
Linking to Native Routines in This Package

Charles J. Geyer

December 13, 2023

1 Aster Models

Aster models implemented in this package (aster, Geyer, 2017a) are

described by Geyer, Wagenius and Shaw (2007a) but are better described by

the �rst draft of that paper (Geyer, Wagenius and Shaw, 2007b, Chapter 1).

or by the course slides for a course on aster models http://www.stat.umn.

edu/geyer/8931aster/slides/s2.pdf.

The issue is that Geyer et al. (2007a) describe too many aster models,

those implemented in the package aster2 (Geyer, 2015), and while discussing

this package we don't want to know about aster models it does not imple-

ment.

The aster models in this package are described by

(a) A directed acyclic graph in which each node has at most one predeces-

sor.

(b) A one-parameter exponential family of distributions associated with

each arrow of this graph.

(c) A data vector giving data for each non-initial node of the graph for

each individual.

(d) A data vector giving data for each initial node of the graph for each

individual.

A node is initial if it has no predecessor, otherwise non-initial. This

agrees with the terminology used in the aster2 package and recent papers

and technical reports about aster models by this author. It disagrees with

the terminology used in the aster package which says root instead of initial.

In this package, every individual has the same graph. Call the number of

non-initial nodes in that graph nnode. Give these non-initial nodes indices

1



(integers from 1 to nnode) so that each predecessor has a lower index than any

of its successors. Then the graph for one individual is speci�ed by an integer

vector of length nnode, which gives for each non-initial node the index of its

predecessor node if its predecessor is non-initial and zero otherwise (meaning

its predecessor is an initial node). Call this vector pred. It speci�es (a) in

the list above.

Item (b) in the list above is also speci�ed by an integer vector of length

nnode. Call it fam. The speci�cation also needs a mapping from integers to

families. The families for the model are speci�ed by a list of R objects of

class "astfam", which are described by the help page

library("aster")

help("families")

Call this list famlist. Then these must satisfy

all(fam %in% seq(along = famlist))

Then famlist[[fam[j]]] speci�es the family associated with the arrow to

node j from its predecessor.

Data at non-initial nodes is considered random and is speci�ed by a

double vector of length nind * nnode, where nind is the number of indi-

viduals on which we have data. The order in this vector is �rst node of the

graph for all individuals, second node of the graph for all individuals (in the

same order as before), and so forth. Call this vector resp.

Data at initial nodes is considered non-random and is speci�ed by a

double vector of length nind * nnode. The order in this vector is the same

as for resp. Call this vector root. The meaning of this vector is that if we

turn resp and root into matrices

resp <- matrix(resp, nind, nnode)

root <- matrix(root, nind, nnode)

so resp[i, j] is the data for individual i and node j, then the arrow in the

graph going to node j (there is exactly one by assumption) has successor

data resp[i, j] for individual i and predecessor data

(e) resp[i, pred[j]] in case pred[j] is not zero, and

(f) root[i, j] in case pred[j] is zero.

That speci�es the aster model and its data.

Now we have parameters. The conditional canonical parameterization of

the saturated aster model is a vector theta laid out like resp and root.

2



If we also consider it a matrix (like we did for resp and root above), then

theta[i, j] is the parameter for the conditional distribution of resp[i, j]

given its predecessor data (speci�ed by (e) or (f) in the list above as the case

may be).

We also have a parameter vector phi which is laid out like theta, root,

and resp called the unconditional canonical parameter vector of the sat-

urated aster model. This is too complicated to describe here. See Sec-

tion 2.3 of Geyer et al. (2007a) or (better) Section 1.1.3 of Geyer et al.

(2007b) or (better still) the aforementioned course slides (slides 1�37 of

http://www.stat.umn.edu/geyer/8931aster/slides/s2.pdf).

Everything in this section agrees with this package and its documenta-

tion. The other descriptions are just better descriptions of the same thing.

Summary A saturated aster model is speci�ed by vectors pred, fam, and

famlist described above. Its data is speci�ed by vectors resp and root

described above. One particular distribution in the model is speci�ed by a

parameter vector, one or the other of theta and phi described above.

2 Evaluating the Aster Log Likelihood in C in An-

other Package

This package registers two C functions via the R_RegisterCCallable

mechanism described in Section 5.4.2 of Writing R Extensions (R Develop-

ment Core Team, 2017). Their prototypes (found in mlogl.h in the src

directory) are

double aster_mlogl_sat_unco(int nind, int nnode, int *pred, int *fam,

double *phi, double *root, double *response, _Bool check);

double aster_mlogl_sat_cond(int nind, int nnode, int *pred, int *fam,

double *theta, double *root, double *response, _Bool check);

and a correct typedef for these functions is found in the mlogl-export.h �le

in the inst/include directory, which, of course, is in the include directory

when this package is installed

typedef double (*aster_mlogl_sat_either_funptr)(int nind, int nnode,

int *pred, int *fam, double *phi, double *root, double *response,

_Bool check);

3



To call one of these functions (for speci�city, say the former) from C code

in another package, one does the following. For a toy working example of

this see the demonstration packages in the linkingTo git repository Geyer

(2017b). This discussion is copied from that.

1. The calling package (the one you write) must have aster (>= 0.9) in

either the Depends or the Imports �eld of its DESCRIPTION �le.

2. The calling package (the one you write) must have \import{aster} in

its NAMESPACE �le. Or perhaps only import some functions from aster

in the NAMESPACE �le with an \importFrom directive, as described in

Section 1.5.1 of Writing R Extensions (R Development Core Team,

2017). The purpose of this item and the preceding one is to have R

package aster loaded before your package (so its code is available to

yours).

3. The calling package (the one you write) must have aster (>= 0.9) in

the LinkingTo �eld of its DESCRIPTION �le. The purpose of this item is

to have the include �le mlogl-export.h in R package aster available

to your package, that is,

#include "mlogl-export.h"

will work in C code in your package.

Now in your package, you can write a function, call it mlogl, that has

prototype the same as the function you are calling, that is,

double mlogl(int nind, int nnode, int *pred, int *fam,

double *theta, double *root, double *response, _Bool check);

Say you put that in a header �le called mlogl.h.

Then the following code should work

#include <stddef.h> // defines NULL

#include <R_ext/Rdynload.h> // defines R_GetCCallable

#include "mlogl-export.h" // defines aster_mlogl_sat_either_funptr

#include "mlogl.h" // defines mlogl

inline double mlogl(int nind, int nnode, int *pred, int *fam,

double *phi, double *root, double *response, _Bool check)

4



{

static aster_mlogl_sat_either_funptr fun = NULL;

if (fun == NULL)

fun = (aster_mlogl_sat_either_funptr)

R_GetCCallable("aster", "aster_mlogl_sat_unco");

return fun(nind, nnode, pred, fam, phi, root, response, check);

}

Now there is one last thing to say. What happened to famlist?

4. Before any calls to mlogl one must call from R (before going to C)

aster:::setfam(famlist)

This sets the identi�cation of integers with families.

5. Then one can call mlogl (from C) as many times as one likes.

6. Finally (after returning to R from C) one should call (from R)

aster:::clearfam()

This clears the identi�cation of integers with families.

References

Geyer, C. J. (2015). R package aster2 (Aster Models), version

0.2-1. http://www.stat.umn.edu/geyer/aster/ and https://cran.

r-project.org/package=aster2.

Geyer, C. J. (2017a). R package aster (Aster Modeels), version 0.9. http://

www.stat.umn.edu/geyer/aster/ and https://cran.r-project.org/

package=aster.

Geyer, C. J. (2017b). Github repo linkingTo, which contains two R packages

foompter (version 0.2) and goompter (version 0.2) illustrating calling C

functions from one from C functions called from R in the other. https:

//github.com/cjgeyer/linkingTo.

Geyer, C. J., Wagenius, S. and Shaw, R. G. (2007a). Aster models for life

history analysis. Biometrika, 94, 415�426.

5



Geyer, C. J., Wagenius, S. and Shaw, R. G. (2007b). Aster models for life

history analysis. Technical Report No. 644, School of Statistics, University

of Minnesota. http://www.stat.umn.edu/geyer/aster/tr644.pdf.

R Development Core Team (2017). Writing R Extensions. https://cran.

r-project.org/doc/manuals/r-release/R-exts.html. Also available

in PDF or EPUB format.

6


