = 1
)
Arguments
poly_from Source polygon layer. sf object.
poly_to Destination polygon layer. Must have identical CRS to poly_from. sf object.
poly_to_id Name of unique ID column for destination polygon layer. Character string.
geo_vor Voronoi polygons object (used internally by point2poly_tess). sf object.
methodz Area interpolation method(s). Could be either of "aw" (areal weighting, default)

and/or "pw" (population weighting). See "details". Character string or vector of
character strings.

char_methodz Interpolation method(s) for character strings. Could be either of "aw" (areal
weighting, default) or "pw" (population weighting). See "details". Character
string.

pop_raster Population raster to be used for population weighting, Must be supplied if methodz="pw".
Must have identical CRS to poly_from. raster or SpatRaster object.

varz Names of numeric variable(s) to be interpolated from source polygon layer to
destination polygons. Character string or vector of character strings.

pycno_varz Names of spatially extensive numeric variables for which the pycnophylactic
(mass-preserving) property should be preserved. Character string or vector of
character strings.

char_varz Names of character string variables to be interpolated from source polygon layer
to destination polygons. Character string or vector of character strings.

polyZ2poly_ap 33

char_assign Assignment rule to be used for variables specified in char_varz. Could be either
"biggest_overlap" (default) or "all_overlap". See "details". Character string or
vector of character strings.

funz Aggregation function to be applied to variables specified in varz. Must take as
an input a numeric vector x and vector of weights w. Function or list of functions.
seed Seed for generation of random numbers. Default is 1. Numeric.
Details

Currently supported integration methods (methodz) include:

* Areal weighting ("aw"). Values from poly_from weighted in proportion to relative area of
spatial overlap between source features and geometries of poly_to.

 Population weighting ("pw"). Values from poly_from weighted in proportion to relative pop-
ulation sizes in areas of spatial overlap between source features and geometries of poly_to.
This routine uses a third layer (supplied in pop_raster) to calculate the weights.

non

It is possible to pass multiple arguments to methodz (e.g. methodz=c("aw", "pw")), in which case
the function will calculate both sets of weights, and append the resulting columns to the output.

Interpolation procedures are handled somewhat differently for numeric and character string vari-
ables. For numeric variables supplied in varz, "aw" and/or "pw" weights are passed to the function
specified in funz. If different sets of numeric variables are to be aggregated with different functions,
both varz and funz should be specified as lists (see examples below).

For character string (and any other) variables supplied in char_varz, "aw" and/or "pw" weights are
passed to the assignment rule(s) specified in char_assign. Note that the char_varz argument may
include numerical variables, but varz cannot include character string variables.

Currently supported assignment rules for character strings (char_assign) include:

» "biggest_overlap". For each variable in char_varz, the features in poly_to are assigned
a single value from overlapping poly_from features, corresponding to the intersection with
largest area and/or population weight.

 "all_overlap". For each variable in char_varz, the features in poly_to are assigned all values
from overlapping poly_from features, ranked by area and/or population weights (largest-to-
smallest) of intersections.

non

Itis possible to pass multiple arguments to char_assign (e.g. char_assign=c("biggest_overlap”,"all_overlap")),
in which case the function will calculate both, and append the resulting columns to the output.

Value

sf polygon object, with variables from poly_from interpolated to the geometries of poly_to.

Examples

Interpolation of a single variable, with area weights
Not run:

data(clea_deu2009)

data(hex_05_deu)

out_1 <- poly2poly_ap(poly_from = clea_deu2009,

34

poly_to = hex_05_deu,
poly_to_id = "HEX_ID",
varz = "tol"

)

End(Not run)

Interpolation of multiple variables, with area weights
Not run:
out_2 <- poly2poly_ap(

poly_from = clea_deu2009,

poly_to = hex_05_deu,

poly_to_id = "HEX_ID",

varz = list(

c("tol”,"pvsI_margin"),

c("wi1™)),
pycno_varz = "vv1",
funz = list(

function(x,w){stats::weighted.mean(x,w)},
function(x,w){sum(x*w)}),

char_varz = c("incumb_pty_n","winl_pty_n")

)

End(Not run)

Interpolation of a single variable, with population weights
Not run:
data(gpw4_deu2010)
out_3 <- poly2poly_ap(poly_from = clea_deu2009,
poly_to = hex_05_deu,
poly_to_id = "HEX_ID",
varz = "tol",
methodz = "pw",
pop_raster = gpw4_deu2010)

End(Not run)

Interpolation of a single variable, with area and population weights
Not run:
out_4 <- poly2poly_ap(poly_from = clea_deu2009,

poly_to = hex_05_deu,

poly_to_id = "HEX_ID",

varz = "tol1",

methodz = c("aw”,"pw"),

pop_raster = gpw4_deu2010)

End(Not run)

sf2raster

sf2raster Convert simple features object into regularly spaced raster

sf2raster 35

Description

This function takes in an sf spatial object (polygon or point) and returns a regularly spaced Raster-
Layer. Reverse translation option allows users to create an sf polygon object from the regularly
spaced RasterLayer. This function can also conver the sf object into a cartogram with a user-
specified variable name.

Usage

sf2raster(
polyz_from = NULL,
pointz_from = NULL,
input_variable = NULL,
reverse = FALSE,
poly_to = NULL,
return_output = NULL,
return_field = NULL,
aggregate_function = list(function(x) mean(x, na.rm = TRUE)),
reverse_function = list(function(x) mean(x, na.rm = TRUE)),
grid_dim = c(1000, 1000),
cartogram = FALSE,
carto_var = NULL,
message_out = TRUE,
return_list = FALSE

)

Arguments
polyz_from Source polygon layer. sf object.
pointz_from Source point layer. sf object.

input_variable Name of input variable from source layer. Character string.

reverse Reverse translation from raster layer to sf polygon object (polygon features
only). Default is FALSE.

poly_to Destination polygon layer for reverse conversion. Must be specified if reverse=TRUE.
sf object.

return_output Return output for reverse conversion. Must be specified if reverse=TRUE.

return_field Return field for reverse conversion. Must be specified if reverse=TRUE.
aggregate_function
Aggregation function to be applied to variables specified in input_variable.
Must take as an input a numeric vector x. Function or list of functions. Default
is mean.
reverse_function
Aggregation function for reverse conversion. Must be specified if reverse=TRUE.
Function or list of functions. Default is mean.

grid_dim Dimensions of raster grid. Numerical vector of length 2 (number of rows, num-
ber of columns). Default is c (1000, 1000).

cartogram Cartogram transformation. Logical. Default is FALSE.

36

carto_var

message_out

return_list

Value

sf2raster

Input variable for cartogram transformation. Must be specified if cartogram=TRUE.
Character string.

Print informational messages. Logical. Default is TRUE.

Return full set of results, including input polygons, centroids and field raster.
Default is FALSE. Logical.

If return_list=FALSE (default) and reverse=FALSE (default), returns RasterLayer object, with
cell values corresponding to input_variable.

If return_list=TRUE and input layer is polygon, returns a list containing

 "return_output". Output raster, with values corresponding to input_variable. RasterLayer

object.

 "return_centroid". Raster of centroids, with values corresponding to input_variable. RasterLayer

object.

* "poly_to".

Source polygons, with columns corresponding to input_variable and auto-

generated numerical ID Field. sf object.

* "return_field". Output raster, with values corresponding to auto-generated numerical ID Field.
RasterLayer object.

If return_list=TRUE and input layer is points, returns a list containing

* "return_output". Output raster, with values corresponding to input_variable. RasterLayer

object.

* "return_point". Source points, with column corresponding to input_variable.

If reverse=TRUE, returns an sf polygon layer, with columns corresponding to input_variable
and auto-generated numerical ID Field.

Examples

Rasterization of polygon layer.

Not run:

data(clea_deu2009)
out_1 <- sf2raster(polyz_from = utm_select(clea_deu2009),

input_variable = "to1")

terra::plot(out_1)

End(Not run)

Rasterization of point layer

Not run:

data(clea_deu2009_pt)
out_2 <- sf2raster(pointz_from = utm_select(clea_deu2009_pt),

input_variable = "to1",
grid_dim = c(25,25))

terra::plot(out_2)

End(Not run)

Cartogram (vote turnout scaled by number of valid votes)

SUNGEO 37

Not run:

out_3 <- sf2raster(polyz_from = utm_select(clea_deu2009),
input_variable = "to1",
cartogram = TRUE,
carto_var = "vv1")

terra::plot(out_3)

End(Not run)
Polygonization of cartogram raster

Not run:

out_4a <- sf2raster(polyz_from = utm_select(clea_deu2009),
input_variable = "tol1",
cartogram = TRUE,
carto_var = "vv1",

return_list = TRUE)
out_4 <- sf2raster(reverse = TRUE,
poly_to = out_4a$poly_to,
return_output = out_4a$return_output,
return_field = out_4a$return_field)
terra::plot(out_4)

End(Not run)

SUNGEO SUNGEO package

Description

Sub-National Geospatial Data Archive System: Geoprocessing Toolkit

Details
See the README on GitHub
utm_select Automatically convert geographic (degree) to planar coordinates (me-
ters)
Description

Function to automatically convert simple feature, spatial and raster objects with geographic coordi-
nates (longitude, latitude / WGS 1984, EPSG:4326) to planar UTM coordinates. If the study region
spans multiple UTM zones, defaults to Albers Equal Area.

Usage

utm_select(x, max_zones = 5, return_list = FALSE)

https://github.com/zhukovyuri/SUNGEO#readme

38 utm_select

Arguments
X Layer to be reprojected. sf, sp, SpatRaster or RasterlLayer object.
max_zones Maximum number of UTM zones for single layer. Default is 5. Numeric.
return_list Return list object instead of reprojected layer (see Details). Default is FALSE.
Logical.
Details

Optimal map projection for the object x is defined by matching its horizontal extent with that of
the 60 UTM zones. If object spans multiple UTM zones, uses either the median zone (if number of
zones is equal to or less than max_zones) or Albers Equal Area projection with median longitude
as projection center (if number of zones is greater than max_zones).

Value

Re-projected layer. sf or RasterlLayer object, depending on input.

If return_list=TRUE, returns a list object containing

» "x_out". The re-projected layer. sf or RasterLayer object, depending on input.

* "proj4_best".projdstring of the projection. Character string.

Examples

Find a planar projection for an unprojected (WSG 1984) hexagonal grid of Germany
Not run:

data(hex_05_deu)

out_1 <- utm_select(hex_05_deu)

End(Not run)

Find a planar projection for a raster
Not run:

data(gpw4_deu2010)

out_2 <- utm_select(gpw4_deu2010)

End(Not run)

Index

x datasets sf2raster, 34
available_data, 2 SUNGEO, 37
cc_dict, 4
clea_deu2009, 4 utm_select, 37

clea_deu2009_df, 5
clea_deu2009_pt, 6
gpw4_deu2010, 16
hex_05_deu, 16
highways_deu1992, 17

autofitVariogram, 25
available_data, 2

cc_dict, 4
clea_deu2009, 4
clea_deu2009_df, 5
clea_deu2009_pt, 6

df2sf, 7
fix_geom, 8

geocode_osm, 9, 11
geocode_osm_batch, 9, 10
get_data, 12, 15
get_info, 14, 14
gpw4_deu2010, 16

hex_05_deu, 16
highways_deu1992, 17
hot_spot, 17

line2poly, 19

nb2listw, /8
nesting, 21

point2poly_krige, 24
point2poly_simp, 27
point2poly_tess, 28
poly2poly_ap, 31

39

	available_data
	cc_dict
	clea_deu2009
	clea_deu2009_df
	clea_deu2009_pt
	df2sf
	fix_geom
	geocode_osm
	geocode_osm_batch
	get_data
	get_info
	gpw4_deu2010
	hex_05_deu
	highways_deu1992
	hot_spot
	line2poly
	nesting
	point2poly_krige
	point2poly_simp
	point2poly_tess
	poly2poly_ap
	sf2raster
	SUNGEO
	utm_select
	Index

