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Abstract

Forest inventories provide reliable evidence-based information to assess the state and
development of forests over time. They typically consist of a random sample of plot lo-
cations in the forest that are assessed individually by field crews. Due to the high costs
of these terrestrial campaigns, remote sensing information available in high quantity and
low costs is frequently incorporated in the estimation process in order to reduce inventory
costs or improve estimation precision. With respect to this objective, the application of
multiphase forest inventory methods (e.g., double- and triple-sampling regression estima-
tors) has proved to be efficient. While these methods have been successfully applied in
practice, the availability of open-source software has been rare if not non-existent. The
R package forestinventory provides a comprehensive set of global and small area regres-
sion estimators for multiphase forest inventories under simple and cluster sampling. The
implemented methods have been demonstrated in various scientific studies ranging from
small to large scale forest inventories, and can be used for post-stratification, regression
and regression within strata. This article gives an extensive review of the mathematical
theory of this family of design-based estimators, puts them into a common framework of
forest inventory scenarios and demonstrates their application in the R environment.

Keywords: forest inventory, design-based, infinite population approach, two- and three-phase
sampling, regression estimators, small area estimation.

1. Introduction

In many countries, forest inventories have become an indispensable tool for evaluating the
current state of forests as well as for tracking their development over time. They provide
accurate quantitative information that can be used to define management actions, to adapt
forest management strategies according to guidelines on national and international levels and
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to support in monitoring carbon change in the context of climate reporting and mitigation.
As conducting a full census of all trees within any sizable forest area is clearly infeasible due
to time and cost restrictions, forest inventories usually gather their information by means of
statistical sampling methods. Typically this means that discrete sample locations (sample
plots) are randomly chosen in the forest, making up the framework of a terrestrial inventory.
This terrestrial sample data is then used to make estimates for the entire forested area and
provide a measure of precision for those estimates in the form of confidence intervals. There is
a broad range of literature describing the concepts and methods regarding the choice of differ-
ent estimators under various sample designs (Gregoire and Valentine 2007; Köhl, Magnussen,
and Marchetti 2006; Schreuder, Gregoire, and Wood 1993; Mandallaz 2008).

Terrestrial inventories have the benefit of being very flexible in the sense that they can be used
to produce high quality estimates for a wide-variety of different forest attributes. However,
they have the downside of being very expensive. Improving the precision of the estimates by
increasing the number of sample plots essentially means that travel costs will rise as trained
inventorists are sent to more and more plot locations. This is why the number of terrestrial
samples is often limited. Although national inventories usually possess a sufficiently large
terrestrial sample size to provide high estimation accuracies for larger areas, this is often not
the case for smaller areas, such as forest management units. As a result, there has been
an increasing need for alternative inventory methods that can maintain the same estimation
precision at lower costs, or achieve higher estimation precision at identical costs (von Lüpke
2013). A method which has become particularly attractive is called multiphase sampling. The
core concept is to enlarge the sample size in order to gain higher estimation precision without
enlarging the terrestrial sample size. This is done by using predictions of the terrestrial
target variable at additional sample locations where the terrestrial information has not been
gathered. These predictions are produced by regression models that use explanatory variables
derived from auxiliary data, commonly in the form of spatially exhaustive remote sensing
data in the inventory area. Regression estimators using this concept can consider either one
additional sample of plot locations (two-phase or double-sampling) or two additional samples
available in different sample sizes (three-phase or triple-sampling), see Gregoire and Valentine
(2007); Saborowski, Marx, Nagel, and Böckmann (2010); Mandallaz (2013a,d); von Lüpke,
Hansen, and Saborowski (2012). Their application to existing forest inventory systems has
already showed their efficiency in terms of cost reduction and gain in estimation precision
(Breidenbach and Astrup 2012; von Lüpke and Saborowski 2014; Mandallaz, Breschan, and
Hill 2013; Magnussen, Mandallaz, Breidenbach, Lanz, and Ginzler 2014; Massey, Mandallaz,
and Lanz 2014).

Multistage and multiphase estimation has already been implemented in commercial as well
as open-source software, such as the survey sampling procedures in SAS (SAS Institute Inc.
2015) and the survey (Lumley 2004, 2020) package in R (R Core Team 2020). However, both
are targeted towards list-sampling as it is applied in official statistics. Available software
providing multiphase sampling methods better suited for forest inventories has been rare.
Two exceptions are the R package JoSAE by Breidenbach (2018) and the maSAE package
by Cullmann (2020). However, a more comprehensive software package covering a larger
variety of sample designs and estimators for forest inventories has not yet been available,
which is the motivation behind the R package forestinventory (Hill and Massey 2017) which is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.

org/package=forestinventory. The package provides global and small area estimators for

https://CRAN.R-project.org/package=forestinventory
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two-phase and three-phase forest inventories under simple and cluster sampling, which have
been developed under the infinite population approach by Daniel Mandallaz at ETH Zurich
between 2008 and 2017. The implemented methods have been thoroughly validated on the
independently derived results presented in the various respective publications covering case
studies in Switzerland (Mandallaz, Hill, and Massey 2016; Massey et al. 2014; Massey and
Mandallaz 2015b; Mandallaz et al. 2013) and used to produce results in subsequent studies in
Germany (Hill, Mandallaz, and Langshausen 2018b). The implemented estimators cover 32
inventory scenarios and can be used for post-stratification, regression and regression within
strata (Massey 2015). The long-term objective of forestinventory is to make the broad range
of estimators available to a large user community and to facilitate their application in science
as well as operational forest management.

The objectives of this article are to a) establish the link between the mathematical description
of the estimators and their implementation in our package, b) illustrate their application to
real-world inventory data sets and c) address special cases and demonstrate how the functions
in the package handle them.

2. Methods and structure of the package

2.1. Forest inventory in the infinite population approach

Most forest inventories gather terrestrial information by sending field crews to randomly (or
systematically) selected points in the forest area defined by coordinates. The crew then de-
fines a sample plot by measuring individual trees located within one or multiple constructed
inclusion circles around the sample point x, and aggregating their characteristics (e.g., timber
volumes) to local plot densities (e.g., the timber density in m3/ha) including potential bound-
ary adjustments (see Mandallaz 2008 for details). The estimators implemented in forestinven-

tory use the so-called infinite population approach in order to bridge this inventory process to
the mathematics behind the estimators. This approach assumes that the spatial distribution
of the local density, Y (x), over the forest area is determined by a fixed piecewise constant
function, as visualized in Figure 1. The population total of the target variable (e.g., the
total timber volume of the forest) is mathematically equivalent to the integral of that density
function, which is depicted in Figure 1 as the volume under the density surface. From this
perspective, the practical challenge is that the form of this function is unknown. Theoret-
ically, we could get the total timber volume by observing the function value, i.e., the local
density Y (x), at each possible point x over the forest area and taking their sum. However,
this is impossible because there is an infinite number of points in the forest area. Our strategy
is thus to take a sample of n2 points, s2, from an infinite population of possible points and
use their associated local densities Y (x) to estimate the integral Y = 1

λ(F )

∫

F Y (x)dx with

Ŷ = 1
n2

∑

x∈s2
Y (x). The total timber volume can then be obtained by multiplying Ŷ by the

known surface area of the forest, λ(F ). It should be noted λ(F ) is often estimated in practice
(see Mandallaz 2014 for further explanation) but that is beyond the scope of this article. All
estimators included in forestinventory rest upon this theoretical perspective. The key point
in the infinite population approach is that a local density value Y (x) is associated with the
sample point x, which constitutes the sample unit, and not with the sample plot area. Sam-
pling the actual plot areas follows the so-called finite population approach, where the sample
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Figure 1: Artificial representation of a local density surface. The spatial distribution of
a hypothetical density function for every point in a forested area is represented as a wavy
piecewise constant green surface. Sample plots (white dots) inform the inventorist of the value
of the density function at that point. Note that the plateaus of constant Y (x) values here
have the shape of squares whereas in reality they are likely to be formed by the intersection
of circles around trees.

units are usually assumed to be either circular or rectangular plots. Although choosing be-
tween infinite and finite population schemas does not likely make much practical difference,
the former does has some theoretical advantages. This is mainly due to the impossibility of
a perfect tessellation over an amorphous forest area by any choice of plot shape. Hence, the
population in the finite approach is, strictly speaking, not well defined with respect to the
forest area. Also, cluster sampling is much more easily generalized in the infinite population
approach. The consideration of an underlying infinite population of sample points will also
play an important role when incorporating auxiliary information in the frame of two- and
three-phase estimation methods.

2.2. Two-phase sampling

The two-phase or double-sampling estimators use inventory information from two nested
samples which are commonly referred to as phases (Figure 2a). The first phase s1 comprises
n1 sample locations that each provides a set of explanatory variables described by the column
vector Z(x) = (z(x)1, z(x)2, . . . , z(x)p)⊤ at each point x ∈ s1. These explanatory variables
are derived from auxiliary information that is available in high quantity within the forest area
F . The second phase s2 constitutes the terrestrial inventory conducted at n2 subsamples of
the large phase s1 and provides the value of the target variable, i.e., the local density Y (x)
(e.g., the timber volume per hectare). For every x ∈ s1, Z(x) is transformed into a prediction
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Figure 2: (a) Concept of multiphase sampling. The square represents the forest area for which
an inventory is being conducted. The points denote the sample locations x. Filled points
indicate available information. (b) Illustration of the small area estimation problem.

Ŷ (x) of Y (x) using the choice of some model, which in forestinventory is always a linear
model fit in s2 using ordinary least squares (OLS). The basic idea of this setup is to boost
the sample size by providing a large sample of less precise but cheaper predictions of Y (x)
in s1 and to correct any possible model bias, i.e., E(Y (x) − Ŷ (x)), using the subsample of
terrestrial inventory units where the value of Y (x) is observed. In the design-based context,
the two-phase estimator is typically unbiased regardless of the model used to produce the
predictions. This property comes from the assumption that each phase’s sample is selected
via simple random sampling (see Section 2.5).

2.3. Three-phase sampling

Three-phase estimators extend the principle of two-phase sampling and use inventory infor-
mation from three nested samples (phases; Figure 2a). The basic setup is that the explanatory
variables calculated from the auxiliary information are available in two different frequencies.
The phase s0 provides a large number n0 of auxiliary data, whereas the phase s1 provides
additional auxiliary data that are only available at n1 subsamples of s0. The terrestrial in-
formation is then collected at a further subsample s2 of s1. The motivation for three-phase
sampling is that the additional set of explanatory variables available at s1, now denoted
Z(1)(x), adds considerable explanatory power to the set of variables available at all sample
locations x ∈ s0, denoted Z(0)(x). From that it follows that we can define two nested regres-
sion models. The full set of predictor variables Z⊤(x) = (Z(0)⊤(x), Z(1)⊤(x)) can be used to
calculate the predictions Ŷ (x) of Y (x) at all sample locations x ∈ s1. The regression model
applicable to the s1 phase is thus referred to as the full model. Less accurate predictions,
Ŷ (0)(x), can be produced at all the sample locations x ∈ s0 using only the reduced set of
explanatory variables Z(0)(x). If there is a significant gain in model precision between the re-
duced and the full model and the sampling fraction between s0 and s1 is sufficiently large, the
three-phase estimator normally leads to a further increase in estimation precision compared
to the two-phase estimator.
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2.4. Small area estimation

Small area estimation does not necessarily refer to small spatial areas but rather to areas
that contain little or no terrestrial samples. To formulate this mathematically, we want to
make an estimate for a subregion G of the entire inventory area F (Figure 2b). As the sample
size in the small area, n2,G, is usually too small to provide sufficient estimation precision,
multiphase estimation can be efficient. However, n2,G may also be too small to justify fitting
a separate regression model just for that area because the estimates produce undesirably large
confidence intervals. The idea is then to borrow strength from the entire terrestrial sample
s2 of F to fit the model, and to apply this model to the small area. The potential bias of
applying that model in G is then corrected for by using the empirical model residuals derived
from that small area. If there are no terrestrial plots in G (i.e., n2,G = 0), one cannot correct
for a potential model bias in G and has to accept a potential bias in the estimator. These
are called synthetic estimates and despite their potential bias, it is usually still possible to
calculate their design-based variance.

2.5. Design-based vs. model-dependent approach

The subject of model selection gets a lot of attention in the field of forest inventory. This
is why it is important to understand that the mathematical interpretation of how a model
is used to produce estimates is fundamentally different between the design-based and model-
dependent approach. In the model-dependent (also known as model-based) framework, the
sample locations x are fixed and the observation Y (x) taken at location x is assumed to
be a random variable as the forest is assumed to be the realization of a stochastic process.
Although the model does not need to be fit from a probability sample, i.e., the sample
locations could arbitrarily be chosen, the model should adequately describe the underlying
stochastic process in order to efficiently ensure unbiased results. In practice this means that
special attention must be made to ensure that the variable selection is appropriate to avoid
overfitting, important variables are not omitted and all model assumptions are reasonably met
through empirical verification. If a model is misspecified, then estimation based on inference
from that model may not be reliable. In the model-dependent framework one thus has to trust
the model. In contrast, the design-based approach, on which all forestinventory estimators are
based, rests upon the randomization of the sample locations x. While the sample locations
x are independently and uniformly distributed in the forest, the forest itself and thus the
values of the local density surface at any location x ∈ F are fixed and not the result of a
stochastic process. A selected observation Y (x) still remains a random variable, but solely
due to the random sample mechanism. A consequence of this approach is that the estimation
properties of design-based regression estimators (e.g., unbiasedness) typically hold regardless
of the model that is chosen. The philosophy of the design-based approach is thus to use
prediction models to improve the efficiency of the estimators without having to rely on their
correct specification, which makes them very attractive to be used in official statistics. They
are therefore also referred to as model-assisted. It should be noted that the randomization
of sample locations upon which design-based inference depends, is in practice often replaced
by systematic grids to achieve a more spatially balanced sample in the terrestrial survey.
However, there is reasonable evidence that softening this assumption is acceptable for point
and variance estimation as long as the grid does not interact with periodic features in the
forest structure (Mandallaz 2008). The variance will in most cases be slightly overestimated
and lead to wider, more conservative confidence intervals (Mandallaz 2013a).
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Figure 3: Structure of the multiphase estimators in the R package forestinventory. All
estimators are also available for cluster sampling.

2.6. Package structure

In the forestinventory package, estimators for two-phase and three-phase sampling are applied
with the twophase() and threephase() functions. From these two overall function calls,
various estimators for specific inventory scenarios under the chosen sampling design can be
applied (Figure 3). Choosing an estimator follows a tree-like structure which can serve the user
as a guideline throughout this article as well as in future applications. The basic decision to
make is whether an estimate and its variance should be computed for an entire inventory area
(global estimators) or only for subregions of the entire inventory area (small area estimators).
In the second case, the package offers three small area estimators that will in detail be
described in the following sections. The estimators are available under exhaustive and non-
exhaustive use of the auxiliary data. Additionally, the package can also calculate one-phase
estimates solely based on terrestrial samples. All estimators are also available for cluster
sampling, in which case a sample unit consists of multiple, spatially agglomerated samples.
The following sections describe the mathematical details and the application of the multiphase
estimators implemented in the R package forestinventory. While Mandallaz (2008, 2013b,c,
2015) provides an extensive derivation of all estimators, we will provide the mathematical
formulas that are actually implemented in the package. We will also restrict discussion to
simple sampling, while the formulas for cluster sampling are available in the technical reports
(Mandallaz 2013b,c; Mandallaz et al. 2016). A special case under cluster sampling is described
in Section 6.
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3. Two-phase estimators and their application

3.1. Global estimators

Mathematical background

The vector of regression coefficients of the OLS regression model is found by using the following
solution to the sample-based normal equation:

β̂s2 =
( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1( 1

n2

∑

x∈s2

Y (x)Z(x)
)

. (1)

The individual predictions can then be calculated as Ŷ (x) = Z⊤(x)β̂s2 and the empirical
model residuals, which are only available at all sample locations x ∈ s2, are calculated as
R̂(x) = Y (x) − Ŷ (x). Unless stated otherwise, forestinventory only uses internal models to
calculate estimates. This means that the model fit, i.e., β̂s2 , is derived from the current inven-
tory data that are passed to the twophase() and threephase() functions. While virtually
all inventorists fit their models using the current inventory data, sometimes there is reason
to use formulas derived from external models where the sample used to train the model is
assumed to be taken from an independent source (Massey and Mandallaz 2015a). However,
this usually occurs when using a model other than the OLS regression model and is beyond
the scope of the package at this time.

The package provides the calculation of point estimates under exhaustive (EX) and non-
exhaustive (NEX) use of the auxiliary information, which means to respectively apply β̂s2 to

Z̄, i.e., the exact spatial mean of Z(x), or to ˆ̄
Z, i.e., an estimate of the spatial mean of Z(x):

Ŷreg2p,EX = Z̄⊤β̂s2 ,

Ŷreg2p,NEX = ˆ̄
Z⊤β̂s2 .

Note that for internal linear models containing intercept terms, the mean of the empirical
residuals 1

n2

∑

x∈s2
R̂(x) is zero by construction (zero mean residual property) which is why it

does not appear in the point estimate. More explanation about how to obtain the auxiliary
means is given in the following.

The forestinventory package implements two kinds of variances for each of these point esti-
mates: the g-weight formulation that accounts for the fact that our model is in fact internal,
and the external variance formulation that assumes a true external regression model and thus
neglects the uncertainty in the regression coefficients (Mandallaz et al. 2016).

The g-weight formulation is

V̂(Ŷreg2p,EX) := Z̄⊤
Σ̂

β̂s2
Z̄,

V̂(Ŷreg2p,NEX) := ˆ̄
Z⊤

Σ̂
β̂s2

ˆ̄
Z + β̂⊤

s2
Σ̂ ˆ̄Z

β̂s2 ,

where the g-weight variance-covariance matrix of β̂s2 is calculated as

Σ̂
β̂s2

:=
( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1( 1

n2
2

∑

x∈s2

R̂2(x)Z(x)Z⊤(x)
)( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1

(2)
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and the uncertainty caused by using the s1 sample to estimate Z̄ by ˆ̄
Z is accounted for by

the variance-covariance matrix of the auxiliary vector ˆ̄
Z

Σ̂ ˆ̄Z
=

1

n1(n1 − 1)

∑

x∈s1

(Z(x) − ˆ̄
Z)(Z(x) − ˆ̄

Z)⊤.

The external variance formulation for linear regression models is

V̂ext(Ŷreg2p,EX) =
1

n2
V̂s2(R̂(x)),

V̂ext(Ŷreg2p,NEX) =
1

n1
V̂s1(Ŷ (x)) +

1

n2
V̂s2(R̂(x)),

where V̂s2 and V̂s1 indicate taking the sample variance over s2 and s1 respectively.

Note that when applied to internal linear regression models, the external variance is asymptot-
ically unbiased and usually slightly smaller than the g-weight variance, where the uncertainty
of the regression coefficients is accounted for by the variance-covariance matrix (Equation 2).
The external variances are provided in the package forestinventory in case the user wants to
compare linear models to another model type where no g-weight formulation is possible, as
is the case with non-parametric models like k-nearest-neighbor (kNN).

Calculation of explanatory variables

We will now draw our attention to the calculation of the explanatory variables from the
auxiliary data for both the non-exhaustive and exhaustive cases. Figure 4b depicts how
the non-exhaustive case often looks like in practice: a regular terrestrial grid s2 is given by
a terrestrial inventory (the points surrounded by dotted circles) and densified to a larger
sample s1 (the points). For every point x, each explanatory variable in the vector Z(x) =
(z(x)1, z(x)2, . . . , z(x)p)⊤ is calculated using a defined spatial extent of auxiliary information
around that point called the support (the dark green square tiles). We emphasize that the
values of the explanatory variables for Z(x) are associated with the sample point whereas
the support is the spatial extent of the auxiliary information used to calculate those values.
So far this is in perfect agreement with the presented theory of the non-exhaustive estimator,
except for using regular grids rather than randomly placed sample points. The forestinventory

package calculates the empirical mean of Z(x) automatically from the input data frame using
ˆ̄
Z = 1

n1

∑

x∈s1
Z(x).

The exhaustive case requires a closer look. In the infinite population approach, Z(x) refers
to the sample point x and not the area around it. Deriving the exact spatial mean, Z̄ =

1
λ(F )

∫

F Z(x)dx = ( 1
λ(F )

∫

F z1(x)dx, . . . , 1
λ(F )

∫

F zp(x)dx)⊤, implies that we need to calculate

the spatial mean of each component of Z(x) using all possible points in F . This is much like
the situation we had with calculating the mean of the local density surface for Y (x) in that
we need to find the mean of Z(x) over an infinite number of sample points (i.e., n1 = ∞).
Although it is practically infeasible to assess Z(x) for every x, there are few cases where
the exact mean can in fact be precisely calculated. The first case is when the explanatory
variables are provided by polygon layers (e.g., map of development stages). In this case, one
can calculate the exact mean as the area-weighted average of each categorical variable. The
second case is when the exact mean can be calculated in one step, e.g., taking the mean of
all height pixels of a raster canopy height model will exactly equal the mean calculated by
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(a) (b)

Figure 4: Concept of (a) exhaustive and (b) non-exhaustive calculation of explanatory vari-
ables including boundary adjustment at the support level. Auxiliary data are in both cases
available over the entire inventory area marked by the large rectangle. A vector of explana-
tory variables Z(x) is calculated within the supports (small squares) at each sample location
x (points) that falls into the forest area (green underlying polygon).

the use of an infinite number of supports (Mandallaz et al. 2013). However, for most types of
explanatory variables, e.g., order statistics such as maximum or median canopy height in the
spatial extent, this approach will fail. For example, the mean of the maximum pixel heights
across all supports is clearly not equal to the global maximum pixel height across the entire
area. In such cases, we will try to get an approximation of Z̄ that is only negligibly different.

One implementation to approximate the exact mean Z̄ is shown in Figure 4a, where the
spatial arrangement of the supports (the dark green tiles) are tessellated to form a perfect
partition over the inventory area in order for all of the wall-to-wall auxiliary information to
be exploited. It has to be noted that this setup would allow for a perfect calculation of the
exact mean Z̄ in the finite population approach, i.e., deriving Z(x) for the finite population
of supports that are considered the sampling units. While in the infinite population approach
this implementation probably does not produce the true exact mean Z̄, n1 is still expected
to be reasonably large for the difference to be considered negligible as long as the size of the
supports are not unreasonably large. However, the perfect tessellation implementation can
also impose drawbacks. One is that a perfect tessellation by the supports strongly depends
on the distance between the sample locations of s1 and the support size. Since in practice
the support size should ideally be chosen to achieve a best possible explanatory power of the
regression model (Hill, Buddenbaum, and Mandallaz 2018a) a perfect tessellation might often
not be feasible. In the infinite population frame, the supports are allowed to overlap if this
seems necessary to acquire a sufficiently large sample n1 to get a negligibly close approximation
of Z̄. With this respect, the infinite population approach provides more flexibility than the
finite approach.

Boundary adjustment

An extension to the so-far published estimators by Mandallaz is the consideration of a bound-
ary adjustment. In forest inventories, the sample is often restricted to those sample locations
located within the forest area. In case a consistent forest definition can be applied to both
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the s2 and s1 samples (e.g., by a polygon forest mask layer), it might be desired to restrict
the calculation of the explanatory variables to the forest area within the given support (see
Figure 4). This method was suggested in Mandallaz et al. (2013) and led to an improvement

in estimation precision. In order to ensure an unbiased calculation of either ˆ̄
Z or Z̄, the

respective means have then to be calculated as the weighted mean (Equation 3) where the
weight w(x) is equal to the percentage of forested area within the support of sample location
x:

ˆ̄
Z =

∑

x∈s1
w(x)Z(x)

∑

x∈s1
w(x)

. (3)

Restricting the inventory domain to forested area

In some national forest inventories it has been common to sample information over the entire
country, i.e., also at places outside forest even including areas such as high mountain sides
where no trees can actually grow. This is caused by the fact that in order to calculate totals by
multiplying the estimated density (e.g., timber volume per hectare) with the area value of the
inventory domain, the area of a country is well known, whereas the precise area of the forest
is often much harder to determine. In Mandallaz (2014) it is demonstrated that by doing
so, one usually inflates the sample by a large number of zeros for the target variable (i.e., at
sample locations outside forest). It has been mathematically shown that by this procedure,
the coefficient of determination (R2) of the regression model can be overoptimistic as the
zeros are easy to predict. This is particularly the case if the occurrence of zeros correlates
with an explanatory variable, such as the elevation above sea level. Furthermore, Mandallaz
(2014) showed that this procedure is inefficient as it inflates the estimated variance. In order
to mitigate this effect, a solution is to filter out most of the non-forested areas where one can
certainly assume that no forest exists.

Application

To demonstrate the use of the global two-phase estimators, we will use the grisons data set
that comes with installing the package from the CRAN repository. The data set contains
data from a simple (i.e., non-cluster) two-phase forest inventory conducted in 2007 that
was used in Mandallaz et al. (2013) as a case study. The s1 sample is comprised of 306
sample locations arranged on a systematic grid containing auxiliary information in the form
of airborne laserscanning (LiDAR) canopy height metrics (mean, stddev, max, q75). For a
systematic subsample of 67 (s2 sample), terrestrial information of the timber volume per
hectare (tvol) on the sample plot level is provided from a terrestrial survey. We can load
forestinventory and examine the grisons data set in the R environment as follows:

R> library("forestinventory")

R> data("grisons", package = "forestinventory")

R> head(grisons, n = 12)

phase_id_2p phase_id_3p boundary_weights mean stddev max

2 1 0 0.8133455 10.263023 7.278974 33.17151

3 1 0 1.0000000 23.351052 11.372732 45.22998

4 1 1 0.8472245 8.259801 5.958564 21.26001



12 forestinventory: Design-Based Global and Small Area Estimations in R

6 1 0 1.0000000 21.563423 7.493390 32.65515

7 1 0 1.0000000 15.751000 8.447083 33.10999

8 1 1 1.0000000 21.160314 13.129320 42.31677

10 1 0 0.8335965 11.211821 12.897777 43.10791

20 1 0 1.0000000 8.408883 7.543981 27.46362

22 1 1 1.0000000 27.663608 16.302205 48.53113

28 1 0 1.0000000 7.934713 9.872590 32.53003

29 1 0 0.8682830 8.406939 10.069624 34.06006

31 1 1 1.0000000 21.775735 10.335093 41.26898

q75 smallarea tvol tvol.3p

2 15.10999 A NA NA

3 31.14239 A NA NA

4 13.06995 A NA NA

6 27.81149 A NA NA

7 22.83515 A NA NA

8 32.40747 A NA NA

10 20.88480 A NA NA

20 14.50147 A NA NA

22 39.08255 A NA NA

28 17.70504 A NA NA

29 17.62143 A NA NA

31 30.28015 A NA NA

Estimates can be made using the onephase(), twophase() or threephase() functions. The
data frame inputted to these functions must have the structure where each row corresponds
to a unique sample location and the columns specify the attributes associated to that re-
spective sample location. Attributes that are missing, e.g., because they are associated with
sample locations that were not selected in the subsample for the subsequent phase, should be
designated as NA and the phase membership is encoded as numeric.

For global two-phase estimation, we have to specify:

• The regression model (formula) as specified in the lm() function (R Core Team 2020).

• The inputted ‘data.frame’ object containing the inventory information (data).

• The ‘list’ object phase_id containing: the phase.col argument identifying the name
of the column specifying membership to s1 or s2, and the terrgrid.id argument speci-
fying which numeric value indicates s2 membership in that column. Note that forestin-

ventory implicitly assumes that all rows not indicated as s2 belong to the s1 phase.

• The name of the column containing the weights w(x) of the boundary adjustments
(optional).

The non-exhaustive estimator with boundary weight adjustment can thus be applied as fol-
lows:

R> reg2p_nex <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), boundary_weights = "boundary_weights")
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The twophase() function creates an S3 object of subclass ‘global’ inheriting also from class
‘twophase’. A readable summary of the estimation results can be obtained by passing this
object to the summary() function, which automatically interprets what type of estimator
was used and returns pertinent information such as the regression model formula, the point
estimate (estimate), the g-weight and external variance (g_variance and ext_variance) as
well as the sample sizes and the model R2:

R> summary(reg2p_nex)

Two-Phase global estimation

Call:

twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

boundary_weights = "boundary_weights")

Method used:

Non-exhaustive global estimator

Regression Model:

tvol ~ mean + stddev + max + q75

Estimation results:

estimate ext_variance g_variance n1 n2 r.squared

383.5354 279.954 271.5057 306 67 0.6428771

'boundary_weight'- option was used to calculate weighted means of auxiliary

variables

For practical use, one should normally always prefer the g-weight variance over the external
variance. This is because when we use internal models, the regression coefficients actually
depend on the terrestrial sample realized by the sampling design. In contrast to the external
variance, the g-weight variance accounts for this sampling variability which results in more
reliable point and variance estimates and also enjoys better statistical calibration properties
(g-weights). The external and g-weight variances are asymptotically equivalent but the ex-
ternal variance is really only included here in case the user wants to compare to another
estimator where no g-weight variance exists.

The exhaustive estimator can be applied by additionally passing a vector containing the
exact means of the explanatory variables, i.e., Z̄, to the optional argument exhaustive. This
vector must be calculated beforehand in such a way that any desired boundary adjustment
has already been applied. Note that the vector input to exhaustive must be in the same
order that the lm() function processes a formula object including the intercept term whose
exact mean will always be 1. Particular caution must be taken if categorical variables are
present because the lm() function, which is internally used to set up the design matrix,
automatically creates dummy variables with one of the categories used as a reference (if the
default treatment contrasts are used). Using our grisons example, the correct order can
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always be extracted by the following R code (note that it has to be ensured that the default
of options("contrasts") has not been changed in the current R session)):

R> colnames(lm(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ x = TRUE)$x)

The exhaustive estimator can be applied after defining the vector of exact means Z̄ taken
from Mandallaz et al. (2013), denoted as true.means.Z:

R> true.means.Z <- c(1, 11.39, 8.84, 32.68, 18.03)

R> reg2p_ex <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), exhaustive = true.means.Z)

An alternative way to look at the estimation results without using summary() is to query
reg2p_ex directly:

R> reg2p_ex$estimation

estimate ext_variance g_variance n1 n2 r.squared

1 376.7426 202.5602 187.2787 Inf 67 0.6428771

Note that both variances of the exhaustive estimation are smaller than those of the non-
exhaustive estimation. This is essentially because we eliminated one component of uncertainty

by substituting the estimated means of the explanatory variables ˆ̄
Z by their exact means Z̄.

3.2. Small area estimators

Mathematical background

The forestinventory package provides three types of small area estimators each of which has
an exhaustive and non-exhaustive form. We will use a different nomenclature for the non-
exhaustive case in small area estimation since much of the existing literature shows preference
for the label pseudo to indicate that the mean of the explanatory variables within the small
area was based on a finite sample. The main idea for all these small area estimators is
to calculate the regression coefficient vector estimate β̂s2 and its variance-covariance matrix
estimate Σ̂

β̂s2
on the entire s2 sample according to Equations 1 and 2, and subsequently use

that to make predictions for sample locations restricted to small area G.

We first introduce the small area estimator (SMALL), which uses exhaustively computed
explanatory variables, and its non-exhaustive version, the pseudo small area estimator (PS-
MALL):

ŶG,SMALL,2p = Z̄⊤
G β̂s2 +

1

n2,G

R̂(x), (4a)

ŶG,PSMALL,2p = ˆ̄
Z⊤

G β̂s2 +
1

n2,G

R̂(x). (4b)
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In the equations for the point estimates (Equations 4a and 4b), we see that the globally
derived regression coefficients are applied to the exhaustively or non-exhaustively calculated

means of the explanatory variables (Z̄G, ˆ̄
ZG) which are now only based on the first-phase

sample s1,G located within small area G. A potential bias of the regression model predictions
in the small area G, due to fitting the regression model with data also outside of G, is then
corrected by adding the mean of the empirical model residuals in G. This is called the bias
or residual correction term.

The package provides the g-weight variance for SMALL and PSMALL respectively (Equa-
tions 5a, 5b) as well as the external variance (Equations 6a, 6b). Again note that all com-
ponents are restricted to those available at the sample locations in the small area (s1,G and

s2,G), with exception of the regression coefficient components β̂s2 and Σ̂
β̂s2

:

V̂(ŶG,SMALL,2p) := Z̄⊤
GΣ̂

β̂s2
Z̄G +

1

n2,G

V̂s2,G
(R̂(x)), (5a)

V̂(ŶG,PSMALL,2p) := ˆ̄
Z⊤

GΣ̂
β̂s2

ˆ̄
ZG + β̂⊤

s2
Σ̂ ˆ̄ZG

β̂s2 +
1

n2,G

V̂s2,G
(R̂(x)), (5b)

V̂ext(ŶG,SMALL,2p) :=
1

n2,G

V̂s2,G
(R̂(x)), (6a)

V̂ext(ŶG,PSMALL,2p) :=
1

n1,G

V̂s2,G
(Y (x)) +

(

1 −
n2,G

n1,G

) 1

n2,G

V̂s2,G
(R̂(x)), (6b)

where V̂s2,G
indicates taking the sample variance over s2,G. If boundary adjustment is

applied, the simple mean of the explanatory variable vector over the small area ˆ̄
ZG =

1
n1,G

∑

x∈s1,G
Z(x) is replaced by its weighted version ˆ̄

ZG =

∑

x∈s1,G
w(x)Z(x)

∑

x∈s1,G
w(x)

, and likewise

for exhaustively used auxiliary information.

The synthetic estimator (SYNTH) and pseudo synthetic estimator (PSYNTH) are commonly
applied when no terrestrial sample is available within the small area G (i.e., n2,G = 0).
In this case, the point estimates (Equations 7a and 7b) are based only on the predictions
generated by applying the globally derived regression model to the auxiliary vectors Z̄G

and ˆ̄
ZG respectively. However, the bias correction using the observed residuals R̂(x) is not

applied as was the case in the small and pseudo small area estimator (Equations 4a and 4b).
Thus, the (pseudo) synthetic estimator has a potentially unobservable design-based bias.
Also note that the residual variation can no longer be considered in the g-weight variance
(Equations 7c and 7d). Therefore, the synthetic estimators will usually have a smaller variance
than estimators incorporating the regression model uncertainties, but at the cost of a potential
bias. Due to the absence of available residuals in G, there is also no external variance form
for the synthetic and pseudo synthetic estimator.

ŶG,SYNTH,2p = Z̄⊤
G β̂s2 (7a)

ŶG,PSYNTH,2p = ˆ̄
Z⊤

G β̂s2 (7b)

V̂(ŶG,SYNTH,2p) = Z̄⊤
GΣ̂

β̂s2
Z̄G (7c)

V̂(ŶG,PSYNTH,2p) = ˆ̄
Z⊤

GΣ̂
β̂s2

ˆ̄
ZG + β̂⊤

s2
Σ̂ ˆ̄ZG

β̂s2 (7d)
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where the variance-covariance matrix of the auxiliary vector ˆ̄
ZG is estimated by

Σ̂ ˆ̄ZG
=

1

n1,G(n1,G − 1)

∑

x∈s1,G

(Z(x) − ˆ̄
ZG)(Z(x) − ˆ̄

ZG)⊤. (8)

The synthetic estimators, SYNTH and PSYNTH, have attractively compact formulas but
come with the downside of potential bias in their point estimates which can make the variances
seem deceptively optimistic. The SMALL and PSMALL estimators overcome this issue by
using a bias correction term, i.e., 1

n2,G

∑

x∈s2,G
R̂(x). The motivation behind the extended

synthetic and extended pseudo synthetic estimator (EXTSYNTH and EXTPSYNTH) is to
use the same mathematically elegant formulas of the (pseudo) synthetic estimators while
ensuring that the mean of the empirical prediction model residuals in the entire area F and
the small area G are by construction both zero at the same time. This is accomplished by
extending the vector of auxiliary information Z(x) by a binary categorical indicator variable
IG(x) which takes the value 1 if the sample location x lies inside the target small area G and is
otherwise set to 0. Recalling that linear models fitted using OLS have the zero mean residual
property by construction also if categorical variables are used, this leads to unbiased point
estimates. The new extended auxiliary vector thus becomes Z⊤(x) = (Z⊤(x), I⊤

G (x)) and can
be used to replace its non-extended counterpart Z⊤(x) wherever it is used in Equations 7
and 8. Note that the package functions internally extend the data set by the indicator variable
if the EXTSYNTH or EXTPSYNTH estimator is called.

Not every equation needs to be re-written here, but to give an example of the notational
change, the regression coefficient under extended model approach becomes

θ̂s2 =
( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1( 1

n2

∑

x∈s2

Y (x)Z(x)
)

.

The point estimates and their g-weight variances can then be re-written as

ŶG,EXTSYNTH,2p = Z̄
⊤

Gθ̂s2

ŶG,EXTPSYNTH,2p = ˆ̄
Z

⊤
Gθ̂s2

V̂(ŶG,EXTSYNTH,2p) = Z̄
⊤

GΣ̂
θ̂s2

Z̄G

V̂(ŶG,EXTPSYNTH,2p) = ˆ̄
Z

⊤
GΣ̂

θ̂s2

ˆ̄
ZG + θ̂⊤

s2
Σ̂ˆ̄

ZG
θ̂s2

While the formulas look similar to the synthetic estimators, note that a decomposition of
θ̂s2 reveals that the residual correction term is now included in the regression coefficient θ̂s2

(Mandallaz et al. 2016) and thus the estimates are asymptotically design-unbiased.

The package also provides the external variance for both the extended synthetic and extended
pseudo synthetic estimator. Note that neither the extended model approach nor external
variance estimates are possible in the absence of terrestrial samples and thus model residuals
in G, which is precisely when one must rely on the (pseudo) synthetic estimates. The external
variance forms of EXTSYNTH and EXTPSYNTH are

V̂ext(ŶG,EXTSYNTH,2p) =
1

n2,G

V̂s2,G
(R̂(x)),

where R̂(x) are the empirical residuals under the extended auxiliary vector.
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To summarize, the synthetic estimators SYNTH and PSYNTH can be applied whether terres-
trial inventory sample is found in the small area or not, but has a deceptively small g-weight
variance due to its potential bias. When terrestrial sample is observed in the small area, we
can produce (asymptotically) design-unbiased estimates and variances using either SMALL
or PSMALL which remove this bias explicitly with a mean residual term, or more elegantly
with EXTSYNTH or EXTPSYNTH which simply use the same synthetic formulas while in-
cluding an indicator variable for the small area in the model formula to remove the bias by
construction in OLS.

Application

Small area estimates in the forestinventory package can be applied by specifying the optional
argument small_area. The input data set has to include an additional column of class
‘factor’ that describes the small area membership of the sample location represented by that
row. The argument small_area requires a ‘list’ object that comprises

• the name of the column specifying the small area of each observation (sa.col);

• a vector specifying the small area(s) for which estimations are desired (areas);

• the argument unbiased that controls which of the three available estimators is applied.

In order to apply the pseudo small area estimator (PSMALL) with boundary adjustment, we
set unbiased = TRUE as well as the optional argument psmall = TRUE:

R> psmall_2p <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B"), unbiased = TRUE), psmall = TRUE,

+ boundary_weights = "boundary_weights")

R> summary(psmall_2p)

Two-phase small area estimation

Call:

twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

small_area = list(sa.col = "smallarea", areas = c("A", "B"),

unbiased = TRUE), boundary_weights = "boundary_weights",

psmall = TRUE)

Method used:

Pseudo small area estimator

Regression Model:

tvol ~ mean + stddev + max + q75

Estimation results:

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared
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A 393.9713 1009.034 1308.117 306 67 94 19 0.6428771

B 419.6416 1214.035 1259.472 306 67 81 17 0.6428771

'boundary_weight'- option was used to calculate weighted means of auxiliary

variables

The small area functions all return an S3 object of class ‘twophase’ with subclass ‘smallarea’.
In addition to global estimation, the estimation object now comprises the estimates and
variances for all small areas (column area). We can view the sample sizes by looking into the
object itself

R> psmall_2p$samplesizes

$A

n1G n2G n1 n2

plots 94 19 306 67

$B

n1G n2G n1 n2

plots 81 17 306 67

The extended pseudo synthetic estimator (EXTPSYNTH) can be applied using unbiased =

TRUE and leaving the optional argument psmall to its default value of FALSE:

R> extpsynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B"), unbiased = TRUE),

+ boundary_weights = "boundary_weights")

R> extpsynth_2p$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 A 391.9356 995.5602 1017.633 306 67 94 19 0.6526503

2 B 419.7231 1214.6053 1019.191 306 67 81 17 0.6428854

The forestinventory package automatically includes the indicator variable for the small area
behind the scenes so there is no need for the user to implement it. Notice that the R2s
(r.squared) under the EXTPSYNTH estimator vary between the small areas, while they are
identical under the PSMALL estimator. This is because under the EXTPSYNTH estimator,
the regression model is recalculated for each small area estimation after adding the indicator
variable for the respective small area in the globally derived design matrix. In case of the
PSMALL estimator, the regression model stays the same for each small area estimation.
Although the results of both estimators should always be close to each other, we recommend
applying both estimators and comparing the results afterwards in order to reveal unsuspected
patterns in the data, particularly in the case of cluster sampling (see Section 6).

Setting the argument unbiased = FALSE applies the pseudo synthetic estimator to the se-
lected small areas. Note that in the grisons data set, all small areas possess much more than
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the suggested minimum number of terrestrial observations (a rule of thumb is that n2,G ≥ 6)
required to produce reliable design-unbiased estimates. Hence, choosing to use PSYNTH is
probably not desirable and is just applied here for demonstration purposes. In this case the
residual correction will not be applied.

R> psynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B"), unbiased = FALSE),

+ boundary_weights = "boundary_weights")

R> psynth_2p$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 A 421.8863 NA 546.8651 306 67 94 19 0.6428771

2 B 418.7399 NA 566.3361 306 67 81 17 0.6428771

We see here that the PSYNTH variances are almost only half the variances of the PSMALL
and EXTPSYNTH estimator. However, PSMALL and EXTPSYNTH are design-unbiased
and their variances reflect the fact that they account for potential bias of the regression
model predictions. The g-weight variance of PSYNTH completely neglects a potential bias
and as a result risks severely overstating the estimation precision.

The exhaustive versions of the small area estimators (Equations 4a, 5a, 6a, 7a, 7c) are specified
via the optional argument exhaustive. Its application requires that we know the exact
means of all explanatory variables within the small area(s) of interest. In contrast to the
global estimators, the exact means have now to be delivered in the form of a ‘data.frame’,
where each row corresponds to a small area, and each column specifies the exact mean of
the respective explanatory variable. Note that likewise the case of global estimation, the
order of the explanatory variables in the data frame has to match the order in which they
appear in the design matrix defined by the lm() function in R. In order to tell R which row
describes which small area, the row names have to match the respective names of the small
areas specified in the areas argument.

For the grisons data set, the exact means of the explanatory variables for the small areas
used in Mandallaz et al. (2013) are thus defined by

R> colnames(lm(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ x = TRUE)$x)

R> true.means.Z.G <- data.frame(Intercept = rep(1, 4),

+ mean = c(12.85, 12.21, 9.33, 10.45),

+ stddev = c(9.31, 9.47, 7.90, 8.36),

+ max = c(34.92, 35.36, 28.81, 30.22),

+ q75 = c(19.77, 19.16, 15.40, 16.91))

R> rownames(true.means.Z.G) <- c("A", "B", "C", "D")

R> true.means.Z.G

Intercept mean stddev max q75

A 1 12.85 9.31 34.92 19.77
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B 1 12.21 9.47 35.36 19.16

C 1 9.33 7.90 28.81 15.40

D 1 10.45 8.36 30.22 16.91

The extended synthetic estimator (EXTSYNTH) can then be applied by

R> extsynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B"), unbiased = TRUE), exhaustive = true.means.Z.G)

R> extsynth_2p$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 A 372.6930 744.3658 696.5739 Inf 67 Inf 19 0.6526503

2 B 387.5116 693.8576 708.1105 Inf 67 Inf 17 0.6428854

Just as in the global case, we see that the variance has again been significantly decreased
by substituting the exact auxiliary means and both first phase sample sizes are now infinity.
Note that the function extracts the required exact means for small area "A" and "B" from
the complete set of exact means defined in true.means.Z.G.

4. Three-phase estimators and their application

4.1. Global estimators

Mathematical background

Solving the sample-based normal equations, the vector of regression coefficients α̂s2 for the
reduced model, i.e., using the reduced set of explanatory variables Z(0)(x) available at x ∈ s0,
and likewise the vector of regression coefficients β̂s2 for the full model, i.e., using the full set
of explanatory variables Z⊤(x) = (Z(0)⊤(x), Z(1)⊤(x)) available only at a subset x ∈ s1 ⊂ s0,
are derived as

α̂s2 =
( 1

n2

∑

x∈s2

Z(0)(x)Z(0)⊤(x)
)−1 1

n2

∑

x∈s2

Y (x)Z(0)(x), (9a)

β̂s2 =
( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1 1

n2

∑

x∈s2

Y (x)Z(x). (9b)

The package allows for the calculation of point estimates under exhaustive and non-exhaustive
use of the auxiliary information in the s0 phase. Fitting the model using s2 (i.e., internally)
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ensures the zero mean residual property over s2.

Ŷreg3p,EX =
1

λ(F )

∫

F
Z(0)⊤(x)α̂s2 +

1

n1

∑

x∈s1

(Z⊤(x)β̂s2 − Z(0)⊤(x)α̂s2)+

1

n2

∑

x∈s2

(Y (x) − Z⊤(x)β̂s2)

= (Z̄
(0)
0 − ˆ̄

Z
(0)
1 )⊤α̂s2 + ˆ̄

Z⊤
1 β̂s2 (10a)

Ŷreg3p,NEX =
1

n0

∑

x∈s0

Z(0)⊤(x)α̂s2 +
1

n1

∑

x∈s1

(Z⊤(x)β̂s2 − Z(0)⊤(x)α̂s2)+

1

n2

∑

x∈s2

(Y (x) − Z⊤(x)β̂s2)

= ( ˆ̄
Z

(0)
0 − ˆ̄

Z
(0)
1 )⊤α̂s2 + ˆ̄

Z⊤
1 β̂s2 (10b)

Intuitively, the three-phase estimator is simply the mean of the predictions using the reduced
model (i.e., 1

n0

∑

x∈s0
Z(0)⊤(x)α̂s2), corrected by the mean difference between the reduced

model predictions and the more accurate full model predictions (i.e., 1
n1

∑

x∈s1
(Z⊤(x)β̂s2 −

Z(0)⊤(x)α̂s2)), corrected by the mean difference between the ground truth and the full model
predictions (i.e., 1

n2

∑

x∈s2
(Y (x) − Z⊤(x)β̂s2)). For the compact version of the formula in the

non-exhaustive case, the estimated means of Z(0)(x) over both the s0 and s1 phase, as well
as the estimated mean of Z(x) over the s1 phase are calculated according to Equation 11.

If the exact mean over s0 is known, the estimated mean ˆ̄
Z

(0)
0 can simply be replaced by the

exact mean Z̄
(0)
0 . Note that in case of applied boundary adjustment (Section 3), the simple

mean is again replaced by the weighted mean analogous to Equation 3.

ˆ̄
Z

(0)
0 =

1

n0

∑

x∈s0

Z(0)(x), ˆ̄
Z

(0)
1 =

1

n1

∑

x∈s1

Z(0)(x), ˆ̄
Z1 =

1

n1

∑

x∈s1

Z(x) (11)

The package again provides the g-weight and external variances. The g-weight variance
formulation is

V̂(Ŷreg3p,EX) =
n2

n1
Z̄(0)⊤

Σ̂α̂s2
Z̄(0) + (1 −

n2

n1
) ˆ̄
Z⊤

1 Σ̂
β̂s2

ˆ̄
Z1 (12a)

V̂(Ŷreg3p,NEX) = α̂⊤
s2

Σ̂ ˆ̄Z
(0)
0

α̂s2 +
n2

n1

ˆ̄
Z

(0)⊤
0 Σ̂α̂s2

ˆ̄
Z

(0)
0 + (1 −

n2

n1
) ˆ̄
Z⊤

1 Σ̂
β̂s2

ˆ̄
Z1 (12b)

with the variance-covariance matrix of ˆ̄
Z

(0)
0 and the variance-covariance matrices of the re-

gression coefficients α̂s2 and β̂s2 :
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Σ̂ ˆ̄Z
(0)
0

=
1

n0(n0 − 1)

∑

x∈s0

(Z(0)(x) − ˆ̄
Z

(0)
0 )(Z(0)(x) − ˆ̄

Z
(0)
0 )⊤ (13a)

Σ̂α̂s2
=

( 1

n2

∑

x∈s2

Z(0)(x)Z(0)⊤(x)
)−1( 1

n2
2

∑

x∈s2

R̂(0)2(x)Z(0)(x)Z(0)⊤(x)
)

( 1

n2

∑

x∈s2

Z(0)(x)Z(0)⊤(x)
)−1

(13b)

Σ̂
β̂s2

=
( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1( 1

n2
2

∑

x∈s2

R̂2(x)Z(x)Z⊤(x)
)( 1

n2

∑

x∈s2

Z(x)Z⊤(x)
)−1

(13c)

Note that R̂(x) = Y (x)−Z⊤(x)β̂s2 denotes the empirical residuals of the full model, whereas
R̂(0)(x) = Y (x)−Z(0)⊤α̂s2 denotes the empirical residuals of the reduced model. The external
variance form under linear regression models is defined as

V̂ext(Ŷreg3p,EX) =
1

n1
V̂s2(R̂(0)(x)) + (1 −

n2

n1
)

1

n2
V̂s2(R̂(x)) (14a)

V̂ext(Ŷreg3p,NEX) =
1

n0
V̂s0(Ŷ (0)(x)) +

1

n1
V̂s2(R̂(0)(x)) + (1 −

n2

n1
)

1

n2
V̂s2(R̂(x)) (14b)

where V̂s0 indicates taking the sample variance over s0.

Application

In order to demonstrate the three-phase estimators in the package, we created an artifi-
cial three-phase scenario by recoding the phase indicators in the grisons data set (column
phase_id_3p) according to the terminology used in this article (0 for s0, 1 for s1, 2 for s2).
We now assume that the mean canopy height (mean) is available at all 306 sample locations
x ∈ s0, whereas we have the explanatory variables stddev, max and q75 only at 128 sub-
samples s1 of s0. At 40 further subsamples s2 we have the observations Y (x) from the field
inventory. Based on this setup, we can now define the reduced and full regression model
formulas to be used in the threephase() function (note that the models are nested):

R> formula.rm <- tvol ~ mean

R> formula.fm <- tvol ~ mean + stddev + max + q75

Compared to the twophase() function, we now have to specify two regression models, i.e.,
the nested reduced (formula.s0) and full (formula.s1) regression models. In addition, we
also have to specify the indication of the s1 phase (s1.id) in the argument phase_id (note
that forestinventory implicitly assumes that all other rows in the input data set belong to
s0). The global three-phase estimation can thus be applied by

R> reg3p_nex <- threephase(formula.s0 = formula.rm, formula.s1 = formula.fm,

+ data = grisons, phase_id = list(phase.col = "phase_id_3p", s1.id = 1,

+ terrgrid.id = 2), boundary_weights = "boundary_weights")

R> summary(reg3p_nex)
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Three-phase global estimation

Call:

threephase(formula.s0 = formula.rm, formula.s1 = formula.fm,

data = grisons, phase_id = list(phase.col = "phase_id_3p",

s1.id = 1, terrgrid.id = 2), boundary_weights = "boundary_weights")

Method used:

Non-exhaustive global estimator

Full Regression Model:

tvol ~ mean + stddev + max + q75

Reduced Regression Model:

tvol ~ mean

Estimation results:

estimate ext_variance g_variance n0 n1 n2 r.squared_reduced

372.0896 454.4064 451.3626 306 128 40 0.527363

r.squared_full

0.7166608

'boundary_weight'- option was used to calculate weighted means of auxiliary

variables

The summary() of a threephase() function now recalls both regression model formulas and
also gives the R2 for both the reduced (r.squared_reduced) and the full (r.squared_full)
models. We are told that including stddev, max and q75 yields an improvement of 20 per-
centage points in R2. When comparing to using only mean under a two-phase approach, we
would see a considerable reduction in variance by the three-phase extension.

4.2. Small area estimators

Mathematical background

The three two-phase small area estimators described in Section 3.2 can also be extended to
the three-phase scenario. The general principle thereby stays the same, i.e., the regression co-
efficients of the reduced and full models and their variance-covariance matrices are calculated
on the entire s2 sample according to Equations 9a, 9b, 13b and 13c, and are subsequently
used to make predictions for sample locations restricted to small area G.

The unbiased point estimates of the SMALL and PSMALL estimators are calculated by
applying the globally derived reduced and full regression model coefficients to the small area
means of the explanatory variables, and then corrected for a potential model bias in G by
adding the small area mean of the full model residuals, i.e., R̂G(x) = YG(x) − Z⊤

G(x)β̂s2 , to

the point estimate. The difference between the mean ˆ̄
Z

(0)
1,G and the more precise or exact

mean ˆ̄
Z

(0)
0,G and Z̄

(0)
0,G is again considered as a correction term likewise in the global estimation
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(Equation 10).

ŶG,SMALL,3p = (Z̄
(0)
0,G − ˆ̄

Z
(0)
1,G)⊤α̂s2 + ˆ̄

Z⊤
1,Gβ̂s2 +

1

n2,G

R̂G(x) (15a)

ŶG,PSMALL,3p = ( ˆ̄
Z

(0)
0,G − ˆ̄

Z
(0)
1,G)⊤α̂s2 + ˆ̄

Z⊤
1,Gβ̂s2 +

1

n2,G

R̂G(x) (15b)

The g-weight variance is then calculated as

V̂(ŶG,SMALL,3p) =
n2

n1
Z̄

(0)⊤
0,G Σ̂α̂s2

Z̄
(0)
0,G + (1 −

n2

n1
) ˆ̄
Z⊤

1,GΣ̂
β̂s2

ˆ̄
Z1,G +

1

n2,G

V̂s2,G
(R̂(x)) (16a)

V̂(ŶG,PSMALL,3p) = α̂⊤
s2

Σ̂ ˆ̄Z
(0)
0,G

α̂s2 +
n2

n1

ˆ̄
Z

(0)⊤
0,G Σ̂α̂s2

ˆ̄
Z

(0)
0,G + (1 −

n2

n1
) ˆ̄
Z⊤

1,GΣ̂
β̂s2

ˆ̄
Z1,G+

1

n2,G

V̂s2,G
(R̂(x)) (16b)

with the variance-covariance matrix

Σ̂ ˆ̄Z
(0)
0,G

=
1

n0,G(n0,G − 1)

∑

x∈s0,G

(Z(0)(x) − ˆ̄
Z

(0)
0,G)(Z(0)(x) − ˆ̄

Z
(0)
0,G)⊤. (17)

The external variance is defined as:

V̂ext(ŶG,SMALL,3p) =
1

n1,G

V̂s2,G
(R̂(0)(x)) + (1 −

n2,G

n1,G

)
1

n2,G

V̂s2,G
(R̂(x)) (18a)

V̂ext(ŶG,PSMALL,3p) =
1

n0,G

V̂s2,G
(Y (x)) + (1 −

n1,G

n0,G

)
1

n1,G

V̂s2,G
(R̂(0)(x))+

(1 −
n2,G

n1,G

)
1

n2,G

V̂s2,G
(R̂(x)) (18b)

where R̂(0)(x) = Y (x) − Ŷ (0)(x) with Ŷ (0)(x) = Z(0)⊤(x)α̂s2 .

The synthetic (SYNTH) and pseudo synthetic (PSYNTH) estimators can be applied if no
terrestrial samples are available in the small area, i.e., n2,G = 0. Consequently, the residual
correction and the residual variation term of the full model can no longer be applied and
drops from the point estimate (Equations 19a and 19b) and g-weight variance (Equations 19c
and 19d) formulas. The point estimates are again potentially biased since 1

n2,G

∑

x∈s2,G
R̂(x) =

0 for the full model residuals cannot be ensured within small area G. Also the variance will
be small but to the cost of ignoring the model uncertainties. Note that there is again no
external variance formula for the synthetic and pseudo synthetic estimation.

ŶG,SYNTH,3p = (Z̄
(0)
0,G − ˆ̄

Z
(0)
1,G)⊤α̂s2 + ˆ̄

Z⊤
1,Gβ̂s2 (19a)

ŶG,PSYNTH,3p = ( ˆ̄
Z

(0)
0,G − ˆ̄

Z
(0)
1,G)⊤α̂s2 + ˆ̄

Z⊤
1,Gβ̂s2 (19b)

V̂(ŶG,SYNTH,3p) =
n2

n1
Z̄

(0)⊤
0,G Σ̂α̂s2

Z̄
(0)
0,G + (1 −

n2

n1
) ˆ̄
Z⊤

1,GΣ̂
β̂s2

ˆ̄
Z1,G (19c)

V̂(ŶG,PSYNTH,3p) = α̂⊤
s2

Σ̂ ˆ̄Z
(0)
0,G

α̂s2 +
n2

n1

ˆ̄
Z

(0)⊤
0,G Σ̂α̂s2

ˆ̄
Z

(0)
0,G + (1 −

n2

n1
) ˆ̄
Z⊤

1,GΣ̂
β̂s2

ˆ̄
Z1,G (19d)

The extended synthetic (EXTSYNTH) and extended pseudo synthetic (EXTPSYNTH) es-
timators ensure that the residuals of the full model over both the entire inventory area F
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and the small area G are zero at the same time, i.e., 1
n2

∑

x∈s2
R̂(x) = 1

n2,G

∑

x∈s2,G
R̂(x) = 0.

This is again realized by extending the vector of explanatory variables by a binary cate-
gorical indicator variable IG(x) which takes the value 1 if the observation lies inside the
small area G and is otherwise set to 0. The extended auxiliary vector is thus defined as
Z

⊤(x) = (Z(0)⊤(x), Z(1)⊤(x)), where Z
(0)⊤(x) = (Z(0)⊤(x), I⊤

G (x)). In other words, when the
extended option is chosen, forestinventory automatically adds the binary indicator variable
for the desired small area for all observations in the input data frame (i.e., s0). The regression
coefficients, point estimates and variance estimates are calculated by replacing Z with Z (and
likewise Z(0) with Z

(0)) into Equations 9, 13, 18 and 19. Just as in the two-phase case, the
resulting point estimates are now unbiased and have an associated g-weight variance that
accounts for the variability of the regression coefficients resulting from the random sample s2.

Application

We will demonstrate the use of three-phase small area estimation in the package forestinven-

tory by applying the EXTSYNTH and SYNTH estimators to the grisons data set. The setup
is thus exactly the same as in the example for global three-phase estimation (Section 4.1).
However, this time we will use the exact auxiliary mean of the mean canopy height variable
(mean) and assume that we do not know the exact means of the remaining explanatory vari-
ables stddev, max and q75. We thus first define the true means for each small area just as
we did in the twophase() example (Section 3.2):

R> truemeans.G <- data.frame(Intercept = rep(1, 4),

+ mean = c(12.85, 12.21, 9.33, 10.45))

R> rownames(truemeans.G) <- c("A", "B", "C", "D")

Three-phase small area estimation in the package can in general be applied by addition-
ally specifying the small_area list argument. The exhaustive estimators can be called by
optionally passing a ‘data.frame’ containing the exact auxiliary means to the exhaustive

argument. The EXTSYNTH estimator can be applied by setting the argument unbiased to
TRUE (default):

R> extsynth_3p <- threephase(formula.rm, formula.fm, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = TRUE), exhaustive = truemeans.G,

+ boundary_weights = "boundary_weights")

R> extsynth_3p$estimation

area estimate ext_variance g_variance n0 n1 n2 n0G n1G n2G

1 A 382.6405 1642.055 1518.741 Inf 128 40 Inf 38 12

2 B 368.9013 1501.211 1530.576 Inf 128 40 Inf 34 11

r.squared_reduced r.squared_full

1 0.5454824 0.7242913

2 0.5354637 0.7171512

The SYNTH estimator can be applied by changing the argument unbiased to FALSE, which
causes the function to not apply a bias correction in the respective small area.
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R> synth_3p <- threephase(formula.rm, formula.fm, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = FALSE), exhaustive = truemeans.G,

+ boundary_weights = "boundary_weights")

R> synth_3p$estimation

area estimate ext_variance g_variance n0 n1 n2 n0G n1G n2G

1 A 409.3390 NA 410.7529 Inf 128 40 Inf 38 12

2 B 375.4608 NA 461.8250 Inf 128 40 Inf 34 11

r.squared_reduced r.squared_full

1 0.527363 0.7166608

2 0.527363 0.7166608

We see that the threephase() function returns the sample sizes in the entire inventory area as
well as within each small area. The value Inf for n0G indicates that the explanatory variables
at s0 sample locations used in the reduced model were in our case derived exhaustively. If
we compare the two results, we see that the SYNTH estimation again yields a much smaller
variance than the EXTSYNTH estimation, but at the cost of a potential bias.

We can also analyze how the exhaustive derivation of mean performed compared to the case
where mean is non-exhaustively available but at a very large s0 phase with n0,G ≫ n1,G. To
do this, we additionally compute the EXTPSYNTH estimates. As we can see, the exhaustive
derivation of mean only yielded a slightly smaller variance.

R> extpsynth_3p <- threephase(formula.rm, formula.fm, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = TRUE), boundary_weights = "boundary_weights")

R> extpsynth_3p$estimation

area estimate ext_variance g_variance n0 n1 n2 n0G n1G n2G

1 A 395.1882 1901.211 1858.204 306 128 40 94 38 12

2 B 389.8329 1846.995 1816.655 306 128 40 81 34 11

r.squared_reduced r.squared_full

1 0.5454824 0.7242913

2 0.5354637 0.7171512

5. Calculation of confidence intervals

Converting the estimated variance into a 95% confidence interval (CI) allows for a more
practical interpretation of a point estimate’s precision. The correct interpretation of a CI
is not that there is a 95% probability that it contains the true value. In the design-based
context, the true value of the population parameter we are trying to estimate, albeit unknown,
is fixed and the sample is randomly generated under the sample design. Theoretically, if we
were to repeatedly conduct the inventory using the same estimation method, estimator and
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auxiliary information under newly drawn random samples and calculate the 95% CI from
each sample, then 95% of the CIs are expected to contain the true population parameter.
The confidence level 1−α (e.g., 95%) is thus the expected frequency or proportion of possible
confidence intervals to contain the unknown population parameter under resampling and
is therefore often also referred to as coverage rate. The CI is also linked to hypothesis
testing in that its associated point estimate is considered statistically different from any given
value that lies outside the CI boundaries. Based on the central limit theorem it can be
assumed that under hypothetical repeated sampling the point estimates will asymptotically
follow a normal distribution. However, on the recommendation of Mandallaz (2013a), better
confidence intervals can obtained using the Student’s t distribution defined as:

One-phase estimation:

CI1−α(Ŷ ) =

[

Ŷ − tn2−1,1−
α
2

√

V̂(Ŷ ), Ŷ + tn2−1,1−
α
2

√

V̂(Ŷ )

]

(20)

Two-phase and three-phase global estimation:

CI1−α(Ŷ ) =

[

Ŷ − tn2−p,1−
α
2

√

V̂(Ŷ ), Ŷ + tn2−p,1−
α
2

√

V̂(Ŷ )

]

(21)

Two-phase and three-phase small area estimation:

CI1−α(Ŷ ) =

[

Ŷ − tn2,G−1,1−
α
2

√

V̂(Ŷ ), Ŷ + tn2,G−1,1−
α
2

√

V̂(Ŷ )

]

(22)

In these formulas Ŷ is the point estimate, V̂(Ŷ ) is the estimated variance, 1 − α is the
confidence level and p constitutes the number of parameters used in the (full) regression model.
In case of cluster sampling, n2,G is the number of terrestrial clusters (a cluster constitutes the
sample unit and comprises multiple sample plots). Note that in case of synthetic estimations
(SYNTH, PSYNTH), the degrees of freedom are n2 − p as is the case for global estimation.
In forestinventory, the confidence intervals for all estimation methods and estimators can be
computed by the S3 generic method confint(), which requires an estimation object created
by either the onephase(), twophase() or threephase() functions. For example, the 95%
confidence interval for the small area estimates by the EXTPSYNTH estimator (Section 3.2)
are calculated by:

R> confint(extpsynth_2p)

95% Confidence Intervals for twophase small area estimation

area estimate ci_lower_ext ci_upper_ext ci_lower_g ci_upper_g

1 A 391.9356 325.6463 458.2250 324.9155 458.9558

2 B 419.7231 345.8418 493.6043 352.0456 487.4006

A commonly raised question of practitioners regarding the application of design-unbiased
estimators is which minimum terrestrial sample size should be provided. Answering this
question is highly related to ensuring the validity of the confidence coverage rates by a suf-
ficiently large sample size. It has to be noted that giving a generally valid sample size for
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Figure 5: Coverage rates of the global two-phase estimator realized under varying sample sizes
n1 and sampling fractions for an artificial simulation example given in Mandallaz (2013a).
The confidence intervals were based on the g-weight variance with a nominal confidence level
of 95%. For each setup, 10000 simulations were performed using simple random sampling.

the asymptotic validity range is, unfortunately, infeasible because the convergence to the t-
or normal distribution also depends on the heterogeneity of the underlying population. How-
ever, simulation studies using an artificial local density surface were conducted in Mandallaz
(2013a) and Mandallaz et al. (2013) to empirically check the asymptotic properties of the
estimators. In order to develop the reader’s intuition about when the sample size is too low
to produce reliable results, we re-evaluated these simulations for a broader range of sample
sizes. For each fixed sample size n1 and sampling fraction, 10000 samples were conducted
by simple random sampling and the 95% confidence interval based on the g-weight variance
was calculated for each sample after applying the global two-phase estimator (Section 3.1).
The R2 of the regression model was 0.81. For further details on the simulation, the reader
is referred to the original articles mentioned above. The results can also be reproduced or
expanded using the R code given in the supplementary material. From the simulation exam-
ple for global estimation (Figure 5) it is obvious that the nominal coverage rate of 95% can
expected to be met for sample sizes n2 of 50 and higher regardless of the chosen sample size
n1. The realized coverage rate only drops significantly below 90% if considerably small sam-
pling fractions (i.e., the ratio n2/n1 < 0.1) are used that lead to small terrestrial sample sizes
n2 of 20 and less. Re-evaluating the same simulations for small area estimation confirmed
that in such cases, one should whenever possible consider one of the design-unbiased small
area estimators (P)SMALL or EXT(P)SYNTH for which the nominal coverage rates in the
simulations were already met for sample sizes n2,G > 5. Finally, it should also be noted that
applying the design-based estimators under systematic sampling will lead to an inflation of
the estimated variance (Mandallaz 1993). This will also effect the actual coverage rates to be
higher than those derived under simple random sampling.
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6. Special cases and scenarios

6.1. Post-stratification

A special case of multiphase regression estimation is post-stratification, which can further
be divided into the cases of multiphase sampling for stratification and multiphase sampling
for regression within strata. Both imply the use of one or more categorical variables in the
regression model(s), leading to classical ANOVA and ANCOVA models.

To demonstrate post-stratification, we first create an artificial categorical variable develop-
ment stage (stage) by clustering the mean canopy heights of the grisons data set into 3
height classes:

R> grisons$stage <- as.factor(kmeans(grisons$mean, centers = 3)$cluster)

Two-phase sampling for stratification is applied if the model only contains categorical vari-
ables, in this case the factor variable stage. Linear regression models only fitted with categor-
ical variables produce ANOVA models, which when used in multiphase regression estimators,
is equivalent to post-stratification. For our example, this means that the model predictions
are simply the means of the terrestrial response values within each development stage (within-
strata means).

R> twophase(formula = tvol ~ stage, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Two-phase sampling for regression within strata implies the combination of continuous and
categorical variables within the model (i.e., we have an ANCOVA model). If an interaction
term is not present between categorical and continuous variables, the regression lines within
the strata will have the same slope but different intercepts. If an interaction term is present,
both the intercept and the slope are allowed to vary within the strata. Note that one can
actually use the entire range of OLS regression techniques in the multiphase estimators,
including higher order terms and transformations of the explanatory variables, which makes
them very flexible.

R> twophase(formula = tvol ~ mean + stddev + max + q75 + stage,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), boundary_weights = "boundary_weights")

The variance of all design-based estimators included in forestinventory can be decreased by
reducing the sum of squared residuals of the regression model. In case of post-stratification,
this particularly implies minimizing the within strata residual squared sum. Also, for post-
stratification, the g-weight variance should be trusted over the external variance because it
has the advantage that the strata weights are estimated from the large sample rather than
the terrestrial sample s2.

6.2. Small area estimation under cluster sampling

As mentioned in Section 2.6, cluster sampling is a special case of sample designs where the
sample consists of more than one spatially agglomerated sample points. One randomly places
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the sample location x in the inventory area as in the simple sampling design, but then M − 1
additional sample locations x2, . . . , xM are created close to the cluster origin x by adding
a fixed set of spatial vectors e2, . . . , eM to x. The idea of cluster sampling is to increase
the amount of information without increasing the travel costs of the terrestrial campaign.
However, the information gathered at all sub-locations of a cluster is then averaged on the
cluster level, and this average value then references exactly one point, i.e., the cluster origin
x. Without going into too much mathematical detail, the estimators under simple sampling
are thus extended in a way that all parameters (local density, mean vector of explanatory
variables, mean model residuals) have to be calculated as the weighted cluster means with
M(x) being the cluster weights. Whereas the geometric form and the number of sample
locations per cluster M is fixed (i.e., defined by the inventorist), the actual number of points
M(x) falling into the forest area F at sample location x is random because the cluster origin
x is random. The forestinventory package identifies clusters via a unique cluster ID that
is assigned to a column in the input data set. Its column name is passed to the argument
cluster in the twophase() and threephase() function calls.

For small area applications, the scenario might occur where the points of a cluster at sample
locations x spread over more than one small area, i.e., only a subset MG(x) < M(x) is
included in the small area of interest. In this case, the zero mean residual property within

the small area,

∑

x∈s2,G
M(x)R̂c(x)

∑

x∈s2,G
M(x)

= 0, is no longer guaranteed when using the extended and

pseudo extended synthetic estimator (see EXTSYNTH and EXTPSYNTH in Sections 3.2
and 4.2). In this case, it is advisable to use the (pseudo) small area estimator (SMALL or
PSMALL) where the zero mean residual property is still ensured.

In order to keep track of such cases, forestinventory tells the user to do so by returning a
warning message:

R> extpsynth.clust <- twophase(formula = basal ~ stade + couver + melange,

+ data = zberg, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), cluster = "cluster",

+ small_area = list(sa.col = "ismallold", areas = "1", unbiased = TRUE))

Warning message:

At least one terrestrial cluster not entirely included within small area 1.

Zero mean residual assumption for small area maybe violated.

Check mean_Rc_x_hat_G and consider alternative estimator 'psmall'

R> psmall.clust <- twophase(formula = basal ~ stade + couver + melange,

+ data = zberg, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), cluster = "cluster",

+ small_area = list(sa.col = "ismallold", areas = "1", unbiased = TRUE),

+ psmall = TRUE)

R> extpsynth.clust$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 1 25.54748 14.03806 14.16853 298 73 29 8 0.205741

R> psmall.clust$estimation
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area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 1 23.98581 16.30509 15.69473 298 73 29 8 0.1873795

Comparing the EXTPSYNTH and PSMALL estimates, we see that in this particular case the
point estimates are close and more important, the external as well as the g-weight variances
only differ marginally. This can be taken as evidence that the violation of the zero mean
residual property can here be expected to have negligible consequences.

6.3. Violation of nesting in sample design

As explained in Section 2, a basic prerequisite for the application of multiphase estimators
is that the sample phases (s0, s1, s2) are nested in each other. The correct nesting thereby
concerns the spatial arrangement of the sample phases (Figure 2a) as well as the availabil-
ity of terrestrial and auxiliary information per phase and sample location. For the latter,
forestinventory runs validity checks in the background, provides warning and error messages
and, if possible, applies first-aid adjustments to the inventory data set to prevent the calcu-
lations from failing. We will demonstrate possible nesting violations by applying the global
three-phase estimator to the grisons and zberg data sets.

Violation 1

Based on the nesting rule, s2 ⊂ s1 ⊂ s0, each s2 and s1 sample location must have all
explanatory variables available that are used in the full (and thus reduced) regression model.
If, e.g., an s2 and/or s1 point misses a variable which is used in the full and reduced model
(in this case mean), function threephase() will delete this sample point from the data set
and produce the following messages:

R> grisons[which(grisons$phase_id_3p == 2)[1], "mean"] <- NA

R> threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Warning messages:

1: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Sample design not nested: for 1 terrestrial plots at least one auxiliary

parameter of the first phase (s1) is missing

2: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Sample design not nested: for 1 terrestrial plots at least one auxiliary

parameter of the zero phase (s0) is missing

3: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

1 rows deleted due to missingness in the set of auxiliary parameters for

the zero phase (s0) (1 terrestrial plots affected by deletion)

Violation 2

However, if an s2 and/or s1 point is missing a variable which is only used in the full regression
model (in this example q75), the function will recode the phase indicator of that point to s0,
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since the point still provides the required information for the reduced model. If this concerns
an s2 sample location, the associated value of the response variable can no longer be used.

R> grisons[which(grisons$phase_id_3p == 2)[1], "q75"] <- NA

R> threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Warning messages:

1: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Sample design not nested: for 1 terrestrial plots at least one auxiliary

parameter of the first phase (s1) is missing

2: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Changed the phase_id for 1 rows to the zero phase (s0) due to missingness in

the set of auxiliary parameters for the first phase (s1) (1 terrestrial

information no longer usable by this change)

Violation 3

If an s0 point misses at least one of the explanatory variables used in the reduced model, the
sample locations are deleted from the data set.

R> grisons[which(grisons$phase_id_3p == 0)[1], "mean"] <- NA

R> threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Warning message:

In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

1 rows deleted due to missingness in the set of auxiliary parameters for

the zero phase (s0) (0 terrestrial plots affected by deletion)

Note that all the automatic data adjustments (deletion, recoding) have to be accepted with
caution. Recapitulating, the unbiasedness of estimators in the design-based framework is
based on the uniform and independent randomization of the sample locations. This means
that every possible location within the forest area F , as well as pairs of locations, have
inclusion and joint inclusion probabilities greater than zero. Whereas this is already violated
in practice by the use of regular grids, one can still expect that these grids do not exclude
specific forest structures. If any information should be missing at the sample locations, one
should clarify the reason for this and make sure that the information can reasonably be
assumed to be completely missing at random.

Violation 4

If a categorical variable is used in the regression model(s) and the terrestrial sample s2 is
considerably small compared to the s1 phase, it might occur that a category is only present in



Journal of Statistical Software 33

the s1\s2 sample, and thus missing in the s2 sample. Therefore, an internal regression model
cannot be calculated and the function stops with the following error message:

R> zberg <- zberg[-which(zberg.n$phase_id_2p == 2 &

+ zberg.n$stade == "300"), ]

R> twophase(formula = basal ~ stade + couver + melange, data = zberg,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ cluster = "cluster")

Error in check.mandatoryInputs(formula, data, phase_id) :

Level '300' of factor variable 'stade' existing in s1(s0)- but not in

s2 sample. Calculation of coefficient not feasible.

7. Analysis and visualization

7.1. Analysis

We often want to compare the results and performances of different estimation methods and
estimators for a given global or small area inventory, which can be easily accomplished in
forestinventory using the estTable() function. This function restructures the results from
the onephase(), twophase() and threephase() objects and merges them into one single
data set that provides the basis for further analysis. For demonstration purposes, we will first
recalculate the one-phase estimator as well as the two-phase and three-phase EXTPSYNTH
and PSYNTH estimators for the grisons data set:

R> op <- onephase(formula = tvol~1, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D")))

R> extpsynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B","C", "D"), unbiased = TRUE),

+ boundary_weights = "boundary_weights")

R> psynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons, phase_id = list(phase.col = "phase_id_2p",

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B", "C", "D"), unbiased = FALSE),

+ boundary_weights = "boundary_weights")

R> extpsynth_3p <- threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1,

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B", "C", "D"), unbiased = TRUE),

+ boundary_weights = "boundary_weights")

R> psynth_3p <- threephase(formula.s0 = tvol ~ mean,
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+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1,

+ terrgrid.id = 2), small_area = list(sa.col = "smallarea",

+ areas = c("A", "B", "C", "D"), unbiased = FALSE),

+ boundary_weights = "boundary_weights")

We can then aggregate all estimation objects in a ‘list’ and pass it to the estTable()

function:

R> grisons.sae.table <- estTable(est.list = list(op, extpsynth_2p,

+ psynth_2p, extpsynth_3p, psynth_3p), sae = TRUE,

+ vartypes = c("variance", "g_variance", "ext_variance"))

The function merges the estimation results and returns a ‘list’ object with the subclasses
‘esttable’ and ‘smallarea’. The vartypes argument can be used to restrict the estTable()

output to certain types of variances. If one prefers the ‘data.frame’ format for further
analysis, this can easily be done using as.data.frame(grisons.sae.table). Note however
that forestinventory provides several S3 generic methods specifically for the class ‘esttable’.

The structure of an ‘esttable’ object is very similar to the objects created by the small area
estimation functions of the package. However, the point estimates and variances from all
estimation objects passed to estTable() have been stored in one single column (estimate

and variance) and can be distinguished by the variables method, estimator and vartype

which specify the estimation method (one, two or three-phase), the estimator and the type of
variance that was applied (g_ for g-weight and ext_ for external variance). By default, the
confidence intervals are also added.

R> str(grisons.sae.table)

List of 20

$ area : chr [1:28] "A" "A" "A" "A" ...

$ domain : Factor w/ 2 levels "global","smallarea": 1 2 2 2 2 ...

$ method : Factor w/ 3 levels "onephase","twophase",..: 1 3 3 ...

$ estimator : Factor w/ 3 levels "onephase",..: 1 2 2 3 2 ...

$ vartype : Factor w/ 3 levels "ext_variance",..: 3 1 2 2 1 ...

$ estimate : num [1:28] 410 395 395 422 391 ...

$ variance : num [1:28] 1987 1901 1858 726 996 ...

$ std : num [1:28] 44.6 43.6 43.1 26.9 31.6 ...

$ error : num [1:28] 10.86 11.03 10.91 6.39 8.07 ...

$ n2 : num [1:28] 19 40 40 40 67 67 67 17 40 40 ...

$ n2G : num [1:28] NA 12 12 12 19 19 19 NA 11 11 ...

$ n1 : num [1:28] NA 128 128 128 306 306 306 NA 128 128 ...

$ n1G : num [1:28] NA 38 38 38 94 94 94 NA 34 34 ...

$ n0 : int [1:28] NA 306 306 306 NA NA NA NA 306 306 ...

$ n0G : int [1:28] NA 94 94 94 NA NA NA NA 81 81 ...

$ r.squared : num [1:28] NA NA NA NA 0.653 ...

$ r.squared_reduced: num [1:28] NA 0.545 0.545 0.527 NA ...

$ r.squared_full : num [1:28] NA 0.724 0.724 0.717 NA ...
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$ ci_lower : num [1:28] 317 299 300 367 325 ...

$ ci_upper : num [1:28] 504 491 490 476 457 ...

- attr(*, "row.names")= int [1:28] 1 2 3 4 5 6 7 8 9 10 ...

- attr(*, "class")= chr [1:3] "smallarea" "esttable" "list"

Note that estTable() also returns the estimation error (error) that is defined as the standard
error divided by the point estimate:

error[%] =

√

V̂(Ŷ )

Ŷ
· 100.

As multiphase estimation techniques are primarily intended to increase estimation precision,
the function mphase.gain() can be applied to quantify the potential benefit of a multiphase
global or small area estimate compared to its respective one-phase estimate. The function
takes an ‘esttable’ object as input and returns a summary of which multiphase method and
estimator performed best using the precision from the one-phase estimator as a baseline. If
the ‘esttable’ object contains more than one multiphase estimation object, mphase.gain()

identifies the one with the smallest variance and compares it to the onephase estimation. The
argument pref.vartype can be used to define what type of variance (g-weight or external)
should be used for the comparison. Synthetic estimates (SYNTH and PSYNTH estimator)
are not considered for the comparison under the default setting (exclude.synth = TRUE)
since they usually have a much smaller variance at the cost of a potential bias.

R> mphase.gain(grisons.sae.table, pref.vartype = "g_variance")

area var_onephase var_multiphase method estimator gain rel.eff

1 A 1987.117 1016.9557 twophase psynth extended 48.8 1.953986

2 B 3175.068 1019.2698 twophase psynth extended 67.9 3.115041

3 C 1180.853 763.0731 threephase psynth extended 35.4 1.547496

4 D 2290.652 1112.7346 twophase psynth extended 51.4 2.058579

The function call returns a data frame containing the one-phase variance (var_onephase) and
the variance of the best performing multiphase estimator (var_multiphase). The multiphase
estimation procedure is again specified in the method and estimator column. The last
two columns quantify the potential benefit of the multiphase estimation. The gain is the
reduction (if its value is positive) in variance when applying the multiphase as alternative to
the one-phase estimation. For example, it is indicated that the two-phase extended PSYNTH
estimation procedure for small area "B" leads to a 67.9% reduction in variance compared
to the one-phase procedure. The column rel.eff specifies the relative efficiency which is
defined as the ratio between the one-phase variance and the multiphase variance:

rel.eff =
V̂onephase(Ŷ )

V̂multiphase(Ŷ )
.

The relative efficiency can be interpreted as the relative sample size of the one-phase estimator
needed to achieve the variance of the multiphase estimator. For small area "B" we can thus see
that we would have to increase the terrestrial sample size by factor 3 in the one-phase approach
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Figure 6: Plot of estimation errors obtained for ‘esttable’ objects.

in order to get the same estimation precision as the two-phase EXTPSYNTH estimator. If
the average costs for a terrestrial sample plot survey are known, the relative efficiency can
thus be a simple means of quantifying the financial benefit of using multiphase estimation for
forest inventories.

7.2. Visualization

The forestinventory package also provides a S3 generic plot method based on the ggplot2

package (Wickham 2009) to visualize the estimation results in two ways: 1) the point estimates
with overlaid confidence intervals, and 2) the estimation errors. Both plots can be obtained
by passing the ‘esttable’ object to the plot() function (see Figure 6).

R> plot(grisons.sae.table, ncol = 2)

Whereas the estimation errors are plotted by default, the point estimates and confidence
intervals are returned when setting the argument yvar = "estimate". Note that the graphics
can arbitrarily be extended by additional ggplot2 parameterizations (see Figure 7).

R> plot(grisons.sae.table, ncol = 2, yvar = "estimate") +

+ ylab("Timber Volume [m3/ha]")

8. Future plans

The forestinventory package currently provides a fairly well-rounded toolkit for forestry in-
ventorists to integrate auxiliary information into their estimates using the model-assisted
methods under the design-based approach. Although 32 combinations of inventory scenarios,
estimators and sample designs are covered, there are still potential improvements planned for
the future. As this is an open-source project, everyone is encouraged to give feedback and/or
make contributions on the package’s development page on GitHub (Hill 2020). Currently
planned extensions include:
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Figure 7: Plot of estimates and confidence intervals for ‘esttable’ objects.

• Implement parallel procedures for efficiently calculating many small areas.

• Allow functions to accept objects of class ‘data.table’ from the data.table package
(Dowle and Srinivasan 2019) to improve memory efficiency.

• Enable the user to choose other types of models than linear regressions fitted with OLS.
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