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1 Introduction

Structural causal models (SCMs, Pearl, 2000) are a mathematical framework describing the behaviour
of a multivariate system, and represent one of the prevalent methodologies for causal inference in con-
temporary applied sciences. Markovian SCMs are a special case where the joint probability distribution
of the considered variables can be factored according to a directed acyclic graph. Distributed-lag linear
structural equation models (DLSEMs) are Markovian SCMs, where each factor of the joint probability
distribution is a distributed-lag linear regression with constrained lag shapes. They were firstly intro-
duced in the context of lag exposure assessment (Magrini, 2018), then applied to impact assessment of
research expenditure in Agriculture (Magrini et al., 2019). DLSEMs account for temporal delays in the
dependence relationships among the variables through a single parameter per covariate, thus allowing to
perform dynamic causal inference in a feasible fashion.

Package dlsem implements inference functionalities for DLSEMs with several types of constrained lag
shapes (Magrini , 2020). Currently, endpoint-constrained quadratic (’ecq’), quadratic decreasing (’qd’),
linearly decreasing (’ld’) and gamma (’gam’) lag shapes are available.

This vignette is structured as follows. In Section 2, theory on the DLSEM is presented. In Section 3,
instructions for the installation of the dlsem package are provided. In Section 4, the practical use of
dlsem is illustrated through a simple impact assessment problem.
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2 Theory

Distributed-lag linear regression Let Y be a response variable and X1, . . . , Xp be the covariates,
with yt and xjt, respectively, the value of Y and ofXj at time t. Under the hypothesis that time is discrete
and that both Y and X1, . . . , Xp are stationary time series, lagged instances of one or more covariates
may be included in the linear regression model to account for temporal delays in their influence on the
response:

yt = β0 +
J
∑

j=1

Lj
∑

l=0

βj,l xj,t−l + ǫt (1)

where xj,t−l is the value of the j-th covariate at l time lags before t, and ǫt is the random error at time t
uncorrelated with the covariates and with ǫk, ∀k 6= t. The set (βj,0, βj,1, . . . , βj,Lj

) is denoted as the lag

shape of the j-th covariate and represents its regression coefficient (in the remainder, simply ‘coefficient’)
at different time lags.

Least squares can be used to consistently estimate the lag shapes 1, but, since time series data are
likely to be serially correlated and heteroskedastic, a good practice is to apply the Heteroskedasticity
and Autocorrelation Consistent (HAC) correction for the covariance matrix of least squares estimators
(Newey & West, 1978).

The model in Formula 1 has the disadvantage that a parameter is required for each lagged instance
of a covariate, and lagged instances of the same covariate tend to be highly correlated. The Almon’s
polynomial lag shape (Almon, 1965) overcomes these limitations by forcing the coefficients for lagged
instances of the same covariate to follow a polynomial of order Q:

βj,l =

{

φj,0 l = 0
∑Q

q=0 φj,ql
q otherwise

(2)

For instance, for q = 2 we have that βj,l = φj,0 + φj,1l + φj,2l
2. Unfortunately, the Almon’s polynomial

lag shape may show multiple modes and coefficients with different signs, thus entailing problems of
interpretation. Type II constrained lag shapes (Magrini , 2020) overcome this issue. They include the
endpoint-constrained quadratic lag shape:

βj,l =

{

θj

[

− 4
(bj−aj+2)2 l

2 +
4(aj+bj)

(bj−aj+2)2 l −
4(aj−1)(bj+1)
(bj−aj+2)2

]

aj ≤ l ≤ bj

0 otherwise
(3)

the quadratic decreasing lag shape:

βj,l =

{

θj
l2−2(bj+1)l+(bj+1)2

(bj−aj+1)2 aj ≤ l ≤ bj

0 otherwise
(4)

the linearly decreasing lag shape:

βj,l =

{

θj
bj+1−l

bj+1−aj
aj ≤ l ≤ bj

0 otherwise
(5)

and the gamma lag shape:

βj,l = θj(l + 1)
aj

1−aj blj

[

(

aj
(aj − 1) logbj

)

aj

1−aj

b

aj

(aj−1)logbj
−1

j

]−1

0 < aj < 1 0 < bj < 1

(6)

The endpoint-constrained quadratic lag shape is zero for a time lag l < aj or l > bj , and symmetric with
mode equal to θj at lag (aj + bj)/2. The quadratic decreasing lag shape decreases from value θj at lag aj

1 Note that stationarity of the time series is required to obtain consistent least squares estimation (Granger and Newbold,
1974). If some of them contains a stochastic trend (unit root), a reasonable procedure is to sequentially apply differencing
to all variables until they are made stationary according to a unit root test. Sequential testing is required for interpretation,
as it allows to have the same order of differencing for all variables.
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to value 0 at lag bj + 1 according to a quadratic function. The linearly decreasing lag shape is a linear
version of the quadratic one. The gamma lag shape is positively skewed with mode equal to θj at lag

aj

(aj−1) logbj
.

For the endpoint-constrained quadratic, quadratic decreasing and linearly decreasing lag shapes, aj rep-
resents the gestation lag, bj the lead lag, and bj − aj the lag width (a static lag shape is obtained if
aj = bj = 0). Gestation lag, lead lag and lag width are not explicit in a gamma lag shape, but they can
be approximated numerically from parameters aj and bj . For these constrained lag shapes, it holds:

βj,l > 0 ⇐⇒ θj > 0

βj,l < 0 ⇐⇒ θj < 0
∀l : aj ≤ l ≤ bj (7)

and we refer to the lag sign as the sign of parameter θj .

A linear regression with these constrained lag shapes is linear in parameters β0, θ1, . . . , θJ , provided that
the values of a1, . . . , aJ , b1, . . . , bJ are known. Thus, one may fit several regressions with different values
of a1, . . . , aJ , b1, . . . , bJ , and select the one with the minimum residual sum of squares (see Magrini , 2020
for details).

Structural causal models Structural causal models (SCMs) were developed by Pearl (2000) in the
context of causal inference. They are rooted to path analysis (Wright, 1934) and simultaneous equation
models (Haavelmo, 1943; Koopmans et al., 1950). A SCM consists of a tuple {V ,U ,ΩV ,ΩU ,f ,PU},
where:

• V = {V1, . . . , VJ} is a set of endogenous variables;

• ΩV = ΩV1
× . . .× ΩVJ

is the cartesian product of the domains of variables in V ;

• U = {U1, . . . , UK} is a set of unobserved variables;

• ΩU = ΩU1 × . . .× ΩUK
is the cartesian product of the domains of variables in U ;

• f : ΩV × ΩU −→ ΩV is a measurable function;

• PU is a probability measure on ΩU .

Markovian SCMs (Pearl, 2000, Chapter 3) are a special case where f is acyclic and variables in U are each
other independent. In a Markovian SCM, the following factorization of the joint probability distribution
of variables in V holds:

p(v1, . . . , vJ) =

J
∏

j=1

p(vj | Πj = πj) (8)

where Πj is the set of variables in V such that, for j > 1, Vj is independent of variables in {V1, . . . , Vj−1}\
Πj , given variables in Πj . This means that the joint probability distribution of variables in V can be
factored according to conditional independence relationships holding among them disregarding variables
in U . Pearl (2000, pages 12 and following) shows that these conditional independence relationships are
encoded into a directed acyclic graph (DAG) such that Πj is the parent set of Vj , ∀ j = 1, . . . , J . For
example, in the Markovian SCM associated to the DAG in Figure 1, it holds:

p(v1, v2, v3, v4) = p(v1) p(v2 | v1) p(v3 | v1) p(v4 | v2, v3) (9)

and, for example, V4 is independent of V1 given V2 and V3.

Let do(Vi = vi) denote an intervention setting the value of Vi to vi. Then, in a Markovian SCM it holds:

p(v1, . . . , vJ | do(Vi = vi)) =
∏

j 6=i

p(vj | πj) |Vi=vi
(10)

where |Vi=vi
indicates that p(vi | πi) is replaced by value vi. This formula, called truncated factorization

(Pearl, 2000, Section 3.2), allows to compute the effect of an intervention from the (pre-intervention)
distribution in Formula 8, that is to predict such effect from non-experimental (observational) data. In a
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Figure 1: An example of directed acyclic graph.

Markovian SCM, the effect of do(Vi = vi) on Vj , called causal effect of Vi on Vj , is given by the following
expression (see Pearl, 2000, page 70 and following):

p(Vj = vj | do(Vi = vi)) =
∑

πi

p(Vj = vj | Vi = vi,Πi = πi)p(Πi = πi) (11)

where Πi is the parent set of Vi.

In a linear parametric formulation of SCMs (linear Markovian SCMs), each factor p(vj | πj) of the
joint probability distribution in Formula 8 is the linear regression where Vj is the response variable and
variables in Πj are the covariates. For example, in the linear Markovian SCM associated to the DAG in
Figure 1, p(v4 | v2, v3) is the linear regression where V4 is the response variable and V2 and V3 are the
covariates.

As shown by Magrini, 2018, the computation of causal effects in a linear Markovian SCM involves the
coefficients of the regressions only, without the need of Formula 11. Let do(aVi = 1) be an intervention
changing the value of Vi by a unit. Under such intervention:

• if Vi is parent of Vj , the direct causal effect of Vi on Vj is equal to the coefficient of Vi in the
regression of Vj ;

• the causal effect of Vi on Vj through a multi-edge directed path < Vi, . . . , Vj > connecting Vi to
Vj , called indirect causal effect of Vi on Vj through < Vi, . . . , Vj >, is equal to (see, for example,
Wright, 1934):

e(< Vi, . . . , Vj >) =
∏

k: Vk∈<Vi,...,Vj>∧k 6=i

βk|k−1 (12)

where βk|k−1 is the coefficient of Vk−1 in the regression of Vk. The direct causal effect of Vi on Vj

and all the indirect causal effects of Vi on Vj are denoted as pathwise causal effects of Vi on Vj ;

• the overall causal effect of Vi on Vj is equal to the sum of all the pathwise causal effects of Vi on
Vj .

For example, in the linear Markovian SCM associated to the DAG in Figure 1, there are two directed
paths connecting V1 to V4: < V1, V2, V4 > with pathwise causal effect β2|1 · β4|2, and < V1, V3, V4 > with
pathwise causal effect β3|1 ·β4|3. Thus, the overall causal effect of V1 on V4 is equal to β2|1 ·β4|2+β3|1 ·β4|3.

Distributed-lag linear structural equation models Distributed-lag linear structural equation mod-
els (DLSEMs) are Markovian SCMs where each factor of the joint probability distribution in Formula
8 is a distributed-lag linear regression with constrained lag shapes. They were firstly introduced in the
context of lag exposure assessment (Magrini, 2018), then applied to impact assessment of research ex-
penditure in Agriculture (Magrini et al., 2019). The DAG of a DLSEM would involve all the possible
temporal instances of each variable in V . Here, for simplicity, a static DAG is still used for a DLSEM,
where the edge < Vi, Vj > exists if and only if there exists at least one time lag where the coefficient of
variable Vi in the regression of variable Vj is non-zero. Causal effects at different time lags in a DLSEM
are defined as follows:
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• if Vi is parent of Vj , the direct causal effect of Vi on Vj at lag l is equal to the coefficient of Vi at
lag l in the regression of Vj ;

• Let < Vd0
, . . . , Vdm

>, d0 = i and dm = j, be a directed path composed of m edges connecting Vi to

Vj , and Q
(l)
m be the set of all the possible ordered m-uples of time lags such that their sum is equal

to l. The indirect causal effect of Vi on Vj through such path at lag l is equal to:

e(< Vd0
, . . . , Vdm

>; d0 = i, dm = j) =
∑

(q1,...,qm)∈Q
(l)
m

m
∏

k=1

bdk|dk−1,qk (13)

where bdk|dk−1,qk is the coefficient of Vdk−1
at lag qk in the regression of Vdk

;

• the overall causal effect of Vi on Vj at lag l is equal to the sum of all the pathwise causal effects of
Vi on Vj at lag l.

A pathwise causal lag shape is the set of causal effects associated to a path at different time lags. An
overall causal lag shape is the set of the overall causal effects of a variable on another one at different
time lags.

3 Installation

Before installing dlsem, you must have installed R version 3.5.0 or higher, which is freely available at
http://www.r-project.org/.

To install the dlsem package, type the following in the R command prompt:

> install.packages("dlsem")

and R will automatically install the package to your system from CRAN. In order to keep your copy of
dlsem up to date, use the command:

> update.packages("dlsem")

The latest version of dlsem is 2.4.6.

4 Illustrative example

The practical use of package dlsem is illustrated through a simple impact assessment problem denoted
as “industrial development problem”. The objective is to test whether the influence through time of the
number job positions in industry (proxy of the industrial development) on the amount of greenhouse gas
emissions (proxy of pollution) is direct and/or mediated by the amount of private consumption. The
DAG for the industrial development problem is shown in Figure 2. The analysis will be conducted on
the dataset industry, containing simulated data for 10 imaginary regions in the period 1983-2015.

> data(industry)

> summary(industry)

Region Year Population GDP

1 : 32 Min. :1983 Min. : 4771649 Min. : 97119

2 : 32 1st Qu.:1991 1st Qu.: 8310737 1st Qu.: 186783

3 : 32 Median :1998 Median :25381874 Median : 463942

4 : 32 Mean :1998 Mean :32368547 Mean : 727735

5 : 32 3rd Qu.:2006 3rd Qu.:56273337 3rd Qu.:1307044

6 : 32 Max. :2014 Max. :78308254 Max. :1883702

(Other):128

Job Consum Pollution

Min. : 34.77 Min. : 37.35 Min. : 3161
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Job

Consum

Pollution

Figure 2: The DAG for the industrial development problem. ‘Job’: number of job positions in industry.
‘Consum’: private consumption index. ‘Pollution’: amount of greenhouse gas emissions.

1st Qu.:105.07 1st Qu.: 87.88 1st Qu.: 7536

Median :137.03 Median :108.47 Median : 25320

Mean :127.61 Mean :108.17 Mean : 32202

3rd Qu.:152.68 3rd Qu.:124.85 3rd Qu.: 47109

Max. :200.83 Max. :211.16 Max. :101441

4.1 Specification of the model code

The first step to build a DLSEM with the dlsem package is the definition of the model code, which
includes the formal specification of the regressions. The variables for which a regression is specified are
called endogenous variables. The other variables are referred as exogenous variables (not to be confused
with the unobserved disturbances).

The model code must be a list of formulas, one for each regression. In each formula, the response and
the covariates must be quantitative variables2, and operators ecq(·), qd(·), ld(·) and gam(·)3 may be
employed to specify, respectively, an endpoint-constrained quadratic, a quadratic decreasing, a linearly
decreasing or a gamma lag shape. Operators ecq(·), qd(·), ld(·) and gam(·) have three arguments: the
name of the covariate to which the lag shape is applied, and the two shape parameters aj and bj (see
Magrini , 2020 for details).

If none of these two operators is applied to a covariate, it is assumed that its coefficient is equal to 0
for time lags greater than 0 (no lag shape). The group factor and exogenous variables must not appear
in the model code (see Subsection 4.3 for the way to include them). The specification of regressions
with no endogenous covariates may be omitted from the model code (for example, one could avoid to
specify the regression for the number of job positions). In this problem, all lag shapes are assumed to be
endpoint-constrained quadratic lag shapes between 0 and 15 time lags:

> indus.code <- list(

+ Job ~ 1,

+ Consum~ecq(Job,0,15),

+ Pollution~ecq(Job,0,15)+ecq(Consum,0,15)

+ )

2 Qualitative variables may be included only as exogenous variables, as described in Subsection 4.3.
3 The operators ecq(·), qd(·) and gam(·) replace the old operators quec.lag(·), qdec.lag(·) and gamma.lag(·). If an old

operator is employed, it is automatically replaced by the new one and a warning is returned.
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4.2 Specification of control options

The second step to build a DLSEM with the dlsem package is the specification of control options. Control
options are distinguished into global (applied to all the regressions) and local (regression-specific) options.
Global control options must be a named list with one or more of the following components:

• adapt: a logical value indicating if adaptation of lag shapes must be performed, that is parameters
of lag shapes must be chosen on the basis of fit to data. Default is FALSE, meaning no adaptation;

• min.gestation: the minimum gestation lag for all lag shapes. If not provided, it is taken as equal
to 0;

• max.gestation: the maximum gestation lag for all lag shapes. If not provided, it is taken as equal
to max.lead (see below);

• max.lead: the maximum lead lag for all lag shapes. If not provided, it is computed accordingly to
the sample size;

• min.width: the minimum lag width for all lag shapes. It cannot be greater than max.lead. If not
provided, it is taken as 0;

• sign: the lag sign for all lag shapes, that may be either ’+’ for positive or ’-’ for negative. If not
provided, adaptation will disregard the lag sign.

Local control options must be a named list containing one or more among the following components:

• adapt: a named vector of logical values, where each component must have the name of one endoge-
nous variable and indicate if adaptation of lag shapes must be performed for the regression of that
variable;

• min.gestation: a named list. Each component of the list must have the name of one endogenous
variable and be a named vector. Each component of the named vector must have the name of one
covariate in the regression of the endogenous variable above and include the minimum gestation lag
for its lag shape;

• max.gestation: the same as min.gestation, with the exception that the named vector must
include the maximum gestation lag;

• max.lead: the same as min.gestation, with the exception that the named vector must include the
maximum lead lag;

• min.width: the same as min.gestation, with the exception that the named vector must include
the minimum lag width;

• sign: the same as min.gestation, with the exception that the named vector must include the lag
sign (either ’+’ for positive or ’-’ for negative).

Local control options have no default values, and global ones are applied in their absence. If some local
control options conflict with global ones, only the former are applied.

Suppose that one wants to perform adaptation with the following constraints for all lag shapes: (i)
maximum gestation lag of 3 years, (ii) maximum lead lag of 15 years, (iii) minimum lag width of 5 years,
(iv) positive lag sign. Control options for these constraints may be expressed in several ways. The most
simple solution is to specify only global control options, as the constraints hold for all the regressions:

> indus.global <- list(adapt=T,max.gestation=3,max.lead=15,min.width=5,sign="+")

> indus.local <- list()

In alternative, one may specify only local control options, by repeating them for each regression:
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> indus.global <- list()

> indus.local <- list(

+ adapt=c(Consum=T,Pollution=T),

+ max.gestation=list(Consum=c(Job=3),Pollution=c(Job=3,Consum=3)),

+ max.lead=list(Consum=c(Job=15),Pollution=c(Job=15,Consum=15)),

+ min.width=list(Consum=c(Job=5),Pollution=c(Job=5,Consum=5)),

+ sign=list(Consum=c(Job="+"),Pollution=c(Job="+",Consum="+"))

+ )

or both local and global control options:

> indus.global <- list(adapt=T,min.width=5)

> indus.local <- list(

+ max.gestation=list(Consum=c(Job=3),Pollution=c(Job=3,Consum=3)),

+ max.lead=list(Consum=c(Job=15),Pollution=c(Job=15,Consum=15)),

+ sign=list(Consum=c(Job="+"),Pollution=c(Job="+",Consum="+"))

+ )

4.3 Parameter estimation

Once the model code and control options are specified, parameter estimation can be performed using the
command dlsem(·). The user may indicate a single group factor (just one) to argument group and one
or more exogenous variables to argument exogenous. By indicating the group factor, one intercept for
each level of the group factor will be estimated in each regression, in order to explain the variability due
to differences between groups. By indicating exogenous variables, they will be included as non-lagged
covariates in each regression, in order to eliminate cross-sectional spurious effects. Each exogenous vari-
able may be either qualitative or quantitative and its coefficient in each regression is 0 for time lags
greater than 0 (no lag shape). The user may decide to apply the logarithmic transformation to all strictly
positive quantitative variables by setting argument log to TRUE, in order to interpret each coefficient as
an elasticity (percentage increase in the value of the response variable for 1% increase in the value of
a covariate). Before parameter estimation, differencing is sequentially applied until all the time series
are made stationary. By default, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS, Kwiatkowski et al.,
1950) test is performed if the number of periods is less than 100, otherwise the Augmented Dickey-Fuller
(ADF, Dickey and Fuller, 1981) test is used. 4, and each missing value is replaced by its conditional
mean computed through the Expectation-Maximization algorithm (Dempster et al., 1977)5. The HAC
correction of the covariance matrix of least squares estimators is applied by default (it can be disabled
by setting argument hac to FALSE). In this problem, the region is indicated as the group factor, while
population and gross domestic product are indicated as exogenous variables. Also, the logarithmic trans-
formation is requested, and global and local control options are provided to arguments global.control
and local.control,respectively:

> indus.mod <- dlsem(indus.code,group="Region",exogenous=c("Population","GDP"),

+ data=industry,global.control=indus.global,local.control=indus.local,log=T)

Checking stationarity ...

Order 1 differentiation performed

Starting estimation ...

Estimating regression 1/3 (Job)

Estimating regression 2/3 (Consum) ... 5%

Estimating regression 2/3 (Consum) ... 45%

Estimating regression 2/3 (Consum) ... 50%

Estimating regression 2/3 (Consum) ... 55%

Estimating regression 2/3 (Consum) ... 95%

Estimating regression 2/3 (Consum) ... 100%

4 If the group factor is specified, group-specific p-values are combined according to the method proposed by (Demetrescu
et al., 2006).

5 Qualitative variables cannot contain missing values.
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Estimating regression 3/3 (Pollution) ... 5%

Estimating regression 3/3 (Pollution) ... 10%

Estimating regression 3/3 (Pollution) ... 15%

Estimating regression 3/3 (Pollution) ... 20%

Estimating regression 3/3 (Pollution) ... 25%

Estimating regression 3/3 (Pollution) ... 25%

Estimating regression 3/3 (Pollution) ... 30%

Estimating regression 3/3 (Pollution) ... 35%

Estimating regression 3/3 (Pollution) ... 40%

Estimating regression 3/3 (Pollution) ... 45%

Estimating regression 3/3 (Pollution) ... 50%

Estimating regression 3/3 (Pollution) ... 55%

Estimating regression 3/3 (Pollution) ... 60%

Estimating regression 3/3 (Pollution) ... 65%

Estimating regression 3/3 (Pollution) ... 70%

Estimating regression 3/3 (Pollution) ... 75%

Estimating regression 3/3 (Pollution) ... 75%

Estimating regression 3/3 (Pollution) ... 80%

Estimating regression 3/3 (Pollution) ... 85%

Estimating regression 3/3 (Pollution) ... 90%

Estimating regression 3/3 (Pollution) ... 95%

Estimating regression 3/3 (Pollution) ... 100%

Estimation completed

The results of command dlsem(·) is an object of class dlsem. Among the components of dlsem objects,
we found:

• estimate: a list of objects of class lm, one for each regression;

• call: a list containing the call for each regression after eventual adaptation of lag shapes;

• model.code: the model code after eventual adaptation of lag shapes;

• data: data after eventual logarithmic transformation and differencing, which were used in the
estimation.

The summary method for class dlsem returns the summary of the estimation:

> summary(indus.mod)

ENDOGENOUS PART

Response: Job

-

Response: Consum

Estimate Std. Error t value Pr(>|t|)

ecq(Job, 0, 5, Region) 0.1006394 0.01679967 5.990556 7.347355e-09 ***

Response: Pollution

Estimate Std. Error t value Pr(>|t|)

ecq(Job, 1, 8, Region) 0.08925573 0.03120937 2.859902 4.653304e-03 **

ecq(Consum, 1, 7, Region) 0.24416273 0.03430066 7.118310 1.593832e-11 ***

EXOGENOUS PART

Response: Job

Estimate Std. Error t value Pr(>|t|)

Population -2.015755 0.39488913 -5.10461 5.918596e-07 ***

GDP -1.274005 0.03999778 -31.85189 6.015402e-98 ***
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Response: Consum

Estimate Std. Error t value Pr(>|t|)

Population 0.8397265 0.20162453 4.164803 4.309595e-05 ***

GDP -0.8165645 0.02990941 -27.301257 1.500457e-76 ***

Response: Pollution

Estimate Std. Error t value Pr(>|t|)

Population -0.5444401 0.35131433 -1.549723 1.226718e-01

GDP 0.1467766 0.02815773 5.212656 4.343876e-07 ***

INTERCEPTS

Response: Job

Estimate Std. Error t value Pr(>|t|)

Region1 -0.027108664 0.002471484 -10.968577 9.695829e-24 ***

Region2 -0.014868387 0.002299389 -6.466235 4.104727e-10 ***

Region3 -0.014228172 0.003020166 -4.711056 3.784960e-06 ***

Region4 -0.005320298 0.003022567 -1.760192 7.940111e-02 .

Region5 -0.008833821 0.002249825 -3.926448 1.071505e-04 ***

Region6 -0.015622725 0.002392959 -6.528622 2.855024e-10 ***

Region7 -0.005154175 0.001800131 -2.863223 4.491035e-03 **

Region8 -0.027052095 0.002431495 -11.125706 2.802035e-24 ***

Region9 -0.046951445 0.002368957 -19.819459 2.396982e-56 ***

Region10 -0.023440072 0.002406224 -9.741433 1.200852e-19 ***

Response: Consum

Estimate Std. Error t value Pr(>|t|)

Region1 0.013228135 0.002838281 4.660614 5.159972e-06 ***

Region2 -0.009181367 0.002046187 -4.487061 1.107575e-05 ***

Region3 0.014910423 0.002424204 6.150648 3.086339e-09 ***

Region4 0.012261936 0.001834972 6.682356 1.550222e-10 ***

Region5 0.012591239 0.002755083 4.570184 7.703658e-06 ***

Region6 0.027006345 0.001908162 14.153070 1.060383e-33 ***

Region7 0.023946916 0.002205349 10.858561 1.035773e-22 ***

Region8 -0.014297098 0.003110621 -4.596220 6.868376e-06 ***

Region9 0.019452657 0.004320357 4.502558 1.035492e-05 ***

Region10 0.003490765 0.002953700 1.181828 2.384106e-01

Response: Pollution

Estimate Std. Error t value Pr(>|t|)

Region1 0.0156171437 0.006110882 2.5556285 1.128676e-02 *

Region2 0.0189615505 0.003138285 6.0420110 6.588110e-09 ***

Region3 -0.0028332829 0.005241024 -0.5405971 5.893423e-01

Region4 0.0019955283 0.003391747 0.5883481 5.569133e-01

Region5 -0.0074913183 0.003436561 -2.1798880 3.034664e-02 *

Region6 -0.0197953108 0.006507258 -3.0420356 2.640840e-03 **

Region7 -0.0182342490 0.004709758 -3.8715897 1.432683e-04 ***

Region8 0.0328607464 0.004644322 7.0754664 2.049059e-11 ***

Region9 -0.0007537518 0.008850955 -0.0851605 9.322127e-01

Region10 0.0163606362 0.004130296 3.9611295 1.013163e-04 ***

ERRORS

Std. Dev. df Rsq

Job 0.01337002 298 0.8902711

Consum 0.01076881 247 0.8575233

Pollution 0.01101466 216 0.7232624

We see that the number of job positions in industry (Job) significantly influences, on one hand, the
amount of private consumption (Consum) from 0 to 4 time lags and, on the other hand, the amount of
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greenhouse gas emissions (Pollution) from 2 to 6 time lags, while the amount of private consumption
(Consum) significantly influences the amount of greenhouse gas emissions (Pollution) from 1 to 5 time
lags. This result provides evidence that the influence of industrial development on pollution is both direct
and mediated by private consumption.

The plot method for class dlsem displays the DAG of the model where each edge is coloured with respect
to the sign of the estimated causal effect (green: positive, red: negative, light gray: not statistically
significant):

> plot(indus.mod)

Job

Consum

Pollution

Figure 3: The DAG where each edge is coloured with respect to the sign of the estimated causal effect.
Green: positive causal effect. Red: negative causal effect. Grey: not statistically significant causal effect
(no such edges here).

The result is shown in Figure 3. Note that the DAG includes only the endogenous variables.

4.4 Assessment of causal effects

After parameter estimation is performed by means of command dlsem(·), the command causalEff(·)
can be used on the resulting object of class dlsem to compute all the pathwise causal lag shapes and the
overall one connecting two variables. The main arguments of command causalEff(·) include the name of
one or more variables generating the causal effect (argument from), and the name of the variable receiving
the causal effect (argument to). Optionally, specific time to which computation should be focused may be
provided to argument lag, otherwise the whole lag shapes will be considered. Cumulative causal effects
may be returned by setting the argument cumul to TRUE. Only exogenous variables can be indicated as
starting or ending variables. Note that, due to the properties of the multiple linear regression model,
causal effects are net of the influence of the group factor and exogenous variables.

The cumulative causal effect of the number of job positions on the amount of greenhouse gas emissions
may be obtained by means of the following code:

> causalEff(indus.mod,from="Job",to="Pollution",cumul=T)

$`Job*Consum*Pollution`

estimate std. err. lower 95% upper 95%

0 0.00000000 0.000000000 0.000000000 0.000000000

1 0.00526551 0.001155426 0.003000917 0.007530104

2 0.02306795 0.002994438 0.017198958 0.028936941

3 0.05992652 0.005597756 0.048955120 0.070897922

4 0.11935156 0.008739051 0.102223340 0.136479789

5 0.20008939 0.012074665 0.176423479 0.223755297

6 0.29486857 0.015211890 0.265053814 0.324683329
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7 0.38964776 0.017804653 0.354751276 0.424544234

8 0.47038558 0.019657879 0.431856843 0.508914313

9 0.52981062 0.020771816 0.489098611 0.570522633

10 0.56666919 0.021303440 0.524915219 0.608423168

11 0.58447163 0.021481811 0.542368057 0.626575209

12 0.58973714 0.021512862 0.547572709 0.631901577

13 0.58973714 0.021512862 0.547572709 0.631901577

$`Job*Pollution`

estimate std. err. lower 95% upper 95%

0 0.00000000 0.00000000 0.00000000 0.00000000

1 0.03526152 0.01232963 0.01109590 0.05942715

2 0.09696919 0.02485116 0.04826181 0.14567656

3 0.17630761 0.03724486 0.10330902 0.24930620

4 0.26446142 0.04834566 0.16970566 0.35921717

5 0.35261522 0.05733608 0.24023857 0.46499187

6 0.43195365 0.06369478 0.30711416 0.55679313

7 0.49366131 0.06725017 0.36185339 0.62546923

8 0.52892283 0.06837109 0.39491796 0.66292770

9 0.52892283 0.06837109 0.39491796 0.66292770

10 0.52892283 0.06837109 0.39491796 0.66292770

11 0.52892283 0.06837109 0.39491796 0.66292770

12 0.52892283 0.06837109 0.39491796 0.66292770

13 0.52892283 0.06837109 0.39491796 0.66292770

$overall

estimate std. err. lower 95% upper 95%

0 0.00000000 0.00000000 0.00000000 0.00000000

1 0.04052703 0.01348505 0.01409681 0.06695725

2 0.12003714 0.02782539 0.06550036 0.17457391

3 0.23623413 0.04276247 0.15242122 0.32004704

4 0.38381298 0.05689906 0.27229288 0.49533308

5 0.55270461 0.06907040 0.41732911 0.68808011

6 0.72682222 0.07835349 0.57325220 0.88039224

7 0.88330906 0.08420037 0.71827937 1.04833876

8 0.99930841 0.08669842 0.82938263 1.16923419

9 1.05873345 0.08695776 0.88829937 1.22916753

10 1.09559203 0.08708628 0.92490605 1.26627800

11 1.11339446 0.08713009 0.94262263 1.28416630

12 1.11865997 0.08713775 0.94787313 1.28944682

13 1.11865997 0.08713775 0.94787313 1.28944682

The output of command causalEff(·) is a list of matrices including point estimates and asymptotic
confidence intervals for all the pathwise causal lag shapes and the overall one connecting the starting
variables to the ending variable. Since the logarithmic transformation was applied to all quantitative
variables, the resulting causal effects are interpreted as elasticities, that is, for a 1% of job positions more,
greenhouse gas emissions are expected to grow by 0.61% after 5 years and by 1.11% after 10 years. The
influence ends after 11 years, as the cumulative causal effects at 11 and 12 years are equal.

A pathwise or an overall causal lag shape can be displayed using the command lagPlot(·). For instance,
one may display the causal lag shape associated to each path connecting the number of job positions to
the amount of greenhouse gas emissions:

> lagPlot(indus.mod,path="Job*Pollution")

> lagPlot(indus.mod,path="Job*Consum*Pollution")

or the overall causal lag shape of the number of job positions on the amount of greenhouse gas emissions:

> lagPlot(indus.mod,from="Job",to="Pollution")
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The resulting graphics are shown in Figure 4. Note that a multi-edge pathwise causal lag shape is a
mixture of different lag shapes, thus it may show an irregular aspect, like it is the case of the overall
causal lag shape displayed in the lower panel of Figure 4.
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Figure 4: The pathwise causal lag shapes (upper panels) and the overall one (lower panel) connecting the
number of job positions to the amount of greenhouse gas emissions. 95% asymptotic confidence intervals
are shown in grey.

4.5 Comparison among alternative models

We now fit two alternative models for the industrial development problem, such that all lag shapes are
quadratic decreasing and gamma lag shapes, respectively.

> # model 2: quadratic decreasing lag shapes

> indus.code_2 <- list(

+ Job ~ 1,

+ Consum~qd(Job,0,15),

+ Pollution~qd(Job,0,15)+qd(Consum,0,15)

+ )

> indus.mod_2 <- dlsem(indus.code_2,group="Region",exogenous=c("Population","GDP"),
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+ data=industry,global.control=indus.global,local.control=indus.local,log=T,quiet=T)

> summary(indus.mod_2)$endogenous

$Job

NULL

$Consum

Estimate Std. Error t value Pr(>|t|)

qd(Job, 0, 7, Region) 0.1044609 0.02495916 4.185271 4.073917e-05 ***

$Pollution

Estimate Std. Error t value Pr(>|t|)

qd(Job, 2, 12, Region) 0.1441207 0.03359200 4.290328 2.938223e-05 ***

qd(Consum, 3, 10, Region) 0.3247139 0.02850865 11.390015 7.186589e-23 ***

> # model 3: linearly decreasing lag shapes

> indus.code_3 <- list(

+ Job ~ 1,

+ Consum~ld(Job,0.5,0.5),

+ Pollution~ld(Job,0.5,0.5)+ld(Consum,0.5,0.5)

+ )

> indus.mod_3 <- dlsem(indus.code_3,group="Region",exogenous=c("Population","GDP"),

+ data=industry,global.control=indus.global,local.control=indus.local,log=T,quiet=T)

> summary(indus.mod_3)$endogenous

$Job

NULL

$Consum

Estimate Std. Error t value Pr(>|t|)

ld(Job, 0, 5, Region) 0.1113044 0.0210713 5.282273 2.800099e-07 ***

$Pollution

Estimate Std. Error t value Pr(>|t|)

ld(Job, 3, 9, Region) 0.1276649 0.02158717 5.913925 1.371993e-08 ***

ld(Consum, 2, 8, Region) 0.2589867 0.03597007 7.200060 1.106564e-11 ***

> # model 4: gamma lag shapes

> indus.code_4 <- list(

+ Job ~ 1,

+ Consum~gam(Job,0.5,0.5),

+ Pollution~gam(Job,0.5,0.5)+gam(Consum,0.5,0.5)

+ )

> indus.mod_4 <- dlsem(indus.code_4,group="Region",exogenous=c("Population","GDP"),

+ data=industry,global.control=indus.global,local.control=indus.local,log=T,quiet=T)

> summary(indus.mod_4)$endogenous

$Job

NULL

$Consum

Estimate Std. Error t value Pr(>|t|)

gam(Job, 0.85, 0.2, Region) 0.06797784 0.0291622 2.331026 0.02102363 *

$Pollution

Estimate Std. Error t value Pr(>|t|)

gam(Job, 0.95, 0.05, Region) 0.1186122 0.02744747 4.321425 2.852175e-05 ***

gam(Consum, 0.9, 0.15, Region) 0.3496251 0.03333223 10.489099 1.556773e-19 ***

Here the option quiet was set to TRUE to suppress messages on the estimation progress. We see that the
four models provide different results. Method compareModels can be used to compare them according to
information criteria:

> compareModels(list(indus.mod,indus.mod_2,indus.mod_3, indus.mod_4))
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logLik p AIC BIC

1 -209.9538 39 497.9076 617.8394

2 -210.0674 39 498.1347 618.0665

3 -210.0282 39 498.0564 617.9881

4 -209.9326 39 497.8651 617.7969

The model with endpoint-constrained quadratic lag shapes has the lowest value of each information
criterion, and thus the best fit to data. Note that information criteria for variable Job are the same in
each model because it has no endogenous covariates.

5 Final remarks

Lag shapes included in the package may represent a large number of real-world lag structures, nevertheless
new lag shapes with further specific features may be added in the future. The same holds for further
functionalities for linear models for time series data.

Please, do not hesitate to contact me for questions, feedbacks or bug reports.
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