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a b s t r a c t 

Background: Random-effects meta-analysis within a hierarchical normal modeling framework is com- 
monly implemented in a wide range of evidence synthesis applications. More general problems may even 
be tackled when considering meta-regression approaches that in addition allow for the inclusion of study- 
level covariables. 

Methods: We describe the Bayesian meta-regression implementation provided in the bayesmeta R pack- 
age including the choice of priors, and we illustrate its practical use. 

Results: A wide range of example applications are given, such as binary and continuous covariables, sub- 
group analysis, indirect comparisons, and model selection. Example R code is provided. 

Conclusions: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC 
methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale sim- 
ulation studies. 

© 2022 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In the course of scientific endeavour it is often necessary 
to assess the compiled evidence from several separate sources, 
e.g., from independent experiments. Meta-analysis methods have 
emerged as a popular class of tools to perform such evidence syn- 
theses, which are nowadays commonplace in many scientific disci- 
plines [1,2] . 

A simple, versatile and common approach to meta-analysis 
is given by the normal-normal hierarchical model (NNHM) , where 
measurement uncertainty as well as variability between measure- 
ments are implemented using normal distributions [3,4] . Inference 
within the NNHM framework may be tackled in different ways, and 
a Bayesian approach has proven particularly useful [5–8] . The tech- 
nical implementation is commonly facilitated using Markov chain 
Monte Carlo (MCMC) methods [9] . However, the relatively simple 
NNHM also lends itself to a semi-analytical solution using the di- 
rect algorithm [10] . Meta-analysis within the generic NNHM is im- 
plemented in the bayesmeta R package [11,12] . 

The simple NNHM is readily generalized to a meta-regression 

model that allows for the consideration of additional covariables 

∗ Corresponding author. 

E-mail address: christian.roever@med.uni-goettingen.de (C. Röver) . 

(at the level of individual estimates, i.e. the level of the studies 
or experiments) in a meta-analysis [13–16] . This common model 
extension may again also be analyzed via the direct approach, 
technically by extending from one-dimensional (conditional or 
marginal) posterior distributions of a single “overall mean” or “in- 
tercept” parameter to higher-dimensional posterior distributions of 
a set of regression coefficients. This approach was recently imple- 
mented and included in the bayesmeta R package; the present 
paper gives an overview of the new functionality and showcases 
its application in a range of different analysis scenarios. 

Meta-regression methods aim to attribute differences appar- 
ent between individual empirical estimates to available covariables, 
and with that will reduce the between-study variance (heterogene- 
ity) — just like consideration of additional covariables in an ordi- 
nary regression will generally improve the model fit and increase 
the coefficient of determination [17] . Meta-regression analyses are 
hence often seen in the context of the exploration of (potential) 
sources of heterogeneity [18,19] , with the intention to reduce or 
eliminate any unexplained variance and reduce bias [20–23] . How- 
ever, Thompson and Higgins [15] caution that associations derived 
from meta-regression are observational in nature and that data 
dredging may be an issue, while Hartung et al. [3] also point out 
the danger of overfitting due to the commonly small sample sizes 
(numbers of studies). With that, the statistical power to identify co- 
variables will commonly also tend to be low [24] . Cooper [25] in 
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this context distinguishes between the concepts of study-generated 
and synthesis-generated evidence , and cautions that in general only 
the former may allow to infer causal relationships. Such issues 
might to some extent be addressed by pre-specification of anal- 
yses [26] , while caution should be advised in general in order to 
avoid methodological problems (such as ecological fallacy ) [27] . 

While the scope of meta-regression methods is very broad, in 
practice a large number of practical applications are concerned 
with the investigation of subgroups of estimates, which on the 
technical side means the consideration of binary “indicator” co- 
variables. Such situations are often dealt with by simply analyz- 
ing groups of studies separately or jointly [28,29] . Meta-regression 
provides an alternative approach by allowing for differences in 
subgroup means while assuming a common heterogeneity vari- 
ance. The use of meta-regression methods here has the advantage 
that questions regarding differences between subgroup means are 
readily addressed, and that in particular in case of “small” sub- 
groups, pathological behaviour is avoided through the borrowing 
of information on the heterogeneity (nuisance) parameter that is 
effectively taking place [16,21,28,30] . 

The meta-regression implementation described here facilitates 
a range of applications, including parameter estimation, predic- 
tion, shrinkage estimation, indirect comparisons, sensitivity anal- 
yses, model selection or model averaging. In the following, famil- 
iarity with some basics of (Bayesian) random-effects meta-analysis 
is a bonus [12] , but is not strictly necessary. Methods will be intro- 
duced with a focus on applications rather than on theoretical back- 
ground. The remainder of the manuscript is structured as follows. 
In Section 2 , the random-effects meta-regression model (i.e. NNHM 

with covariables) is introduced, including more guidance on model 
specification details, in particular the parametrization of covariable 
effects and prior distributions, while some technical details and 
aims are also covered. Example applications follow in Section 3 ; 
here we provide a wide range of potential applications with code 
snippets illustrated by real data. We close with a brief discussion 
in Section 4 . 

2. Methods 

2.1. The data model 

Meta-regression can be facilitated through a generalization of 
the normal-normal hierarchical model (NNHM) that is commonly 
used for random-effects meta-analysis [8,12] . The model here is ex- 
tended in order to consider linear effects of a set of study-level 
covariables. 

Suppose that a set of estimates from k studies are to be mod- 
elled. We then have k estimates y i ∈ R (where i = 1 , . . . , k ) with 
standard errors σi ∈ R + , which are assumed known. For each of the 
k estimates, we also have a set of corresponding covariables x i ∈ R d 

of dimension d. Such (study-level) covariables are sometimes also 
denoted as moderators . 

It is then assumed that each estimate quantifies an underlying 
parameter θi with a normally distributed offset whose magnitude 
depends on the standard error σi : 

y i | θi , σi ∼ Normal (θi , σ
2 
i ) . (1) 

The study-specific mean ( θi ) then depends linearly on the covari- 
ables x i via a d-dimensional coefficient vector β . However, even 
for an identical set of covariables, the mean may vary from study 
to study due to additional (normally distributed) variability: 

θi | x i , β, τ ∼ Normal (β1 x i 1 + . . . + βd x id , τ
2 ) . (2) 

Besides measurement or sampling errors ( σi ), the between-study 
variation is hence determined both by effects of covariables x i as 

well as by heterogeneity that is quantified through τ . The model 
may also be formulated via the marginal expression 

y i | x i , β, τ, σi ∼ Normal (β1 x i 1 + . . . + βd x id , σ
2 
i + τ 2 ) . (3) 

It is often convenient to alternatively view the model in vec- 
tor/matrix terminology; here we may re-write Eqs. (1) –(3) as 

y | θ , σ ∼ Normal (θ , �) 

where � = diag (σ 2 
1 , . . . , σ

2 
k ) , (4) 

θ | X, β, τ ∼ Normal (X β, τ 2 I) , and (5) 

y | X, β, τ, σ ∼ Normal (X β, �τ ) 

where �τ = � + τ 2 I , (6) 

where the data are given in terms of the vectors of estimates y ∈ 

R k and standard errors σ ∈ R k + , and the set of covariables forms 
the regressor matrix X ∈ R k ×d , with rows corresponding to studies, 
and columns corresponding to different variables. 

The unknowns in the model are the study-specific effects θi ∈ R , 
the heterogeneity τ ∈ R + , and the vector of coefficients β ∈ R d of 
dimension d. Prior distributions need to be specified for τ and β . 
In order to include an “intercept” (overall mean) term in the re- 
gression, one may specify one of the covariables (e.g., the first 
column of X) as x i 1 = 1 for i = 1 , . . . , k . Also, if only an intercept 
term is considered, the model again simplifies to the “plain” meta- 
analysis model [12] . 

2.2. Prior and data specification 

2.2.1. Effect and heterogeneity priors 

Prior specification works similarly to the simple random-effects 
meta-analysis model [12] ; guidances provided for sensible spec- 
ifications of heterogeneity ( τ ) priors largely apply here as well 
[12,31] . 

Due to the implementation used in the bayesmeta package, 
priors for the β coefficients may be specified as (proper) multivari- 
ate normal or (improper) uniform only. These generic forms will 
however be appropriate to cover a majority of common applica- 
tions. 

2.2.2. Alternative model specifications 

What becomes crucial in addition then is the model specifica- 

tion , i.e., the setup of covariables x i eventually constituting the re- 
gressor matrix (or design matrix ) X . Different, and to some extent 
equivalent, conventions are conceivable in order to approach the 
same analysis problem. This holds in particular in the context of 
binary covariables, which then imply different interpretations of 
the associated parameters (coefficients) and with that sometimes 
differing prior settings. A sim ple exam ple involving binary covari- 
ables is illustrated in Table 1 . 

Suppose three groups of studies (labelled A, B and C) are 
given, which may be identified using indicator variables as re- 
gressors in the design matrix X . Two possible setups are shown 
here; on the left-hand side, the first study’s mean is modeled as 
(see Eq. (3) ) β1 x 11 + β2 x 12 + β3 x 13 = β1 , whereas the third study’s 
mean is β1 x 31 + β2 x 32 + β3 x 33 = β2 . The three β parameters hence 
directly correspond to the three group means. On the right-hand 
side, the first study is modelled in the same way, however, the 
third study’s mean is β1 x 31 + β2 x 32 + β3 x 33 = β1 + β2 . The second 
coefficient ( β2 ) hence corresponds to the difference (or contrast ) be- 
tween groups A and B, while group A serves as a “reference”. Ei- 
ther way of formulating models may have its merits, and switching 
from one to another corresponds to a transformation between dif- 
fering parameter spaces [ 32 , Sec. 1.8]. Prior settings for the regres- 
sion coefficients may have differing implications in different model 
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Table 1 

Illustration of different popular binary regressor matrix ( X) codings for an 
example setting involving k = 7 studies in d = 3 subgroups. On the left- 
hand side, the three regression parameters β1 to β3 simply correspond to 
the three groups’ means. On the right-hand side, β⋆ 

1 again corresponds to 
the mean in group A, which also serves as a “reference”. Parameters β⋆ 

2 and 
β⋆ 
3 correspond to the differences (“contrasts”) between the means within 

groups A and B and groups A and C, respectively. 

“Group mean” “Intercept/offset”
parametrisation parametrisation 

i Subgroup x i 1 x i 2 x i 3 x ⋆ 
i 1 x ⋆ 

i 2 x ⋆ 
i 3 

1 A 1 0 0 1 0 0 
2 A 1 0 0 1 0 0 
3 B 0 1 0 1 1 0 
4 B 0 1 0 1 1 0 
5 B 0 1 0 1 1 0 
6 C 0 0 1 1 0 1 
7 C 0 0 1 1 0 1 

setups, and prior settings in one parametrisation may be translated 
to another by considering the transformation step. 

More specifically, in the example from Table 1 , the right-hand 
side (“intercept / offset”) parametrization results from the left- 
hand side (“group means”) via a linear transformation β → β⋆ , 
where 

β⋆ = 

( 
β⋆ 
1 

β⋆ 
2 

β⋆ 
3 

) 

= 

( 
β1 

β2 − β1 

β3 − β1 

) 

= 

( 
1 0 0 

−1 1 0 
−1 0 1 

) ( 
β1 

β2 

β3 

) 

= Aβ . (7) 

Implications of prior assumptions in one parametrization may be 
derived by considering the transformation’s effect on the trans- 
formed random variable [ 32 , Sec. 1.8]. In this case, if a normal prior 
with mean μ and variance � was assumed for β , then this implies 
a normal prior with mean Aμ and variance A �A ′ for the trans- 
formed parameter set β⋆ . 

Transformations between alternative parametrisations, which 
may also be the result of transformations of the original data , are 
often useful to simplify interpretation, or in order to avoid numer- 
ical problems. These may also arise in the context of continuous 
covariables, for example, when re-expressing fractions as percent- 
ages, or when “centering” covariables by subtracting their mean 
levels. 

2.3. Inference 

2.3.1. Technical implementation 

In the bayesmeta R package, the direct algorithm is utilized 
to facilitate meta-analysis within the NNHM framework via the 
bayesmeta() function [10] . In contrast to the “simple” meta- 
analysis setup considered previously by Röver [12] , instead of a 
single “overall mean” parameter μ, the meta- regression model now 

involves a d-dimensional coefficient vector β , which means that 
some analytic expressions need to be generalized to their multi- 
variate analogues; the basic algorithm for deriving the posterior 
distributions however may still be applied analogously. 

The meta-regression functionality is provided by the new 

bmr() function; its main input arguments are: 

y : a vector of estimates ( y i ) of length k 
sigma : a vector of associated standard errors ( σi ) of length k 
X : a regressor matrix ( X) with k rows and d columns 
tau.prior : a prior density function ( f (τ ) ) for the hetero- 

geneity τ ( or a character string denoting a specific form) 
beta.prior.mean : a vector of prior means of dimension d
beta.prior.sd : a vector of prior standard deviations of di- 

mension d

To a large extent, the behaviour is similar to the bayesmeta() 

function, especially with respect to the y , sigma and tau.prior 

arguments [12] . The major differences to the bayesmeta() func- 
tion are that one may specify an additional “X ” argument giving 
the regressor matrix ( X), and that the posterior, instead of referring 
to only a single effect μ, now involves a d-dimensional parameter 
vector β . By default, if the tau.prior , beta.prior.mean and 
beta.prior.sd arguments are left unspecified, (improper) uni- 
form priors are assumed for τ and β . If an X argument is not sup- 
plied, a single-column matrix of ones is used, so that the analysis 
simplifies to fitting a single “intercept” parameter. 

Inference is facilitated through a semi-analystical approach, 
which is based on noting that the problem essentially involves two 
parameters, namely, the heterogeneity τ and the coefficient vec- 
tor β . For any fixed heterogeneity value, the conditional posterior 
distribution p(β| τ ) results analytically as a (multivariate) normal 
distribution. The heterogeneity’s marginal posterior density func- 
tion p(τ ) on the other hand may also be expressed in analytical 
form. Noting that the joint posterior density may be written as 
a product, i.e., p(β, τ ) = p(β| τ ) p(τ ) , then implies that the coef- 
ficients’ marginal posterior results as a (continuous, normal) mix- 
ture distribution, i.e., p(β) = 

∫ 
p(β, τ )d τ = 

∫ 
p(β| τ ) p(τ )d τ . The 

direct algorithm utilized here for posterior computations then ap- 
proximates the continuous mixture distribution by a discrete mix- 
ture using a finite number of components; a strategic setup of the 
set of support points then allows to control the computational ac- 
curacy [10] . 

2.3.2. Aims 

Inference within a meta-regression application may be aimed 
at a range of different aspects, e.g., joint or marginal distribu- 
tions of regression coefficients ( βi ), linear combinations of coeffi- 
cients ( x ′ β), investigation of heterogeneity ( τ ), shrinkage estima- 
tion ( θi ), or prediction ( θk +1 | x ). Posterior distributions of all these 
figures are available from the bmr() function’s output. It is possi- 
ble to access these directly from the object returned by the bmr() 

function, however, many relevant figures are included in the de- 
fault output, and it is often convenient to request certain figures to 
be included e.g. in a summary printout or a forest plot. Ways to 
retrieve such figures are illustrated alongside the example applica- 
tions below. 

3. Results 

In this section a number of applications are presented to illus- 
trate the versatile use of meta-regression with bayesmeta . 

3.1. Binary covariable 

3.1.1. Inferring two means 

Crins et al. [33] reported on a meta-analysis of studies in- 
vestigating the use of interleukin-2 receptor antagonists (IL-2RA) 
for immunosuppression in pediatric liver transplant recipients. Of 
primary interest was the occurrence of acute rejection (AR) re- 
actions, a common adverse event that is supposed to be pre- 
vented by the medication. Two different types of IL-2RAs were 
used, namely, basiliximab and daclizumab . The rates of AR events 
in the studies’ treatment and control groups are summarized in 
terms of odds ratios (see also [12] ); the relevant data are shown in 
Table 2 . 

We will perform a meta-analysis aiming to investigate the mean 
effects for the two types of treatment; to that end, we specify the 
regressor matrix X reflecting the grouping of the data: 

3 
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Table 2 

Data from the immunosuppression example. Each row here 
summarizes a 2 ×2 contingency table in terms of a derived 
log-OR ( y i ) and its associated standard error ( σi ). Two differ- 
ent types of IL-2RA treatments were investigated ( basiliximab 

and daclizumab ). 

Study log-OR 

i Reference IL-2RA y i σi 

1 Heffron (2003) daclizumab −2 . 31 0.60 
2 Gibelli (2004) basiliximab −0 . 46 0.56 
3 Schuller (2005) daclizumab −2 . 30 0.88 
4 Ganschow (2005) basiliximab −1 . 76 0.46 
5 Spada (2006) basiliximab −1 . 26 0.64 
6 Gras (2008) basiliximab −2 . 42 1.53 

X = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0 1 
1 0 
0 1 
1 0 
1 0 
1 0 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

. (8) 

In analogy to the coding illustrated in Table 1 , rows correspond to 
the six observations, and columns correspond to the two groups; 
the placement of zeroes and ones reflects the studies’ associations 
to one of the two medication types. The investigation of differ- 
ences in treatment effects here technically implies the consider- 
ation of a possible interaction between treatment and IL-2RA type. 
For the heterogeneity parameter ( τ ), a half-normal prior distribu- 
tion is appropriate in the context of a log-OR endpoint [12,31,34] . 
For the regression coefficients ( β1 and β2 ), an (improper) uniform 

prior is used. First, the package and the example data set need to 
be loaded, and the effect measures (log-ORs) may be derived using 
the metafor package’s escalc() function: 

Then we may specify the regressor matrix X: 

The bmr() function then works very similarly to the 
bayesmeta() function [12] ; estimates and standard errors 
may be specified via the “y ” and “sigma ” arguments, or the data 
may simply be supplied in terms of the object returned from the 
escalc() function. The heterogeneity prior is specified in terms 
of its probability density function, and in addition the regressor 
matrix needs to be provided via the “X ” argument. We may hence 
specify 

or simply 

We may then have a closer look at the analysis output: 

The function’s output again is very similar to the bayesmeta() 

function’s output (see also [12] ); at the top we see details of the 
model specification, the number and labels for the included stud- 
ies, the number of regression coefficients and the prior specifica- 
tion. The variable names (here: “basiliximab” and “daclizumab”) 
were taken from the column names of the regressor matrix. Then 
maximum-a-posteriori (MAP) estimates are shown, as well as sum- 
mary statistics for the three parameters’ marginal posterior dis- 
tributions. The median and 95% CIs for the basiliximab and da- 
clizumab parameters ( β1 and β2 ) are given by −1 . 38 [ −2 . 04 , 
−0 . 53 ] and −2 . 31 [ −3 . 46 , −1 . 16 ], respectively. The treatment 
hence appears to be effective in reducing AR events in both study 
groups. 

The (here: three) parameters’ marginal or joint posterior dis- 
tributions may also be inspected using the plot() or pairs() 

functions. The posterior distributions may also be accessed e.g. via 
the functions contained in the returned object’s elements; for ex- 
ample, the bmr01$qposterior() function allows to compute 
posterior quantiles. A call of 

returns the heterogeneity posterior’s 99% quantile. Similarly, using 

the 99% quantile of the β1 parameter may be determined. The 
“which.beta ” argument here is used to specify the β pa- 
rameter’s index. Analogously, the “... $dposterior() ”, 
“... $pposterior() ”, “... $rposterior() ” and “... 

$post.interval() ” functions may be used to determine pos- 
terior density, cumulative distribution function, random numbers 
or credible intervals (the naming of functions here follows the 
common R conventions, as e.g. known from the dnorm() or 
pnorm() functions). 

4 
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Estimates of the θi parameters ( i = 1 , . . . , k ), the shrinkage es- 
timates , may also be derived. Some summary statistics are pro- 
vided in the “... $theta ” element. Access to the complete 
distributions (probability density, cumulative distribution func- 
tion, quantile function, random number generation and cred- 
ible intervals) is provided via the “... $dshrink() ”, “... 

$pshrink() ”, “... $qshrink() ”, “... $rshrink() ” and 
“... $shrink.interval() ” functions. 

To illustrate the results in a forest plot, one may call 

The resulting plot is shown in Fig. 1 . The forest plot’s first six lines 
show the original data (estimates y i and 95% CIs based on stan- 
dard errors σi and the normal model), and the shrinkage estimates 
( θi ). The table also includes the regressor matrix X in the columns 
that are labelled as “basiliximab” and “daclizumab”, as in the orig- 
inal specification of the “X ” argument. The two lines at the bottom 

then show the estimates of the two associated regression param- 
eters β1 and β2 . The heterogeneity ( τ ) distribution finally is also 
summarized at the bottom left. 

Note that while in a simple meta-analysis shrinkage estimates 
are “shrunk” towards the common overall mean, in a meta- 
regression shrinkage acts in the direction of the corresponding pre- 
dicted value; in this case this means that individual studies’ shrink- 
age estimates move towards the corresponding (basiliximab or da- 
clizumab) group means. 

3.1.2. Inferring means, contrasts, or predictions 

Quite commonly, it is also of interest to evaluate the pos- 
terior distribution of linear combinations of the regression co- 
efficients ( βi ), or of predictions corresponding to such com- 
binations. For such purposes, the “... $dpredict() ”, “... 

$ppredict() ”, “... $qpredict() ”, “... $rpredict() ”
and “... $pred.interval() ” functions are available. 

In the present example, it may be of interest to infer the dif- 
ference of the two group means, β2 − β1 . If its posterior includes 
zero, then the two medications may be equally effective; if zero is 
outside the plausible range, this indicates differing efficacies. The 
above difference is a linear combination of the two coefficients, i.e., 
a sum of β2 − β1 = −1 ×β1 + 1 ×β2 with coefficients −1 and +1 
for β1 and β2 , respectively. We can request the linear combina- 
tion’s distribution by specifying the two coefficients, e.g., in order 
to determine the median or a 95% CI: 

Such coefficients were in fact already quoted along with the sum- 
mary estimates in the forest plot in Fig. 1 , although only involving 
zeroes and ones as coefficients. Analogously, additional linear com- 
binations can be specified for the plot; e.g., to include the group 
difference in the figure, we may specify 

The resulting plot is shown in Fig. 2 (top). It should be noted that 
the comparison of basiliximab vs. daclizumab constitutes an indi- 
rect comparison here, as it contrasts two treatments that have not 
been “directly” compared in a head-to-head comparison in any of 
the six trials considered [35] . For more on indirect comparisons, 
see also Section 3.2 below. 

Fig. 1. A forest plot illustrating the meta-regression results based on the transplan- 
tation data from Table 2 . The two study groups are coded in terms of two binary 
indicator variables labelled “basiliximab” and “daclizumab”. 

Fig. 2. Two forest plots similar to the one shown in Fig. 1 and illustrating analogous 
meta-regression results based on different parametrisations of the regressor ma- 
trix X (top: “group mean” parametrization, bottom: “intercept/slope” parametriza- 
tion; note the differing setups in the 2nd and 3rd “regressor” columns). 

Besides the mean effects, predictions are often of interest, e.g., in 
order to assess plausible ranges for a “future” study’s mean param- 
eter θk +1 (which, in addition to the β coefficients, also depends on 
the estimated amount of heterogeneity τ ). In the present exam- 
ple, we might be interested in predicting the mean in a new study 
investigating basiliximab; we can check out some quantiles of the 
effect’s distribution via 

We again need to specify the coefficients via the “x ” argument, and 
the “mean ” argument (which by default is TRUE ) needs to be set 
to FALSE explicitly. 

3.1.3. Alternative regressor matrix setups 

The specification of the regressor matrix X (see Eq. (8) above) is 
not unique; a number of different approaches are conceivable and 
common, for example, one might as well specify 

X = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 1 
1 0 
1 1 
1 0 
1 0 
1 0 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

or X = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 +0 . 5 
1 −0 . 5 
1 +0 . 5 
1 −0 . 5 
1 −0 . 5 
1 −0 . 5 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

(9) 
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to yield analogous results. Different setups will then imply dif- 
ferent interpretations for the associated β parameters. Within R , 
the most common parametrization is also returned by the 
model.matrix() function (from the stats package); if we 
run 

we can see that we in fact yield the first of the above two ver- 
sions, an “intercept/slope” parametrization, which would often be 
the default for many regression models within R . We may run the 
same analysis using this alternative regressor matrix: 

and generate a corresponding forest plot: 

The resulting plot is shown in Fig. 2 (bottom). We can see that 
we get essentially identical results here, and that we only need 
to specify the linear combinations differently in order to re- 
trieve group means or group differences based on the differing 
parametrizations. 

While in the above example the results are essentially equiva- 
lent (see also Section 2.2 ), either way of formulating the problem 

may have its advantages. Interpretation of parameters and prior 
specification may be easier or more obvious in one or another 
formulation. In case informative priors for the regression parame- 
ters β were to be used in the above example, this may either imply 
considerations of constraints on the two individual group means, 
or on their difference. 

For example, consider the two alternative parametrizations in 
terms of 

X = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 +0 . 5 
1 −0 . 5 
1 +0 . 5 
1 −0 . 5 
1 −0 . 5 
1 −0 . 5 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

and X ⋆ = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0 1 
1 0 
0 1 
1 0 
1 0 
1 0 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

. (10) 

The implied parameters may be thought of as “overall mean / 
group difference” or “two group mean” parameters. The two as- 
sociated parameter vectors β and β⋆ are related to one another as 

β⋆ = 

(

β⋆ 
1 

β⋆ 
2 

)

= 

(

β1 − 0 . 5 β2 

β1 + 0 . 5 β2 

)

= Aβ , 

with A = 

(

1 −0 . 5 
1 +0 . 5 

)

. (11) 

Now suppose that in the former parametrization ( β) we want to 
implement a vague prior for the overall mean, while the difference 
between groups is expected to be rather small; for β we hence 

assume a normal prior with mean and covariance 

μ = 

(

0 
0 

)

and � = 

(

100 0 
0 1 

)

. (12) 

The prior specification in the “overall mean/group difference”
parametrization has its counterpart in the “two group mean”
parametrization; for the “transformed” parameter β⋆ , this implies 
a prior distribution with mean and covariance 

μ⋆ = Aμ = 

(

0 
0 

)

and (13) 

�⋆ = A �A ′ = 

(

100 . 25 99 . 75 
99 . 75 100 . 25 

)

. (14) 

The high correlation reflects the assumption implemented in the 
original parametrization that there is a constraint on the difference 
between the means while their common average level has greater 
uncertainty. 

Performing the analysis using different parametrizations and 
matching proper, informative priors should then again yield iden- 
tical sets of estimates as in the previous example ( Fig. 2 ). The two 
analyses may be performed via 

We may then check the corresponding estimates (of the two 
group means, the overall mean and the group difference) via the 
summary() function, which allows to specify an “X.mean ” argu- 
ment, similarly to the forestplot() function; for example: 

We may first double check the differing setups of the underlying 
regressor matrices: 

6



C. Röver and T. Friede Computer Methods and Programs in Biomedicine 229 (2023) 107303 

and then check the resulting estimates: 

and indeed the corresponding estimates are identical under both 
model variations (and different from those shown in Fig. 2 , which 
were based on uniform priors). 

3.1.4. Connection to meta-analysis without covariables 

Meta-regression is a generalization of a “simple” meta-analysis, 
and the simple meta-analysis again constitutes the special case of 
a regression that does not consider additional covariables (besides 
an overall “intercept” term). We may also use the bmr() function 
without covariables by simply omitting the “X ” argument: 

We can check the regressor matrix used internally (which here 
may be accessed as “bmr05$X ”) to see that indeed this is by de- 
fault a matrix consisting of a single column of ones, so that a single 
“intercept” parameter β1 is fitted. 

We may then compare results against those from the 
bayesmeta() function; comparing the estimates for the overall 
mean, we get 

Differences between the two results are due to differences in 
numerical accuracy; if we check the number of support points 
used internally for the approximation of the posterior (via 
“str(bmr05$support) ” or “str(bma$support) ”), we can 
see that bmr() uses 9 support points, while bayesmeta() yields 
a grid of 17 points. The slight discrepancy arises since within the 
bayesmeta() function, the grid setup is determined based on 
the marginal distribution of the overall mean ( μ) as well as the 
shrinkage estimates ( θi ) [12] , while in bmr() only the regres- 
sion coefficients’ (multivariate) distribution is considered. If de- 
sired, accuracy may always be increased by adjusting the “delta ”
or “epsilon ” parameters [10] . 

In the two-group comparison discussed above (see e.g. Fig. 2 ), 
the two group means (basiliximab and daclizumab) are estimated 
“independently” in some sense, i.e., the estimates from one group 
of studies only help estimating the other group’s mean insofar as 
they provide information on the heterogeneity, but not on the ac- 
tual location . The difference to performing two completely separate 
analyses of both group means is the assumption of a common het- 
erogeneity parameter for both groups. This provides another con- 
nection to the “simple” meta-analysis model (without additional 
covariables): the two group mean estimates may also be recov- 
ered by performing two separate meta-analyses and propagating 

only the heterogeneity information. Consider the estimate of the 
daclizumab group, which was given by 

The same estimate may be derived by first performing the anal- 
ysis for the basiliximab group only, and then using the resulting 
heterogeneity posterior as the prior for the subsequent daclizumab 

analysis: 

One can see that the results are essentially identical, with slight 
discrepancies that may be attributed to numerical differences. 

3.2. Indirect comparisons in a treatment network 

It became already evident in the previous example 
( Section 3.1.2 ) that fitting individual coefficients for certain 
pairwise comparisons, along with the option to infer linear com- 
binations of coefficients, allows to estimate certain indirect com- 

parisons [35] . In fact, applicability of the meta-regression model 
to some degree extends into the domain of network meta-analysis 

(NMA) [ 30 , Sec. 11.4.2]. However, the scope here is somewhat 
limited, insofar as the model is contrast-based , only two-armed 
trials may be considered, and a single common heterogeneity 
parameter is assumed [36–38] . 

For illustration, we will consider the example data set due to 
Bucher et al. [39] , which includes studies providing evidence for 
both the direct as well as the indirect comparison of two treat- 
ments. Bucher et al. [39] considered the example of the com- 
parison of sulphametoxazole-trimethoprim (TMP-SMX) versus dap- 
sone/pyrimethamine (D/P) for the prophylaxis of Pneumocystis carinii 

pneumonia (Pcp) in HIV patients. Eight studies had undertaken a 
head-to-head comparison of both medications, but an additional 
14 studies were available investigating one of the medications with 
aerosolized pentamidine (AP) as a comparator. Nine studies com- 
pared TMP-SMX vs. AP, and five studies compared D/P vs. AP. To- 
gether these provide indirect evidence on the effect of TMP-SMX 

compared to D/P. The resulting triangular network of pairwise 
comparisons is illustrated in Fig. 3 . 

We may load the data and compute effect sizes (log-ORs) for all 
22 studies. 

We may then set up the regressor matrix to estimate the two rel- 
evant (non-redundant) treatment effects. Two coefficients ( β1 and 
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Fig. 3. Illustration of the triangular network of comparisons within the Bucher et al. 
[39] example data set. 8 studies provide a direct head-to-head comparison of TMP- 
SMX vs. D/P (indicated by the blue edge); the remaining 14 studies (shown in red) 
provide indirect evidence on the effect via the comparison of either TMP-SMX ver- 
sus AP (9 studies), or D/P versus AP (5 studies). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this ar- 
ticle.) 

Fig. 4. Forest plot for the network-MA data set [39] . The first 8 studies did a direct 
head-to-head comparison of TMP-SMX vs. D/P; the remaining studies provide indi- 
rect evidence on the effect via the comparison with AP. At the bottom, the estimates 
for all three pairwise comparisons are shown. 

β2 ) are estimated; the first corresponds to the comparison of TMP- 
SMX against D/P, the second is for the comparison of AP again 
D/P, and the last remaining pairwise comparison (TMP-SMX vs. AP) 
then results as the difference of the former two. 

Again, there are alternative (equivalent) ways to set up the regres- 
sor matrix [37] . The actual analysis then is performed via a call of 
R > bmr06 < - bmr (es, X = X) 

The “tau.prior ” argument is left unspecified, which means that 
the default of an (improper) uniform prior is used for τ , which 
should be appropriate given the reasonably large number of stud- 
ies included here ( k = 22 ) [31] . Figure 4 illustrates the data along 
with the regressor matrix and the estimated coefficients in a cor- 
responding forest plot. 

In order to more closely investigate and contrast the “direct”
and “indirect” contributions to specific estimates, we may have a 
closer look at the estimates resulting from considering subsets of 
the data. In addition to the analysis described above, we may run 
analyses based only on the subsets of studies providing direct or 
indirect evidence (studies 1–8 or studies 9–22): 

In the overall analysis, the log-OR for the effect of TMP-SMX vs. 
D/P is estimated at −0 . 75 with 95% CI [ −1 . 32 , −0 . 25 ]; the “direct”
and “indirect” estimates are roughly similar and overlapping at 
−0 . 83 [ −1 . 91 , 0.06] and −0 . 96 [ −1 . 73 , −0 . 21 ]. We may also inspect 

Fig. 5. Posterior distributions for the β coefficient corresponding to the log-OR in 
the comparison of TMP-SMX vs. D/P , either considering only the studies providing 
direct or indirect evidence, or including all studies. Besides posterior densities, pos- 
terior medians and 95% CIs are indicated. 

the corresponding posterior densities, which again are accesssible 
via the returned “...$dposterior() ” functions. In Fig. 5 , the 
three posteriors are contrasted side-by-side. All three estimates are 
consistent, and when combining direct and indirect evidence, the 
gain in precision becomes apparent. 

3.3. Continuous covariable 

Nicholas et al. [40] performed a systematic review and meta- 
analysis in order to examine how the characteristics of placebo 
groups of randomized controlled trials in multiple scelerosis may 
have evolved over time. A number of features were investigated, 
among these was the proportion of patients experiencing disabil- 
ity progression within 24 months. 28 studies with available infor- 
mation on disability progression were found, spanning the period 
from the year 1990 until 2018. A time trend in the progression 
rates would mean a tendency towards more severe or more benign 
cases being investigated over the years, and may have implications 
for the comparability of results from older or more recent studies, 
or also for the design of future studies. We can load the example 
data, and from the studies’ placebo group sizes and the observed 
percentages of progressing patients, we can compute estimates of 
the logarithmic odds of disease progression using the escalc() 

function: 
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The “yi ” and “vi ” columns here give the log-odds and their 
(squared) standard errors. The (continuous) covariable of interest 
is given in the “year ” column. We may then specify the regressor 
matrix: 

Note that here we are using to a simple “intercept/slope” model, 
and that the “year” variable is re-coded so that the data are cen- 
tered at the year 20 0 0 (and the intercept parameter hence cor- 
responds to the log-odds in 20 0 0). We may then perform the 
analysis: 

A prior for the heterogeneity ( τ ) again is not specified, implying 
that he default of an (improper) uniform prior is used [31] . 

We may inspect the regression results based on the returned 
parameter estimates, but it may in fact be more illustrative to 
present these in a forest plot. Besides the two “plain” parameter 
estimates (intercept β1 and slope β2 ) we may check estimates of 
certain linear combinations corresponding to the mean at certain 
time points, or also to predicted values. A call of 

will generate a forest plot including the intercept and slope (an- 
nual change), the change per decade, the mean log-odds at several 
time points, as well as a prediction for the year 2019; the resulting 
plot is shown in Fig. 6 . The annual change is estimated to be nega- 
tive, implying a reduction in the log-odds by 0.033 per year, or by 
0.33 per decade. For the odds this means a reduction by 3.2% per 
year, or by 28% per decade. 

Besides the forest plot, it is often useful to illustrate the data 
along with the model estimates graphically. To that end, we can 
compute predictions and credible intervals and combine these in a 
single plot: 

Fig. 6. A forest plot illustrating the meta-regression results based on the multiple 
sclerosis data. The time trend is parameterized in terms of an intercept and a year 
variable that is centered at the year 20 0 0. In addition to the “plain” intercept and 
(annual) slope, several linear combinations as well as a prediction for the year 2019 
are also shown. 

Fig. 7. A plot illustrating the multiple sclerosis data along with credible intervals 
for the mean as well as prediction intervals. 

The resulting trend plot is shown in Fig. 7 . All estimates (stud- 
ies) along with their error bars are shown, and the estimated mean 
(along with credible and prediction intervals) is computed for a 
grid of values spanning the range from 1989 to 2019. 
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Nicholas et al. [40] pointed out the good agreement with a 
subsequently published study by Kappos et al. [41] in 2018, who 
(depending on the exact definition used) reported between 23% 
and 30% progressing patients, corresponding to log-odds of −1 . 18 
or −0 . 83 , respectively. 

The predicted log-odds were -0.87 [-2.17, 0.42] for a “future”
study in the year 2019 (see Fig. 6 ), corresponding to probabilities 
of 0.29 [0.10, 0.60]. Such a prediction could be useful for study de- 
sign [42–44] or sample size determination [45] ; it might also be 
utilized to supplement a study’s sparse placebo data in terms of a 
meta-analytic-predictive (MAP) prior [46] . 

3.4. Several covariables 

Roberge et al. [47] performed a systematic literature review in 
order to summarize the evidence on effects of aspirin administered 
during pregnancy. Earlier research had already suggested that pro- 
phylactic administration of low-dose aspirin may reduce the preva- 
lence of fetal growth restriction (FGR) , which is a common cause 
of perinatal morbidity and mortality [48] . While the exact mech- 
anism by which aspirin works here is still unclear, it had become 
apparent that it is most effective when initiated early on, before 
16 weeks of gestational age. 

A total of 35 studies were included in the eventual analysis; 
in 17 studies, therapy was initiated early ( ≤16 weeks gestational 
age), and in 18 studies, onset was late ( > 16 weeks). Doses differed 
between studies and ranged from 50 up to 150 mg daily. For each 
study, we have numbers of cases and FGR events in treatment and 
control groups. 

We may load the example data and derive the log-ORs for all 
studies providing data on FGR events: 

At first we can check whether the aspirin dose appears to affect 
the chances of FGR; we can use the model.matrix() function 
to set up a corresponding regressor matrix and perform a simple 
analysis specifying an intercept and a linear effect for the dose. 
Again, due to the large number of studies included, we may utilize 
a non-informative (improper) uniform prior for the heterogeneity. 

So far, this does not convincingly indicate an effect; while the 
“dose” effect is estimated to be negative, implying a reduction in 
FGR events with increasing dose, the 95% CI includes both negative 
as well as positive values. 

Considering the earlier suggestion of the relevance of the time- 
point of therapy initiation, we may then check whether the effect 
might differ between studies implementing an “early” or “late” on- 
set. Such a model may be defined in different ways; here we will 
consider a setup including individual intercepts and slopes in both 
groups of studies: 

We can see that the first studies within the data set all belong to 
the “early” group; in the second group, the regressor matrix entries 
corresponding to the “late” effects then are non-zero instead. We 
may then run the analysis based on the extended model: 

From the analysis results, we now see a somewhat different pic- 
ture; first of all, the heterogeneity ( τ ) is reduced, from a median 
of 0.28 down to 0.12. The “late” slope parameter still is small and 
centered near zero, while the “early” slope parameter along with 
its 95% CI is on the negative side. 

Fig. 8. A “bubble plot” illustrating the data along with credible intervals for the 
mean effect as functions of the dose in “early” and “late” study groups. The point 
sizes are inversely proportional to the standard errors. 
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We may illustrate data and regression lines jointly in a “bubble 
plot”; the estimated ORs as functions of the regressors may again 
be extracted from the bmr() function’s output: 

The resulting trend plot is shown in Fig. 8 . “Larger” studies (those 
with smaller standard errors) are denoted by larger symbols. 

Again, a range of alternative model or prior specifications 
may be sensible here; e.g., different parametrizations (common 
intercept or slope parameters, individual heterogeneity parame- 
ters, differing prior specifications, a zero intercept,...), which may 
also suggest the use of a model selection approach (see following 
Section 3.5 ). In addition, it may also be interesting to investigate 
the sensitivity of results to individual data points (studies). 

3.5. Model selection 

3.5.1. The example setup 

Cinar et al. [49] discussed a meta-analysis problem involving a 
total of four potential covariables. Their example data set included 
80 studies investigating biomass production of maize plants under 
different conditions; of interest were the effects of inoculation us- 
ing symbiotic mycorrhizal fungi. Four dichotomous aspects varied 
between the studies, namely the type of fungus (FUN, funneliformis 

or rhizophagus ), the use of phosphorus fertilizer (FP, yes/no), use of 
nitrogen fertilizer (FN, yes/no), and sterilization of the soil (STER, 
yes/no). The endpoint was expressed in terms of a logarithmic re- 
sponse ratio [50] , and the problem was first of all to determine 
which of the variables affected the yield, making this a variable se- 
lection or model selection problem. 

In the present case, combinations of the four (binary) variables 
allow to specify 16 different models , ranging from the model with- 
out covariables (besides an overall intercept) to the model with 
all four included. In a Bayesian context, after specification of prior 
probabilities (for all models themselves, as well as for parame- 
ters within models), one may then derive posterior probabilities 

for each model, or one may compare and rank models based on 
their associated Bayes factors [32,51–53] . The uncertainty involved 
in the model selection may also be accounted for (or in fact, 
the selection of a single model is avoided) by using a model av- 

eraging approach [54–58] . Another approach may be to consider 
the median probability model based on all variables’ marginal in- 
clusion probabilities [59,60] . Either way, computations hinge on 
the determination of marginal likelihoods , which first of all is of- 
ten computationally challenging, and secondly, requires the spec- 
ification of proper priors for all parameters within the 16 mod- 
els. Unlike in many parameter estimation problems, the exact de- 
tails of (non-informative or weakly informative) prior specifications 
are crucial and may affect results in sometimes unintuitive ways, 
as exemplified in Lindley’s paradox [32,61] , so that particular cau- 
tion is advised here. In some cases, it may be worth consider- 
ing whether a model selection approach is in fact the method of 
choice [62] . 

3.5.2. Model specification 

We assume all of the 16 possible models to be a priori equally 
likely; within each model we then assign a vague prior for the in- 
tercept (normal with mean zero and standard deviation 10), and 
weakly informative priors for the binary covariables’ effects (nor- 
mal with mean zero and standard deviation 2.82). The effect prior 
confines the likely effect magnitudes on their logarithmic scale so 
that back on the (exponentiated) scale of response ratios these 
roughly correspond to values within factors of 250 and 1 

250 [63] . 
For the heterogeneity parameter ( τ ), we assume a weakly infor- 
mative half-normal distribution with scale 0.5 [31] . 

Note that equal prior probabilities for all models imply that all 
variables a-priori have 50% inclusion probability, and that the prior 
expected number of parameters is N 2 (where N is the total number 
of variables). Alternatively, different specifications are also conceiv- 
able; for example, assigning a probability π for each variable to 
be included implies a probability πn (1 − π ) (N−n ) for each single 
model (where n is the number of variables included) and it implies 
a priori a binomially distributed total number of included parame- 
ters (with expectation πN). 

3.5.3. Implementation 

The example data are available in Cinar et al. ’s online supple- 
ment [64] . We may download the data, read them into R , and then 
systematically apply the 16 possible meta-regression models. Com- 
putations may take a few minutes. 
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The 16 regression outputs are now stored in the “bmrlist ” ob- 
ject. The marginal likelihood for a bmr() output is stored in the 
“...$marginal.likelihood ” element (presuming that proper 
priors have been used for the analysis). We may now assemble 
these numbers, and combine them with the models’ prior prob- 
abilities to derive the posterior probabilities. 

Table 3 illustrates the 16 models along with their posterior 
probabilities. The a-posteriori most probable model at the top of 
the list is the one including (besides an intercept) the FP and FN 

variables, corresponding to influential effects for phosphorus and 
nitrogen fertilizers. 

Table 3 

The 16 models and their probabilities (in descending order). A dot 
( •) indicates that a variable is included in a model, an open circle 
( ◦) means that it is not included. The very last line shows the four 
variables’ marginal inclusion probabilities. 

Included variables 

Model FUN FP FN STER Probability 

1 ◦ • • ◦ 0.6293 
2 ◦ • • • 0.1076 
3 • • • ◦ 0.0907 
4 • • ◦ ◦ 0.0645 
5 ◦ • ◦ • 0.0380 
6 • • ◦ • 0.0304 
7 • • • • 0.0148 
8 ◦ • ◦ ◦ 0.0106 
9 • ◦ ◦ ◦ 0.0077 
10 • ◦ ◦ • 0.0019 
11 ◦ ◦ ◦ • 0.0014 
12 ◦ ◦ ◦ ◦ 0.0011 
13 • ◦ • ◦ 0.0009 
14 ◦ ◦ • ◦ 0.0007 
15 • ◦ • • 0.0002 
16 ◦ ◦ • • 0.0002 

0.2111 0.9859 0.8444 0.1946 

Table 4 

Parameter estimates for the most probable model in- 
cluding the FP and FN variables (phosphorus and ni- 
trogen fertilizers), which receives a posterior proba- 
bility of 0.63. 

Parameter Median 95% CI 

heterogeneity ( τ ) 0.510 [0.339, 0.690] 
intercept ( β1 ) 0.227 [-0.097, 0.652] 
FP ( β2 ) -1.006 [-1.416, -0.582] 
FN ( β3 ) 0.894 [0.429, 1.346] 

The median probability model , i.e., the model including all those 
variables that have a marginal inclusion probability ≥0.5 [59,60] , 
here also coincides with the most probable model. The three most 
probable models also match the top 3 models based on the Akaike 
information criterion (AIC) as quoted by Cinar et al. [49] . 

Table 4 shows the parameter estimates from the most probable 
model. Instead of singling out one “best” model for inference, one 
might now also utilize the results in a model averaging approach, 
effectively using all 16 models simultaneously and weighting pre- 
dictions based to their associated probabilities [54–58] . 

It should be noted that, in a sense, the example shown here 
was particularly “simple” since all variables considered were in the 
same “units” (binary), so that it is relatively easy to specify a neu- 
tral prior without favouring any of the variables from the start. In 
practice, it might also be of interest to check the results’ sensitivity 
to any of the prior specifications, or to also investigate the possi- 
ble relevance of interaction effects (as a simple additive effect of 
the two fertilizers may or may not be biologically plausible). 

In the model selection context, the use of penalized complexity 

priors [65] may also play a more prominent role than in “simple”
meta-analysis applications. Penalized complexity priors here corre- 
spond to exponential priors for the heterogeneity ( τ ) [31] . 

4. Discussion 

In the present article, we demonstrated the use of Bayesian 
meta-regression as facilitated through the bayesmeta R package 
[11] . The implementation is conveniently based on the direct algo- 
rithm [10] and constitutes a straightforward generalisation of “sim- 
ple” meta-analysis within the NNHM framework [12] . This way, a 
wide range of extensions such as subgroup analysis, continuous co- 
variables, indirect comparisons, or model selection are covered. 

While Bayesian analyses sometimes tend to be technically de- 
manding, through to its user-friendly interface, its generality and 
the quick and reproducible computation, the bayesmeta imple- 
mentation provides a low-threshold entry point for a wider au- 
dience beyond computational experts. While a certain amount of 
preparation certainly is still required, it is relatively easy to ex- 
tend an existing bayesmeta implementation to include covari- 
ables in addition, whereas the effort required to run, diagnose 
and possibly implement an MCMC approach would be substantially 
higher. In many applications, use of the bmr() , forestplot() 

and summary() functions may already be sufficient to address 
most relevant questions. More sophisticated investigations are pos- 
sible using the comprehensive output available (such as custom 

plots (see Sections 3.2 –3.4 ), model selection (see Section 3.5 ) or 
model averaging [58] ). 

The meta-regression approach presented here builds on the 
NNHM, which yields accurate inference in particular also in case 
of few studies [34] . A normal approximation at the study-level is 
often appropriate, for example when sample sizes are “large” and 
and studies are sufficiently powered. However, the normal approx- 
imation may also deteriorate in certain circumstances, for exam- 
ple, for binary endpoints with zero (or near-zero) event counts. In 
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such cases, use of an exact likelihood may be preferable [66,67] , as 
for example implemented in the metaStan R package [63] . This 
package also allows for model-based meta-analysis (MBMA) , where 
studies may contribute information on several (more than two) 
study arms that correspond to different exposures or dose levels 
[68,69] . Similarly, the bmeta package provides meta-analysis and 
meta-regression functionalities based on MCMC sampling [70] . The 
RBesT package also supports meta-analysis based on a range of 
endpoint types, with a focus on deriving (“meta-analytic-predictive 
(MAP)”) prior distributions for use in a subsequent analysis [71] . 
In the example applications we included indirect comparisons as a 
very basic example of a treatment network; more complex models 
commonly applied for network meta-analysis (see e.g. [ 30 , Sec. 11]) 
are currently not implemented in the bayesmeta package. Dedi- 
cated packages are available for network meta-analyis, for instance 
nmaINLA , which utilizes the integrated nested Laplace approxima- 

tion (INLA) for posterior inference [72] . Recently, Williams et al. 
[73] proposed meta-anaytic models with covariate effects on the 
heterogeneity variance besides the mean; these are implemented 
in the R package blsmeta . The bspmma and metaBMA R pack- 
ages implement extensions of the “simple” NNHM, but currently 
without the option for meta-regression [74,75] . Alternatively, many 
meta-analysis problems may also be formulated in terms of gen- 
eralized linear mixed models (GLMMs), which can be fitted for in- 
stance using the R package brms [76] . Most of the above alter- 
native Bayesian packages rely on MCMC methods for inference. In 
case a taylored solution is required, which is not covered by any 
of the mentioned packages, it is probably easiest to also resort to 
MCMC methods, which may be implemented e.g. using the JAGS 
or Stan engines, and the interfacing rjags or rstan packages 
[77–79] . For a comprehensive and up-to-date overview of available 
R packages, see also the corresponding CRAN task view [80] . 
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