Package 'eChem'

October 13, 2022
Type Package
Title Simulations for Electrochemistry Experiments
Version 1.0.0
Author David Harvey
Maintainer David Harvey <harvey@depauw. edu>
Description Simulates cyclic voltammetry, linear-sweep voltammetry (both with and without stirring of the solution), and single-pulse and double-pulse chronoamperometry and chronocoulometry experiments using the implicit finite difference method outlined in Gosser (1993, ISBN: 9781560810261) and in Brown (2015) doi:10.1021/acs.jchemed.5b00225. Additional functions provide ways to display and to examine the results of these simulations.
The primary purpose of this package is to provide tools for use in courses in analytical chemistry.

URL https://github.com/dtharvey/eChem
License GPL-2
Encoding UTF-8
LazyData true
Imports plot3D, animation
Suggests knitr, rmarkdown
RoxygenNote 6.0.1
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2018-07-01 13:30:45 UTC

R topics documented:

eChem-package . 2
animateCA . 3
animateCC 3
animateCV 4
animateLSV 5
annotateCA 5
annotateCC 6
annotateCV 7
annotateLSV 8
plotCA 8
plotCC 10
plotCV 11
plotDiffGrid 12
plotDiffusion 13
plotGrid 14
plotLSV 14
plotPotential 16
sampleCA 16
sampleCC 17
sampleCV 18
sampleLSV 19
simulateCA 20
simulateCC 22
simulateCV 24
simulateLSV 26
Index 29
eChem-package Simulations for Electrochemistry Experiments

Description

A collection of functions for simulating four different types of electrochemistry experiments: two potential step experiments (chronoamperometry and chronocoulometry) and two potential scan experiments (linear-sweep voltammetry and cyclic voltammetry). Each simulation allows for either an oxidation reaction or for a reduction reaction, and allows for a single following or a single preceding chemical reaction. Also included are a variety of functions for displaying the result of a simulation in either a static or animated format.

Author(s)

David T. Harvey
Maintainer: David T. Harvey <harvey@depauw. edu>

Description

Creates either an HTML or a GIF animation of a chronoamperometry simulation created using caSim. The resulting animation displays the diffusion profiles for Ox, Red, and, where appropriate, Z situated above the chronoamperogram. Note: the animateCA function requires that the animation package is installed.

Usage

animateCA(filename, out_type = c("html", "gif"), out_name = "aniCA")

Arguments

filename Name of the file that contains the results of a chronoamperometry simulation.
out_type Identifies the type of file generated, either an HTML file or a GIF file.
out_name \quad Name used for the file(s) created by this function.

Value

For an HTML animation, the function saves four items in the working directory: a folder with CSS files, a folder with javascript files, a folder with the image files for the animation, and a .html file; the latter two files are named using the function's out_name argument. For a GIF animation, the function saves a single .gif file using the function's out_name argument. See the vignettes for examples.

Description

Creates either an HTML or a GIF animation of a chronocoulometry simulation created using ccSim. The resulting animation displays the diffusion profiles for Ox, Red, and, where appropriate, Z situated above the chronoamperogram. Note: the animateCC function requires that the animation package is installed.

Usage

```
    animateCC(filename, out_type = c("html", "gif"), out_name = "aniCC")
```


Arguments

filename \quad Name of the file that contains the results of a chronocoulometry simulation.
out_type Identifies the type of file generated, either an HTML file or a GIF file.
out_name Name used for the file(s) created by this function.

Value

For an HTML animation, the function saves four items in the working directory: a folder with CSS files, a folder with javascript files, a folder with the image files for the animation, and a .html file; the latter two files are named using the function's out_name argument. For a GIF animation, the function saves a single .gif file using the function's out_name argument. See the vignettes for examples.

```
animateCV
```

Animate Cyclic Voltammetry Simulation

Description

Creates either an HTML or a GIF animation of a cyclic voltammetry simulation created using cvSim . The resulting animation displays the diffusion profiles for Ox , Red, and, where appropriate, Z situated above the cyclic voltammogram. Note: the animateCV function requires that the animation package is installed.

Usage

animateCV(filename, out_type = c("html", "gif"), out_name = "aniCV")

Arguments

filename Name of the file that contains the results of a cyclic voltammetry simulation.
out_type Identifies the type of file generated, either an HTML file or a GIF file.
out_name Name used for the file(s) created by this function.

Value

For an HTML animation, the function saves four items in the working directory: a folder with CSS files, a folder with javascript files, a folder with the image files for the animation, and a .html file; the latter two files are named using the function's out_name argument. For a GIF animation, the function saves a single .gif file using the function's out_name argument. See the vignettes for examples.

Description

Creates either an HTML or a GIF animation of a linear sweep voltammetry simulation created using lsvSim. The resulting animation displays the diffusion profiles for Ox , Red, and, where appropriate, Z situated above the linear sweep voltammogram. Note: the animateLSV function requires that the animation package is installed.

Usage

animateLSV(filename, out_type = c("html", "gif"), out_name = "aniLSV")

Arguments

filename \quad Name of the file that contains the results of a linear sweep voltammetry simulation.
out_type identifies the type of file generated, either an HTML file or a GIF file.
out_name Name used for the file(s) created by this function.

Value

For an HTML animation, the function saves four items in the working directory: a folder with CSS files, a folder with javascript files, a folder with the image files for the animation, and a .html file; the latter two files are named using the function's out_name argument. For a GIF animation, the function saves a single .gif file using the function's out_name argument. See the vignettes for examples.

```
annotateCA
```

Annotate Chronoamperogram

Description

Plots a chronoamperogam and annotates it with either the current for a single pulse experiment, or, for a double pulse experiment, with the currents after both the forward pulse and the reverse pulse, and the current ratio. The currents are displayed for a designated time after a pulse, which defaults to the length of the pulse if a value is not provided.

Usage

annotateCA(filename, time.delay, scale.factor = 1, main_title = NULL)

Arguments

filename	Name of the file that contains the results of a simulated chronoamperometry experiment.
time.delay	Time after the application of a pulse for which the current is reported.
scale.factor	Setting to a value less than 1 adjusts the y-axis limits so that the limits are not defined by the current spike.
main_title	An optional main title.

Value

Returns a plot of the chronoamperogram with annotations.

Examples

```
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t.2 = 20, x.units = 100, t.units = 1000)
annotateCA(ex_ca, time.delay = 0.5)
```


annotateCC Annotate Chronocoulogram

Description

Plots a chronocoulogam and annotates it with either the charge for a single pulse experiment, or, for a double pulse experiment, with the charge following the forward and the reverse pulse, and the charge ratio. The charges are displayed for a designated time after a pulse, which defaults to the length of the pulse if a value is not provided.

Usage

annotateCC(filename, time.delay, scale.factor $=1$, main_title $=$ NULL)

Arguments

filename	Name of the file that contains the results of a simulated chronocoulometry ex- periment.
time.delay	Time after the application of a pulse for which the current is reported.
scale.factor	Setting to a value less than 1 adjusts the y-axis limits so that the limits are not defined by the current spike.
main_title	An optional main title.

Value

Returns a plot of the chronocoulogram with annotations.

Examples

```
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t. 2 = 20, x.units = 100, t.units = 1000)
ex_cc = simulateCC(ex_ca)
annotateCC(ex_cc)
```

annotateCV Annotate Cyclic Voltammogram

Description

Plots a cyclic voltammogram and annotates it with values for the cathodic peak potential (Epc), the anodic peak potential (Epa), the difference in peak potentials (Delta E), the cathodic peak current (ip,c), the anodic peak current (ip,a), and the peak current ratio (either ip,c/ip,a or ip,a/ip,c). The baseline for determining peak currents is set using a defined percentage of points at the beginning of the forward and the reverse scans. Values are reported as unmeasurable when they fall below a threshold value.

Usage

annotateCV(filename, main_title = NULL, forward.per = 5, reverse.per = 5, threshold = 0.05)

Arguments

filename	Name of the file that contains the results of a simulated cyclic voltammetry experiment.
main_title	An optional main title.
forward.per	The percentage of points from the beginning of the forward scan used to set the baseline for measuring the peak current.
reverse.per	The percentage of points from the beginning of the reverse scan used to set the baseline for measuring the peak current.
threshold	Sets the smallest measurable current.

Value

Returns a plot of the cyclic voltammogram with annotations.

Examples

```
cv_ex2 = simulateCV(ko = 0.01, e.switch = -0.8, e.form = -0.4,
    x.units = 100, t.units = 1000)
annotateCV(cv_ex2)
```


Description

Plots a linear sweep voltammogram and annotates it with values for either the cathodic peak potential (Epc) and cathodic peak current (ip,c), or the anodic peak potential (Epa) and the anodic peak current (ip,a). The baseline for determining the peak currents is set using a defined percentage of points at the beginning of potential scan.

```
Usage
    annotateLSV(filename, potential.per = 5, main_title = NULL)
```


Arguments

filename \quad Name of the file that contains the results of a simulated linear sweep voltammetry experiment.
potential. per The percentage of points from the beginning of the potential scan used to set the baseline for measuring the peak current.
main_title An optional main title.

Value

Returns a plot of the linear sweep voltammogram with annotations.

Examples

```
ex_lsv = simulateLSV(e.start = 0.25, e.end = -0.25, e.form = 0,
    stir.rate = "fast", x.units = 100, t.units = 1000)
annotateLSV(ex_lsv)
```

plotCA Plot Chronoamperograms

Description

Plots 1-5 chronoamperograms on a single set of axes. The default plot does not include a legend or a title, but providing a vector of character strings to legend_text adds a legend to the final plot, and adding a character string for main_title adds a title to the plot. Line widths, line types, line colors, point symbols, and point colors have default values that can be adjusted. Note: this function accepts both full data files created using caSim or reduced data files created using sampleAmpgram.

Usage

```
plotCA(filenames \(=\) list(file1 \(=\) NULL, file2 = NULL), scale = 1 ,
    legend_text = NULL, legend_position = c("topleft", "topright",
    "bottomleft", "bottomright"), main_title = NULL, line_widths = c(2, 2, 2,
    2, 2), line_types \(=c(1,2,3,4,5)\), point_symbols \(=c(21,22,23,24\),
    25), line_colors = c("blue", "blue", "blue", "blue", "blue"))
```


Arguments

filenames A list giving the names of $1-5$ files that contain the results of a simulated chronomperometry experiment.
scale \quad Setting to a value less than 1 adjusts the y-axis limits so that the limits are not defined by the current spike.
legend_text Optional vector that contains text to include in a legend. Default is NULL, which surpresses the legend.
legend_position
One of topleft, topright, bottomleft, or bottomright; defaults to topleft.
main_title An optional main title.
line_widths A vector of line widths for the individual voltammograms; defaults to a common line width of 2 , but can be adjusted by supplying a vector with desired values.
line_types A vector of line types for the individual voltammograms; defaults to a set of different line types, but can be adjusted by supplying a vector with desired values.
point_symbols A vector of pch values for plotting points.
line_colors A vector of colors for the individual voltammograms, whether displayed as lines or as points; defaults to a common color, but can be adjusted by supplying a vector with desired values.

Value

Returns a plot that shows time on the x-axis and current on the y-axis.

Examples

```
ca_ex1 = simulateCA(conc.bulk = 0.01, x.units = 100, t.units = 1000)
ca_ex2 = simulateCA(conc.bulk = 0.001, x.units = 100, t.units = 1000)
ca_ex3 = simulateCA(conc.bulk = 0.0001, x.units = 100, t.units = 1000)
plotCA(filenames = list(ca_ex1, ca_ex2, ca_ex3),
    legend_text = c("0.01 M", "0.001 M", "0.0001 M"), scale = 0.1)
```


Description

Plots $1-5$ chronocoulograms on a single set of axes. The default plot does not include a legend or a title, but providing a vector of character strings to legend_text adds a legend to the final plot, and adding a character string for main_title adds a title to the plot. Line widths, line types, line colors, point symbols, and point colors have default values that can be adjusted. Note: this function accepts both full data files created using ccSim or reduced data files created using sampleCoulgram.

Usage

```
plotCC(filenames = list(file1 = NULL, file2 = NULL), scale = 1,
    legend_text = NULL, legend_position = "topleft", main_title = NULL,
    line_widths \(=c(2,2,2,2,2)\), line_types = c(1, 2, 3, 4, 5),
    point_symbols = c(21, 22, 23, 24, 25), line_colors = c("blue", "blue",
    "blue", "blue", "blue"))
```


Arguments

filenames A list giving the names of 1-5 files that contain the results of a simulated chronocoulometry experiment.
scale \quad Setting to value less than 1 adjusts the y-axis limits so that the limits are not defined by the current spike.
legend_text Optional vector that contains text to include in a legend. Default is NULL, which surpresses the legend.
legend_position
legend_position One of topleft, topright, bottomleft, or bottomright; defaults to topleft.
main_title An optional main title.
line_widths A vector of line widths for the individual voltammograms; defaults to a common line width of 2 , but can be adjusted by supplying a vector with desired values.
line_types A vector of line types for the individual voltammograms; defaults to a set of different line types, but can be adjusted by supplying a vector with desired values.
point_symbols A vector of pch values for plotting points.
line_colors A vector of colors for the individual voltammograms, whether displayed as lines or as points; defaults to a common color, but can be adjusted by supplying a vector with desired values.

Value

Returns a plot that shows time on the x-axis and charge on the y-axis.

Examples

```
ca_ex1 = simulateCA(conc.bulk = 0.01, x.units = 100, t.units = 1000)
cc_ex1 = simulateCC(ca_ex1)
ca_ex2 = simulateCA(conc.bulk = 0.001, x.units = 100, t.units = 1000)
cc_ex2 = simulateCC(ca_ex2)
ca_ex3 = simulateCA(conc.bulk = 0.0001, x.units = 100, t.units = 1000)
cc_ex3 = simulateCC(ca_ex3)
plotCC(filenames = list(cc_ex1, cc_ex2, cc_ex3),
    legend_text = c("0.01 M", "0.001 M", "0.0001 M"), scale = 0.8)
```

plotCV Plot Cyclic Voltammograms

Description

Plots $1-5$ cyclic voltammograms on a single set of axes. The default plot does not include a legend or a title, but providing a vector of character strings to legend_text adds a legend to the final plot, and adding a character string for main_title adds a title to the plot. Line widths, line types, line colors, point symbols, and point colors have default values that can be adjusted. Note: this function accepts both full data files created using cvSim or reduced data files created sampleCV.

Usage

```
plotCV(filenames = list(file1 = NULL, file2 = NULL), legend_text = NULL,
    legend_position = c("topleft", "topright", "bottomleft", "bottomright"),
    main_title = NULL, line_widths = c(2, 2, 2, 2, 2), line_types = c(1, 2,
    3, 4, 5), point_symbols = c(21, 22, 23, 24, 25), line_colors = c("blue",
    "blue", "blue", "blue", "blue"))
```


Arguments

filenames A list giving the names of 1-5 files that contain the results of a simulated cyclic voltammetry experiment.
legend_text Optional vector that contains text to include in a legend. Default is NULL, which surpresses the legend.
legend_position
One of topleft, topright, bottomleft, or bottomright; defaults to topleft.
main_title An optional main title.
line_widths A vector of line widths for the individual cyclic voltammograms; defaults to a common line width of 2 , but can be adjusted by supplying a vector with desired values.
line_types A vector of line types for the individual cyclic voltammograms; defaults to a set of different line types, but can be adjusted by supplying a vector with desired values.
point_symbols A vector of pch values for plotting points.
line_colors A vector of colors for the individual cyclic voltammograms, whether displayed as lines or as points; defaults to a common color, but can be adjusted by supplying a vector with desired values.

Value

Returns a plot that shows the applied potential on the x-axis and current on the y-axis.

Examples

```
cv_ex1 = simulateCV(ko = 1, e.switch = -0.8, e.form = -0.4,
    x.units = 100, t.units = 1000)
cv_ex2 = simulateCV(ko = 0.01, e.switch = -0.8, e.form = -0.4,
    x.units = 100, t.units = 1000)
cv_ex3 = simulateCV(ko = 0.001, e.switch = -0.8, e.form = -0.4,
    x.units = 100, t.units = 1000)
cv_ex4 = simulateCV(ko = 0.0001, e.switch = -0.8, e.form = -0.4,
    x.units = 100, t.units = 1000)
plotCV(filenames = list(cv_ex1, cv_ex2, cv_ex3, cv_ex4),
    legend_text = c("ko = 1 cm/s", "ko = 0.01 cm/s",
    "ko = 0.001 cm/s", "ko = 0.0001 cm/s"))
cv_ex1sample = sampleCV(cv_ex1, data.reduction = 5)
plotCV(filenames = list(cv_ex1, cv_ex1sample),
    line_colors = c("blue", "red"))
```

plotDiffGrid

Plot Diffusion Grids

Description

Plots the diffusion grids used in cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and chronocoulometry simulation. The diffusion grids are presented as heat maps giving the concentration of Ox , Red, or Z as a function of distance from the electrode surface on the x-axis and time on the y-axis. The scale on the x-axis may be adjusted to highlight better the diffusion grid near the electrode's surface. Note: the plotDiffGrid function requires that the plot3D package is installed.

Usage

plotDiffGrid(filename, species $=c(T R U E, T R U E$, FALSE), scale.factor $=1)$

Arguments

filename	Name of the file that contains the results of a cyclic voltammetry, linear sweep voltammetry, chronoamperometry, or chronocoulometry simulation created us- ing cvSim, lsvSim, caSim, or ccSim.
species	A vector of three logical values (T or F) indicating the species for which diffusion grids are displayed. The order in which species are identified is Ox, Red, and Z.
scale.factor	A factor for adjusting the scale on the x-axis. Setting the scale.factor to a value of less than 1 decreases the range of distances displayed in the diffusion grids.

Value

Returns a single plot showing 1-3 diffusion grids.

Examples

```
ex_cv = simulateCV(e.start = 0.25, e.switch = -0.25, e.form = 0,
    x.units = 100, t.units = 1000)
plotDiffGrid(ex_cv, species = c(TRUE, TRUE, FALSE),
    scale.factor = 0.5)
```

plotDiffusion Plot Diffusion Profiles

Description

Plots a set of diffusion profiles (concentration as a function of distance from the electrode's surface) for an object created using an object created with one of the package's simulation functions: cvSim for cyclic voltammetry, lsvSim for linear sweep voltammetry, caSim for chronoamperometry, or ccSim for chronocoulometry. The plot includes a default title that gives the time and the potential for the diffusion profile. Note: this function will not work with the reduced data file created using sampleAmpgram, sampleCoulgram, or sampleVoltgram.

Usage

plotDiffusion(filename, $t=1$)

Arguments

filename \quad Name of the file that contains the results of a simulated electrochemistry experiment.
t The time for which the diffusion profile is desired.

Value

Returns a line plot that shows distance from the electrode's surface on the x-axis and the concentrations of Ox, Red, and, for an EC or a CE mechanism, Z on the y-axis.

Examples

```
ex_cv = simulateCV(e.start = 0.25, e.switch = -0.25, e.form = 0,
    x.units = 100, t.units = 1000)
plotDiffusion(ex_cv, t = 0.5)
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t. 2 = 20, x.units = 100, t.units = 1000)
plotDiffusion(ex_ca, t = 21)
```

plotGrid Grid of Diffusion Profiles

Description

Plots eight diffusion profiles-at times that are 1030 experiment-around a central plot that shows the corresponding voltammogram, chronoamperogram, or chronocoulogram using an object created with one of the package's simulation functions: cvSim for cyclic voltammetry, lsvSim for linear sweep voltammetry, caSim for chronoamperometry, or ccSim for chronocoulometry. Note: this function will not work with the reduced data file created using sampleAmpgram, sampleCoulgram, or sampleVoltgram.

Usage

plotGrid(filename)

Arguments

filename \quad Name of the file that contains the results of a simulated electrochemistry experiment.

Value

Returns a 3 by 3 grid of individual plots.

Examples

```
ex_cv = simulateCV(e.start = 0.25, e.switch = -0.25, e.form = 0,
    x.units = 100, t.units = 1000)
plotGrid(ex_cv)
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t.2 = 20, x.units = 100, t.units = 1000)
plotGrid(ex_ca)
```

plotLSV Plot Linear Sweep Voltammograms

Description

Plots 1-5 linear sweep voltammograms on a single set of axes. The default plot does not include a legend or a title, but providing a vector of character strings to legend_text adds a legend to the final plot, and adding a character string for main_title adds a title to the plot. Line widths, line types, line colors, point symbols, and point colors have default values that can be adjusted. Note: this function accepts both full data files created using lsvSim, or reduced data sampleLSV.

Usage

```
plotLSV(filenames = list(file1 = NULL, file2 = NULL), legend_text = NULL,
    legend_position = c("topleft", "topright", "bottomleft", "bottomright"),
    main_title \(=\) NULL, line_widths \(=c(2,2,2,2,2)\), line_types \(=c(1,2\),
    \(3,4,5)\), point_symbols = c(21, 22, 23, 24, 25), line_colors = c("blue",
    "blue", "blue", "blue", "blue"))
```


Arguments

filenames A list giving the names of 1-5 files that contain the results of a simulated linear sweep voltammetry experiment.
legend_text Optional vector that contains text to include in a legend. Default is NULL, which surpresses the legend.
legend_position
One of topleft, topright, bottomleft, or bottomright; defaults to topleft.
main_title An optional main title.
line_widths A vector of line widths for the individual linear sweep voltammograms; defaults to a common line width of 2 , but can be adjusted by supplying a vector with desired values.
line_types A vector of line types for the individual linear sweep voltammograms; defaults to a set of different line types, but can be adjusted by supplying a vector with desired values.
point_symbols A vector of pch values for plotting points.
line_colors A vector of colors for the individual linear sweep voltammograms, whether displayed as lines or as points; defaults to a common color, but can be adjusted by supplying a vector with desired values.

Value

Returns a plot that shows the applied potential on the x-axis and current on the y-axis.

Examples

```
lsv_ex1 = simulateLSV(e.start = 0.25, e.end = -0.25, e.form = 0,
    stir.rate = "fast", x.units = 100, t.units = 1000)
lsv_ex2 = simulateLSV(e.start = 0.25, e.end = - 0.25, e.form = 0,
    stir.rate = "medium", x.units = 100, t.units = 1000)
lsv_ex3 = simulateLSV(e.start = 0.25, e.end = -0.25, e.form = 0,
    stir.rate = "slow", x.units = 100, t.units = 1000)
lsv_ex4 = simulateLSV(e.start = 0.25, e.end = -0.25, e.form = 0,
    stir.rate = "off", x.units = 100, t.units = 1000)
plotLSV(filenames = list(lsv_ex1, lsv_ex2, lsv_ex3, lsv_ex4),
    legend_text = c("stir rate: fast", "stir rate: medium",
    "stir rate: slow", "stir rate: off"))
```

```
plotPotential Plot Applied Potential
```


Description

Plots the applied potential as a function of time for an object created using an object created with one of the package's simulation functions: cvSim for cyclic voltammetry, lsvSim for linear sweep voltammetry, caSim for chronoamperometry, or ccSim for chronocoulometry. Note: this function will not work with the reduced data file created using sampleAmpgram, sampleCoulgram, or sampleVoltgram.

Usage

plotPotential(filename, main_title = NULL)

Arguments

filename	Name of the file that contains the results of a simulated electrochemistry exper- iment.
main_title	An optional main title.

Value

Returns a line plot that shows time on the x-axis and the applied potential on the y-axis.

Examples

```
ex_cv = simulateCV(e.start = 0.25, e.switch = -0.25, e.form = 0,
    x.units = 100, t.units = 1000)
plotPotential(ex_cv,
    main_title = "Applied Potential for a Cyclic Voltammetry Simulation")
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t. 2 = 20, x.units = 100, t.units = 1000)
plotPotential(ex_ca,
    main_title = "Applied Potential for a Chronoamperometry Simulation")
```

sampleCA

Description

Used to create a reduced data file of times and currents for a chronoamperogram. When passed to plotCA, the resulting plot shows the data as discrete points instead of as a line.

Usage

sampleCA(filename, data.reduction $=1$)

Arguments

filename The filename that contains the result of a simulated chronoamperometry experiment (created using the caSim function).
data.reduction A value that gives the percentage of the original data to keep, which then is spaced evenly across the full data set

Value

Returns a list with the following components
expt type of experiment; CA for a chronoamperometry experiment
file_type value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to reduced
current vector giving the current as a function of time
potential vector giving the potential as a function of time

Examples

```
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t. 2 = 20, x.units = 100, t.units = 1000)
    ex_casample = sampleCA(ex_ca, data.reduction = 5)
    str(ex_casample)
```

 sampleCC

Description

Used to create a reduced data file of times and currents for a chronocoulogram. When passed to plotCC, the resulting plot shows the data as discrete points instead of as a line.

Usage

sampleCC(filename, data.reduction = 1)

Arguments

filename The filename that contains the result of a simulated chronocoulometry experiment (created using the ccSim function).
data.reduction A value that gives the percentage of the original data to keep, which then is spaced evenly across the full data set.

Value

Returns a list with the following components

expt	type of experiment; CC for a chronocoulometry experiment
file_type	value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to reduced
charge	vector giving the charge as a function of time time
	vector giving the time

Examples

```
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t. 2 = 20, x.units = 100, t.units = 1000)
ex_cc = simulateCC(ex_ca)
ex_ccsample = sampleCC(ex_cc, data.reduction = 5)
str(ex_ccsample)
```

sampleCV

Description

Used to create a reduced data file of potentials and currents for a cyclic voltammogram or a linear sweep voltammogram. When passed to plotCV, the resulting plot shows the data as discrete points instead of as a line.

Usage

sampleCV(filename, data.reduction = 1)

Arguments

filename The filename that contains the result of a simulated cyclic voltammetry experiment (created using the cvSim function).
data.reduction A value that gives the percentage of the original data to keep, which then is spaced evenly across the full data set.

Value

Returns a list with the following components
expt type of experiment; CV for a cyclic voltammetry simulation
file_type value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to reduced
current vector giving the current as a function of time
potential vector giving the potential as a function of time

Examples

```
ex_cv = simulateCV(e.start = 0.25, e.switch = -0.25, e.form = 0,
    x.units = 100, t.units = 1000)
ex_cvsample = sampleCV(ex_cv, data.reduction = 5)
str(ex_cvsample)
```

```
sampleLSV Create Subsample of a Simulated Linear Sweep Voltammogram
```


Description

Used to create a reduced data file of potentials and currents for a linear sweep voltammogram. When passed to plotLSV, the resulting plot shows the data as discrete points instead of as a line.

Usage

sampleLSV(filename, data.reduction = 1)

Arguments

filename The filename that contains the result of a simulated linear sweep voltammetry experiment (created using the lsvSim function).
data.reduction A value that gives the percentage of the original data to keep, which then is spaced evenly across the full data set.

Value

Returns a list with the following components

expt	type of experiment; LSV for a linear sweep voltammetry experiment
file_type	value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to reduced
current	vector giving the current as a function of time
potential	vector giving the potential as a function of time

Examples

```
ex_lsv = simulateLSV(e.start = 0.25, e.end = -0.25, e.form = 0,
    stir.rate = "fast", x.units = 100, t.units = 1000)
ex_lsvsample = sampleLSV(ex_lsv, data.reduction = 5)
str(ex_lsvsample)
```


Description

Simulates either a single pulse or a double pulse chronoamperometry experiment using either an E , EC , or CE mechanism, where E is a redox reaction and where C is a chemical reaction that either precedes or follows the redox reaction.

Usage

```
simulateCA(e.start = 0, e.pulse = -0.5, e.form = -0.25,
    mechanism = c("E", "EC", "CE"), ko = 1, kcf = 0, kcr = 0,
    pulses = c("single", "double"), t.1 = 10, t.2 = 0, t.end = 30,
    n = 1, alpha = 0.5, d = 1e-05, area = 0.01, temp = 298.15,
    conc.bulk = 0.001, t.units = 2000, x.units = 180, sd.noise = 0)
```


Arguments

e.start	Initial potential (in volts).
e.pulse	Potential after applying the initial pulse (in volts).
e.form	Formal potential for the redox reaction (in volts).
mechanism	Mechanism for the electrochemical system; one of E for redox reaction only, EC for redox reaction with a following chemical reaction, or CE for redox reaction with a preceding chemical reaction. Default is E.
ko	Standard heterogeneous electron transfer rate constant for the redox reaction (in cm / s).
kcf	Homogeneous first-order rate constant for the forward chemical reaction (in s^{\wedge} 1).
kcr	Homogeneous first-order rate constant for the reverse chemical reaction (in s^{\wedge} 1).
pulses	Either single or double. For a single pulse experiment, the initial potential is e.start and the final potential is e.pulse, and for a double pulse potential, the initial potential is e.start, the intermediate potential is e.pulse, and the final potential is e.start; the default is a single pulse experiment.
t. 1	The time at which the first pulse is applied (in s).
t. 2	The time at which the second pulse is applied (in s).
t.end	The time at which the experiment ends (in s).
n	Number of electrons in the redox reaction.
alpha	Transfer coefficient.
d	Diffusion coefficient for Ox and Red (in $\mathrm{cm}^{\wedge} 2 \mathrm{~s}^{\wedge}$-1).
area	Surface area of the electrode (in $\mathrm{cm}^{\wedge} 2$).

temp	Temperature (in K).
conc.bulk	Initial bulk concentration of Ox or Red for an E or an EC mechanism, or the combined initial concentrations of Ox and Z, or of Red and Z for a CE mecha- nism (in mol/L).
t.units	The number of increments in time for the diffusion grids.
x.units	The number of increments in distance for the diffusion grids. sd.noise
	The standard deviation for noise as a percent of maximum current (in $\mu \mathrm{A}$).

Value

Returns a list with the following components

expt mechanism	type of experiment; defaults to CA for a chronoamperometry simulation type of mechanism used for the simulation
file_type	value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to full for caSim
current	vector giving the current as a function of time
potential	vector giving the potential as a function of time
time	vector giving the times used for the diffusion grids
distance	vector giving the distances from electrode surface used for the diffusion grids
oxdata	diffusion grid, as a matrix, giving the concentration of Ox
reddata	diffusion grid, as a matrix, giving the concentrations of Red
chemdata	diffusion grid, as a matrix, giving the concentrations of Z
formale	formal potential for the redox reaction
initialE	initial potential
pulseE	potential after apply the initial pulse
electrons	number of electrons, n , in the redox reaction
ko	standard heterogeneous electron transfer rate constant
kcf	homogeneous first-order rate constant for forward chemical reaction
kcr	homogeneous first-order rate constant for reverse chemical reaction
alpha	transfer coefficient
diffcoef	diffusion coefficient for Ox and Red
area	surface area for electrode
temperature	temperature
conc.bulk	initial concentration of Ox or Red for an E or EC mechanism, or the combined initial concentrations of Ox and Z , or of Red and Z for a CE mechanism
tunits	the number of increments in time for the diffusion grids
xunits	the number of increments in distance for the diffusion grids
sdnoise	standard deviation, as percent of maximum current, used to add noise to simulated data

direction	-1 for an initial reduction reaction of Ox to Red; +1 for an initial oxidation reaction of Red to Ox
pulses	number of pulses: either single or double
time_pulse1	time when first pulse is applied
time_pulse2	time when second pulse is applied
time_end	time when experiment ends
k_f	vector of forward electron transfer rate constant as a function of potential
k_b	vector of reverse electron transfer rate constant as a function of potential
jox	vector giving the flux of Ox to the electrode surface as a function of potential
jred	vector giving the flux of Red to the electrode surface as a function of potential

Examples

```
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t. 2 = 20, x.units = 100, t.units = 1000)
str(ex_ca)
```

simulateCC
Simulate a Chronocoulometry Experiment

Description

Simulates either a single pulse or a double pulse chroncoulometry experiment as either an E, EC, or CE mechanism, where E is a redox reaction and where C is a chemical reaction that either precedes or follows the redox reaction. The function operates on an object created using caSim, which simulates the corresponding chronoamperometry experiment, integrating current over time using the trapezoidal integration rule.

Usage
 simulateCC(filename)

Arguments

filename The filename that contains the results of a chronampeometry simulation created using the caSim function.

Value

Returns a list with the following components
expt type of experiment; defaults to CC for a chronocoulometry simulation
mechanism type of mechanism used for the simulation
file_type value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to full for ccSim

charge potential	vector giving the charge as a function of time vector giving the potential as a function of time
time	vector giving the times used for the diffusion grids
distance	vector giving the distances from electrode surface used for the diffusion grids
oxdata	diffusion grid, as a matrix, giving the concentration of Ox
reddata	diffusion grid, as a matrix, giving the concentrations of Red
chemdata	diffusion grid, as a matrix, giving the concentrations of Z
formale	formal potential for the redox reaction
initialE	initial potential
pulseE	potential after apply the initial pulse
electrons	number of electrons, n , in the redox reaction
ko	standard heterogeneous electron transfer rate constant
kcf	homogeneous first-order rate constant for forward chemical reaction
kcr	homogeneous first-order rate constant for reverse chemical reaction
alpha	transfer coefficient
diffcoef	diffusion coefficient for Ox and Red
area	surface area for electrode
temperature	temperature
conc.bulk	initial concentration of Ox or Red for an E or EC mechanism, or the combined initial concentrations of Ox and Z , or of Red and Z for a CE mechanism
tunits	the number of increments in time for the diffusion grids
xunits	the number of increments in distance for the diffusion grids
sdnoise	standard deviation, as percent of maximum current, used to add noise to simulated data
direction	-1 for an initial reduction reaction of Ox to Red; +1 for an initial oxidation reaction of Red to Ox
pulses	number of pulses: either single or double
time_pulse1	time when first pulse is applied
time_pulse2	time when second pulse is applied
time_end	time when experiment ends
k_f	vector of forward electron transfer rate constant as a function of potential
k_b	vector of reverse electron transfer rate constant as a function of potential
jox	vector giving the flux of Ox to the electrode surface as a function of potential
jred	vector giving the flux of Red to the electrode surface as a function of potential

Examples

```
ex_ca = simulateCA(e.start = 0.25, e.pulse = -0.25, e.form = 0,
    pulses = "double", t.2 = 20, x.units = 100, t.units = 1000)
ex_cc = simulateCC(ex_ca)
str(ex_cc)
```


Description

Simulates a cyclic voltammetry experiment as either an E, EC, or CE mechanism, where E is a redox reaction and where C is a chemical reaction that either precedes or follows the redox reaction.

Usage

```
simulateCV(e.start = 0, e.switch = -0.5, e.form = -0.25,
    mechanism = c("E", "EC", "CE"), ko = 1, kcf = 0, kcr = 0, n = 1,
    alpha = 0.5, d = 1e-05, area = 0.01, temp = 298.15, scan.rate = 1,
    conc.bulk = 0.001, t.units = 2000, x.units = 180, sd.noise = 0)
```


Arguments

e.start	Initial potential (in volts).
e.switch	Switching potential (in volts).
e.form	Formal potential for the redox reaction (in volts).
mechanism	Mechanism for the electrochemical system; one of E for redox reaction only, EC for redox reaction with a following chemical reaction, or CE for redox reaction with a preceding chemical reaction. Default is E.
ko	Standard heterogeneous electron transfer rate constant for the redox reaction (in cm / s).
kcf	Homogeneous first-order rate constant for the forward chemical reaction (in s^{\wedge} 1).
kcr	Homogeneous first-order rate constant for the reverse chemical reaction (in s^{\wedge} 1).
n	Number of electrons in the redox reaction.
alpha	Transfer coefficient.
d	Diffusion coefficient for Ox and Red (in $\mathrm{cm}^{\wedge} 2 \mathrm{~s}^{\wedge}-1$).
area	Surface area of the electrode (in $\mathrm{cm}^{\wedge} 2$).
temp	Temperature (in K).
scan.rate	Rate at which the potential is changed (in V/s).
conc.bulk	Initial bulk concentration of Ox or Red for an E or an EC mechanism, or the combined initial concentrations of Ox and Z , or of Red and Z for a CE mechanism (in mol/L).
t.units	The number of increments in time for the diffusion grids.
x.units	The number of increments in distance for the diffusion grids.
sd.noise	The standard deviation for noise as a percent of maximum current (in $\mu \mathrm{A}$).

Value

Returns a list with the following components

expt	type of experiment; defaults to CV for a cyclic voltammetry simulation
mechanism	type of mechanism used for the simulation
file_type	value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to full for cvSim
current	vector giving the current as a function of time
potential	vector giving the potential as a function of time
time	vector giving the times used for the diffusion grids
distance	vector giving the distances from electrode surface used for the diffusion grids
oxdata	diffusion grid, as a matrix, giving the concentration of Ox
reddata	diffusion grid, as a matrix, giving the concentrations of Red
chemdata	diffusion grid, as a matrix, giving the concentrations of Z
formalE	formal potential for the redox reaction
initialE	initial potential
switchE	switching potential
electrons	number of electrons, n, in the redox reaction
ko	standard heterogeneous electron transfer rate constant
kcf	homogeneous first-order rate constant for forward chemical reaction
kcr	homogeneous first-order rate constant for reverse chemical reaction
alpha	transfer coefficient
diffcoef	diffusion coefficient for Ox and Red
area	surface area for electrode
temperature	temperature
scanrate	scan rate

scanrate scan rate
conc.bulk initial concentration of Ox or Red for an E or EC mechanism, or the combined initial concentrations of Ox and Z , or of Red and Z for a CE mechanism
tunits the number of increments in time for the diffusion grids
xunits the number of increments in distance for the diffusion grids
sdnoise standard deviation, as percent of maximum current, used to add noise to simulated data
direction $\quad-1$ for an initial reduction reaction of Ox to Red; +1 for an initial oxidation reaction of Red to Ox
$k_{-} f \quad$ vector of forward electron transfer rate constant as a function of potential
k_b
vector of reverse electron transfer rate constant as a function of potential
jox
jred
vector giving the flux of Red to the electrode surface as a function of potential

Examples

```
ex_cv = simulateCV(e.start = 0.25, e.switch = - 0. 25, e.form = 0,
    x.units = 100, t.units = 1000)
str(ex_cv)
```

simulateLSV Simulate a Linear Sweep Voltammetry Experiment

Description

Simulates a linear sweep voltammetry experiment as either an E, EC, or CE mechanism, where E is a redox reaction and where C is a chemical reaction that either precedes or follows the redox reaction.

Usage

```
simulateLSV(e.start = 0, e.end = -1, e.form = -0.25, mechanism = c("E",
    "EC", "CE"), ko = 1, kcf = 0, kcr = 0, n = 1, alpha = 0.5,
    d = 1e-05, area = 0.01, temp = 298.15, scan.rate = 1,
    conc.bulk = 0.001, t.units = 2000, x.units = 180, sd.noise = 0,
    stir.rate = c("off", "slow", "medium", "fast"))
```


Arguments

e.start	Initial potential (in volts).
e.end	Final potential (in volts).
e.form	Formal potential for the redox reaction (in volts).
mechanism	Mechanism for the electrochemical system; one of E for redox reaction only, EC for redox reaction with a following chemical reaction, or CE for redox reaction with a preceding chemical reaction. Default is E.
ko	Standard heterogeneous electron transfer rate constant for the redox reaction (in cm / s).
kcf	Homogeneous first-order rate constant for the forward chemical reaction (in s^{\wedge} 1).
kcr	Homogeneous first-order rate constant for the reverse chemical reaction (in s^{\wedge} 1).
n	Number of electrons in the redox reaction.
alpha	Transfer coefficient.
d	Diffusion coefficient for Ox and Red (in $\mathrm{cm}^{\wedge} 2 \mathrm{~s}^{\wedge}-1$).
area	Surface area of the electrode (in $\mathrm{cm}^{\wedge} 2$).
temp	Temperature (in K).
scan.rate	Rate at which the potential is changed (in V/s).

conc.bulk	Initial bulk concentration of Ox or Red for an E or an EC mechanism, or the combined initial concentrations of Ox and Z, or of Red and Z for a CE mecha- nism (in mol/L).
t.units	The number of increments in time for the diffusion grids.
x.units	The number of increments in distance for the diffusion grids.
sd.noise	The standard deviation for noise as a percent of maximum current (in $\mu \mathrm{A})$. stir.rate
The rate at which the solution is stirred with options for off, or no stirring, and for slow, medium, and fast stirring; defaults to off.	

Value

Returns a list with the following components
expt type of experiment; defaults to LSV for a linear sweep voltammetry simulation
mechanism type of mechanism used for the simulation
file_type value that indicates whether the output includes all data (full) or a subset of data (reduced); defaults to full for lsvSim
current vector giving the current as a function of time
potential vector giving the potential as a function of time
time vector giving the times used for the diffusion grids
distance vector giving the distances from electrode surface used for the diffusion grids
oxdata diffusion grid, as a matrix, giving the concentration of Ox
reddata diffusion grid, as a matrix, giving the concentrations of Red
chemdata diffusion grid, as a matrix, giving the concentrations of Z
formalE formal potential for the redox reaction
initialE initial potential
endE end potential
electrons number of electrons, n, in the redox reaction
ko standard heterogeneous electron transfer rate constant
kcf homogeneous first-order rate constant for forward chemical reaction
kcr homogeneous first-order rate constant for reverse chemical reaction
alpha transfer coefficient
diffcoef diffusion coefficient for Ox and Red
area surface area for electrode
temperature temperature
scanrate scan rate
conc.bulk initial concentration of Ox or Red for an E or EC mechanism, or the combined initial concentrations of Ox and Z , or of Red and Z for a CE mechanism
tunits the number of increments in time for the diffusion grids
xunits the number of increments in distance for the diffusion grids

sdnoise	standard deviation, as percent of maximum current, used to add noise to simu- lated data
direction	-1 for an initial reduction reaction of Ox to Red; +1 for an initial oxidation reaction of Red to Ox
stir_rate	rate at which solution is stirred
k_f	vector of forward electron transfer rate constant as a function of potential
k_b	vector of reverse electron transfer rate constant as a function of potential
jox	vector giving the flux of Ox to the electrode surface as a function of potential
jred	vector giving the flux of Red to the electrode surface as a function of potential

Examples

```
ex_lsv = simulateLSV(e.start = 0.25, e.end = - 0.25, e.form = 0,
    stir.rate = "fast", x.units = 100, t.units = 1000)
str(ex_lsv)
```


Index

```
animateCA, 3
animateCC, 3
animateCV,4
animateLSV, 5
annotateCA,5
annotateCC, 6
annotateCV, }
annotateLSV, }
eChem-package, 2
plotCA,8
plotCC,10
plotCV, 11
plotDiffGrid, 12
plotDiffusion,13
plotGrid,14
plotLSV,14
plotPotential,16
sampleCA, 16
sampleCC,17
sampleCV, 18
sampleLSV,19
simulateCA, 20
simulateCC,22
simulateCV,24
simulateLSV,26
```

