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1This document is included as a vignette (a LATEX document created using the R function Sweave()) of the package
dlnm. It is automatically downloaded together with the package and can be simply accessed through R by typing
vignette("dlnmTS") .
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1 Preamble

This vignette dlnmTS illustrates the use of the R package dlnm for the application of distributed lag
linear and non-linear models (DLMs and DLNMs) in time series analysis. The development of DLMs
and DLNMs and the original software implementation for time series data are illustrated in Gasparrini
et al. [2010] and Gasparrini [2011].

The examples described in the next sections cover most of the standard applications of the DLNM
methodology for time series data, and explore the capabilities of the dlnm package for specifying,
summarizing and plotting this class of models. In spite of the speci�c application on the health e�ects
of air pollution and temperature, these examples are easily generalized to di�erent topics, and form a
basis for the analysis of this data set or other time series data sources. The results included in this
document are not meant to represent scienti�c �ndings, but are reported with the only purpose of
illustrating the capabilities of the dlnm package.

A general overview of functions included in the package, with information on its installation and a brief
summary of the DLNM methodology are included in the vignette dlnmOverview, which represents
the main documentation of dlnm. The user can refer to that vignette for a general introduction to the
package.

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Data

The examples included in vignette explore the associations between air pollution and temperature with
mortality, using a time series data set with daily observations for the city of Chicago in the period
1987�2000. This data set is included in the package as the data frame chicagoNMMAPS, and is described
in the related help page (see help(chicagoNMMAPS) and the vignette dlnmOverview).

After loading the package in the R session, let's have a look at the �rst three observations:

> library(dlnm)

> head(chicagoNMMAPS,3)

date time year month doy dow death cvd resp temp dptp

1 1987-01-01 1 1987 1 1 Thursday 130 65 13 -0.2777778 31.500

2 1987-01-02 2 1987 1 2 Friday 150 73 14 0.5555556 29.875

3 1987-01-03 3 1987 1 3 Saturday 101 43 11 0.5555556 27.375

rhum pm10 o3

1 95.50 26.95607 4.376079

2 88.25 NA 4.929803

3 89.50 32.83869 3.751079

The data set is composed by a complete series of equally-spaced observations taken each day in the
period 1987�2000. This represents the required format for applying DLNMs in time series data.

3 Example 1: a simple DLM

In this �rst example, I specify a simple DLM, assessing the e�ect of PM10 on mortality, while adjusting
for the e�ect of temperature. In order to do so, I �rst build two cross-basis matrices for the two
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predictors, and then include them in a model formula of a regression function. The e�ect of PM10 is
assumed linear in the dimension of the predictor, so, from this point of view, we can de�ne this as a
simple DLM even if the regression model estimates also the distributed lag function for temperature,
which is included as a non-linear term.

First, I run crossbasis() to build the two cross-basis matrices, saving them in two objects. The
names of the two objects must be di�erent in order to predict the associations separately for each of
them. This is the code:

> cb1.pm <- crossbasis(chicagoNMMAPS$pm10, lag=15, argvar=list(fun="lin"),

arglag=list(fun="poly",degree=4))

> cb1.temp <- crossbasis(chicagoNMMAPS$temp, lag=3, argvar=list(df=5),

arglag=list(fun="strata",breaks=1))

In applications with time series data, the �rst argument x is used to specify the vector series. The
function internally passes the arguments in argvar and arglag to onebasis() in order to build the
basis for predictor and lags, respectively. In this case, we assume that the e�ect of PM10 is linear
(fun="lin"), while modelling the relationship with temperature through a natural cubic spline with 5
degrees of freedom (fun="ns", chosen by default). The internal knots (if not provided) are placed by
ns() at the default equally spaced quantiles, while the boundary knots are located at the temperature
range, so only df must be speci�ed.

Regarding the bases for the space of the lags, I specify the lagged e�ect of PM10 up to 15 days of lag
(minimum lag equal to 0 by default), with a 4th degree polynomial function (setting degree=4). The
delayed e�ect of temperature are de�ned by two lag strata (0 and 1-3), assuming the e�ects as constant
within each stratum. The argument breaks=1 de�nes the lower boundary of the second interval.

An overview of the speci�cations for the cross-basis (and the related bases in the two dimensions) is
provided by the method function summary() for this class:

> summary(cb1.pm)

CROSSBASIS FUNCTIONS

observations: 5114

range: -3.049835 to 356.1768

lag period: 0 15

total df: 5

BASIS FOR VAR:

fun: lin

intercept: FALSE

BASIS FOR LAG:

fun: poly

degree: 4

scale: 15

intercept: TRUE

Now the two crossbasis objects can be included in a model formula of a regression model. The
packages splines is loaded, as it is needed in the examples. In this case I �t the time series model
assuming an overdispersed Poisson distribution, including a smooth function of time with 7 df/year
(in order to correct for seasonality and long time trend) and day of the week as factor:
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> library(splines)

> model1 <- glm(death ~ cb1.pm + cb1.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

The estimated association with speci�c levels of PM10 on mortality, predicted by the model above,
can be summarized by the function crosspred() and saved in an object with the same class:

> pred1.pm <- crosspred(cb1.pm, model1, at=0:20, bylag=0.2, cumul=TRUE)

The function includes the basis1.pm and model1 objects used to estimate the parameters as the �rst
two arguments, while at=0:20 states that the prediction must be computed for each integer value
from 0 to 20 µgr/m3. By setting bylag=0.2, the prediction is computed along the lag space with an
increment of 0.2. This �ner grid is meant to produce a smoother lag curve when the results are plotted.
The argument cumul (default to FALSE) indicates that also incremental cumulative associations along
lags must be included(note: this prediction is only returned for integer lags). No centering is de�ned
through the argument cen, and the reference value is therefore set at value 0 by default (this happens
for the function lin()). Now that the predictions have been stored in pred1.pm, they can be plot by
speci�c method functions. For example:

> plot(pred1.pm, "slices", var=10, col=3, ylab="RR", ci.arg=list(density=15,lwd=2),

main="Association with a 10-unit increase in PM10")

> plot(pred1.pm, "slices", var=10, col=2, cumul=TRUE, ylab="Cumulative RR",

main="Cumulative association with a 10-unit increase in PM10")

Figure 1
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The function includes the pred1.pm object with the stored results, and the argument "slices" de�nes
that we want to graph relationship corresponding to speci�c values of predictor and lag in the related
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dimensions. With var=10 I display the lag-response relationship for a speci�c value of PM10, i.e.
10 µgr/m3. This association is de�ned using the reference value of 0 µgr/m3, thus providing the
predictor-speci�c association for a 10-unit increase. I also chose a di�erent colour for the �rst plot.
The argument cumul indicates if incremental cumulative associations, previously saved in pred1.pm,
must be plotted. The results are shown in Figures 1a�1b. Con�dence intervals are set to the default
value "area" for the argument ci. In the left panel, additional arguments are passed to the low-level
plotting function polygon() through ci.arg, to draw instead shading lines as con�dence intervals.

The interpretation of these plots is twofold: the lag curve represents the increase in risk in each future
day following an increase of 10 µgr/m3 in PM10 in a speci�c day (forward interpretation), or otherwise
the contributions of each past day with the same PM10 increase to the risk in a speci�c day (backward
interpretation). The plots in Figures 1a�1b suggest that the initial increase in risk of PM10 is reversed
at longer lags. The overall cumulative e�ect of a 10-unit increase in PM10 over 15 days of lag (i.e.
summing all the contributions up to the maximum lag), together with its 95% con�dence intervals can
be extracted by the objects allRRfit, allRRhigh and allRRlow included in pred1.pm, typing:

> pred1.pm$allRRfit["10"]

10

0.9997563

> cbind(pred1.pm$allRRlow, pred1.pm$allRRhigh)["10",]

[1] 0.9916871 1.0078911

4 Example 2: seasonal analysis

The purpose of the second example is to illustrate an analysis where the data are restricted to a speci�c
season. The peculiar feature of this analysis is that the data are assumed to be composed by multiple
equally-spaced and ordered series of multiple seasons in di�erent years, and do not represent a single
continuous series. In this case, I assess the e�ect of ozone and temperature on mortality up to 5 and
10 days of lag, respectively, using the same steps already seen in Section 3.

First, I create a seasonal time series data set obtained by restricting to the summer period (June-
September), and save it in the data frame chicagoNMMAPS:

> chicagoNMMAPSseas <- subset(chicagoNMMAPS, month %in% 6:9)

Again, I �rst create the cross-basis matrices:

> cb2.o3 <- crossbasis(chicagoNMMAPSseas$o3, lag=5,

argvar=list(fun="thr",thr=40.3), arglag=list(fun="integer"),

group=chicagoNMMAPSseas$year)

> cb2.temp <- crossbasis(chicagoNMMAPSseas$temp, lag=10,

argvar=list(fun="thr",thr=c(15,25)), arglag=list(fun="strata",breaks=c(2,6)),

group=chicagoNMMAPSseas$year)

The argument group indicates the variable which de�nes multiple series: the function then breaks the
series at the end of each group and replaces the �rst rows up to the maximum lag of the cross-basis
matrix in the following series with NA. Each series must be consecutive, complete and ordered. Here
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I make the assumption that the e�ect of O3 is null up to 40.3 µgr/m3 and then linear, applying an
high threshold parameterization (fun="thr"). For temperature, I use a double threshold with the
assumption that the e�ect is linear below 15◦C and above 25◦C, and null in between. The threshold
values are chosen with the argument thr.value (abbreviated to thr), while the un-speci�ed argument
side is set to the default value "h" for the �rst cross-basis and to "d" for the second one (given two
threshold values are provided). Regarding the lag dimension, I specify an unconstrained function for
O3, applying one parameter for each lag (fun="integer") up to a 5 days (with minimum lag equal
to 0 by default). For temperature, I de�ne 3 strata intervals at lag 0-1, 2-5, 6-10. A summary of the
choices made for the cross-bases can be shown by the method summary().

The regression model includes natural splines for day of the year and time, in order to describe the
seasonal e�ect within each year, and the long-time trend, respectively. In particular, the latter has
far less degrees of freedom, if compared to the previous analysis, as it only needs to capture a smooth
annual trend. Apart from that, the estimates and predictions are carried out in the same way as in
Section 3. The code is:

> model2 <- glm(death ~ cb2.o3 + cb2.temp + ns(doy, 4) + ns(time,3) + dow,

family=quasipoisson(), chicagoNMMAPSseas)

> pred2.o3 <- crosspred(cb2.o3, model2, at=c(0:65,40.3,50.3))

The values for which the prediction must be computed are speci�ed in at: here I de�ne the integers
from 0 to 65 µgr/m3 (approximately the range of ozone distribution), plus the threshold and the value
50.3 µgr/m3 corresponding to a 10-unit increase above the threshold. The vector is automatically
ordered. A reference is automatically selected exposure-response curve modelled by thr(), and the
argument cen can be left unde�ned.

I plot the predictor-speci�c lag-response relationship for a 10-unit increase in O3, similarly to Section 3
but with 80% con�dence intervals, and also the overall cumulative exposure-response relationship. The
related code is (results in Figures 2a�2b):

> plot(pred2.o3, "slices", var=50.3, ci="bars", type="p", col=2, pch=19,

ci.level=0.80, main="Lag-response a 10-unit increase above threshold (80CI)")

> plot(pred2.o3,"overall",xlab="Ozone", ci="l", col=3, ylim=c(0.9,1.3), lwd=2,

ci.arg=list(col=1,lty=3), main="Overall cumulative association for 5 lags")

In the �rst statement, the argument ci="bars" dictates that, di�erently from the default "area"

seen in Figures 1a�1b, the con�dence intervals are represented by bars. In addition, the argument
ci.level=0.80 states that 80% con�dence intervals must be plotted. Finally, I chose points, instead
of the default line, with speci�c symbol, by the arguments type and pch. In the second statement,
the argument type="overall" indicates that the overall cumulative association must be plotted, with
con�dence intervals as lines, ylim de�ning the range of the y-axis, lwd the thickness of the line. In this
case, con�dence intervals are displayed as lines, selected through an abbreviation "l" in the argument
ci. Similarly to the previous example, the display of con�dence intervals are re�ned through the list
of arguments speci�ed by ci.arg, passed in this case to the low-level function lines().

Similarly to the previous example, we can extract from pred2.o3 the estimated overall cumulative
e�ect for a 10-unit increase in ozone above the threshold (50.3− 40.3 µgr/m3), together with its 95%
con�dence intervals:

> pred2.o3$allRRfit["50.3"]

50.3

1.047313
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Figure 2
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> cbind(pred2.o3$allRRlow, pred2.o3$allRRhigh)["50.3",]

[1] 1.004775 1.091652

The same plots and computation can be applied to the cold and heat e�ects of temperatures. For
example, we can describe the increase in risk for 1◦C beyond the low or high thresholds. The user can
perform this analysis repeating the steps above.

5 Example 3: a bi-dimensional DLNM

In the previous examples, the e�ects of air pollution (PM10 and O3, respectively) were assumed
completely linear or linear above a threshold. This assumption facilitates both the interpretation and
the representation of the relationship: the dimension of the predictor is never considered, and the lag-
speci�c or overall cumulative associations with a 10-unit increase are easily plotted. In contrast, when
allowing for a non-linear dependency with temperature, we need to adopt a bi-dimensional perspective
in order to represent associations which vary non-linearly along the space of the predictor and lags.

In this example I specify a more complex DLNM, where the dependency is estimated using smooth
non-linear functions for both dimensions. Despite the higher complexity of the relationship, we will
see how the steps required to specify and �t the model and predict the results are exactly the same as
for the simpler models see before in Sections 3�4, only requiring di�erent plotting choices. The user
can apply the same steps to investigate the e�ects of temperature in previous examples, and extend
the plots for PM10 and O3. In this case I run a DLNM to investigate the e�ects of temperature and
PM10 on mortality up to lag 30 and 1, respectively.

First, I de�ne the cross-basis matrices. In particular, the cross-basis for temperature is speci�ed
through a natural and non-natural splines, using the functions ns() and bs() from the package splines.
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This is the code:

> cb3.pm <- crossbasis(chicagoNMMAPS$pm10, lag=1, argvar=list(fun="lin"),

arglag=list(fun="strata"))

> varknots <- equalknots(chicagoNMMAPS$temp,fun="bs",df=5,degree=2)

> lagknots <- logknots(30, 3)

> cb3.temp <- crossbasis(chicagoNMMAPS$temp, lag=30, argvar=list(fun="bs",

knots=varknots), arglag=list(knots=lagknots))

The chosen basis functions for the space of the predictor are a linear function for the e�ect of PM10 and a
quadratic B-spline (fun="bs") with 5 degrees of freedom for temperature, with knots placed by default
at equally spaced value in the space of the predictor, selected through the function equalknots().
Regarding the space of lags, I assume a simple lag 0-1 parameterization for PM10 (i.e. a single strata
up to lag 1, with minimum lag equal to 0 by default, keeping the default values of df=1), while I de�ne
another cubic spline, this time with the natural constraint (fun="ns" by default) for the lag dimension
of temperature. The knots for the spline for lags are placed at equally-spaced values in the log scale
of lags, using the function logknots(). This used to be the default values in versions of the package
earlier than 2.0.0.

The estimation, prediction and plotting of the association between temperature and mortality are
performed by:

> model3 <- glm(death ~ cb3.pm + cb3.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

> pred3.temp <- crosspred(cb3.temp, model3, cen=21, by=1)

> plot(pred3.temp, xlab="Temperature", zlab="RR", theta=200, phi=40, lphi=30,

main="3D graph of temperature effect")

> plot(pred3.temp, "contour", xlab="Temperature", key.title=title("RR"),

plot.title=title("Contour plot",xlab="Temperature",ylab="Lag"))

Note that prediction values are centered here at 21◦C, the point which represents the reference for the
interpretation of the estimated e�ects. This step is needed here, as the relationship is modelled with a
non-linear function with no obvious reference value. The values are chosen only with the argument by=1
in crosspred(), de�ning all the integer values within the predictor range. The �rst plotting expression
produces a 3-D plot illustrated in Figure 3a, with non-default choices for perspective and lightning
obtained through the arguments theta-phi-lphi. The second plotting expression speci�es the contour
plot in Figure 3b with titles and axis labels chosen by arguments plot.title and key.title. The
user can �nd additional information and a complete list of arguments in the help pages of the original
high-level plotting functions (typing ?persp and ?filled.contour).

Plots in Figures 3a�3b o�er a comprehensive summary of the bi-dimensional exposure-lag-response
association, but are limited in their ability to inform on associations at speci�c values of predictor or
lags. In addition, they are also limited for inferential purposes, as the uncertainty of the estimated
association is not reported in 3-D and contour plots. A more detailed analysis is provided by plotting
"slices" of the e�ect surface for speci�c predictor and lag values. The code is:

> plot(pred3.temp, "slices", var=-20, ci="n", col=1, ylim=c(0.95,1.25), lwd=1.5,

main="Lag-response curves for different temperatures, ref. 21C")

> for(i in 1:3) lines(pred3.temp, "slices", var=c(0,27,33)[i], col=i+1, lwd=1.5)

> legend("topright",paste("Temperature =",c(-20,0,27,33)), col=1:4, lwd=1.5)

> plot(pred3.temp, "slices", var=c(-20,33), lag=c(0,5), col=4,

ci.arg=list(density=40,col=grey(0.7)))
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Figure 3
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The results are reported in Figures 4a�4b. Figure 4a illustrates lag-response curves speci�c to mild and
extreme cold and hot temperatures of -20◦C, 0◦C, 27◦C, and 33◦C (with reference at 21◦C). Figures 4b

Figure 4
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depicts both exposure-response relationships speci�c to lag 0 and 5 (left column), and lag-response
relationships speci�c to temperatures -20◦C and 33◦C (right column). The arguments var and lag

de�ne the values of temperature and lag for "slices" to be cut in the e�ect surface in Figure 3a�3b.
The argument ci="n" in the �rst expression states that con�dence intervals must not be plotted. In
the multi-panel Figure 4b, the list argument ci.arg is used to plot con�dence intervals as shading
lines with increased grey contrast, more visible here.

The preliminary interpretation suggests that cold temperatures are associated with longer mortality
risk than heat, but not immediate, showing a "protective" e�ect at lag 0. This analytical pro�ciency
would be hardly achieved with simpler models, probably losing important details of the association.

6 Example 4: reducing a DLNM

In this last example, I show how we can reduce the �t of a bi-dimensional DLNM to summaries
expressed by parameters of one-dimensional basis, using the function crossreduce(). This method is
thoroughly illustrated in Gasparrini and Armstrong [2013]. First, I specify a new cross-basis matrix,
run the model and predict in the usual way:

> cb4 <- crossbasis(chicagoNMMAPS$temp, lag=30,

argvar=list(fun="thr",thr=c(10,25)), arglag=list(knots=lagknots))

> model4 <- glm(death ~ cb4 + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)

> pred4 <- crosspred(cb4, model4, by=1)

The speci�ed cross-basis for temperature is composed by double-threshold functions with cut-o� points
at 10◦C and 25◦C for the dimension of the predictor, and a natural cubic splines with knots at equally-
spaced values in the log scale for lags as in the previous example, respectively. The reduction may
be carried out to 3 speci�c summaries, namely overall cumulative, lag-speci�c and predictor-speci�c
associations. The �rst two represent exposure-response relationships, while the third one represents a
lag-response relationship. This is the code:

> redall <- crossreduce(cb4, model4)

> redlag <- crossreduce(cb4, model4, type="lag", value=5)

> redvar <- crossreduce(cb4, model4, type="var", value=33)

The reduction for speci�c associations is computed at lag 5 and 33◦C in the two spaces, respectively.
The 3 objects of class "crossreduce" contain the modi�ed reduced parameters for the one-dimensional
basis in the related space, which can be compared with the original model:

> length(coef(pred4))

[1] 10

> length(coef(redall)) ; length(coef(redlag))

[1] 2

[1] 2

> length(coef(redvar))
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Figure 5
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As expected, the number of parameters has been reduced to 2 for the space of the predictor (consistently
with the double-threshold parameterization), and to 5 for the space of lags (consistently with the
dimension of the natural cubic spline basis). However, the prediction from the original and reduced �t
is identical, as illustrated in Figure 5a produced by:

> plot(pred4, "overall", xlab="Temperature", ylab="RR",

ylim=c(0.8,1.6), main="Overall cumulative association")

> lines(redall, ci="lines",col=4,lty=2)

> legend("top",c("Original","Reduced"),col=c(2,4),lty=1:2,ins=0.1)

The process may also be clari�ed by re-constructing the orginal one-dimensional basis and predicting
the association given the modi�ed parameters. As an example, I reproduce the natural cubic spline
for the space of the lag using onebasis(), and predict the results, with:

> b4 <- onebasis(0:30,knots=attributes(cb4)$arglag$knots,intercept=TRUE)

> pred4b <- crosspred(b4,coef=coef(redvar),vcov=vcov(redvar),model.link="log",by=1)

The spline basis is computed on the integer values corresponding to lag 0:30, with knots at the
same values as the original cross-basis, and uncentered with intercept as the default for basis for lags.
Predictions are computed using the modi�ed parameters reduced to predictor-speci�c association for
33◦C. The identical �t of the original, reduced and re-constructed prediction is illustrated in Figure 5b,
produced by:

> plot(pred4, "slices", var=33, ylab="RR", ylim=c(0.9,1.2),

main="Predictor-specific association at 33C")
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> lines(redvar, ci="lines", col=4, lty=2)

> points(pred4b, col=1, pch=19, cex=0.6)

> legend("top",c("Original","Reduced","Reconstructed"),col=c(2,4,1),lty=c(1:2,NA),

pch=c(NA,NA,19),pt.cex=0.6,ins=0.1)
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