The adjoint operator in the freealg package

Robin K. S. Hankin

Auckland University of Technology

Abstract

In this very short document I discuss the adjoint operator ad() and illustrate some of its properties.

Keywords: Adjoint operator, free algebra.


```
function (x)
{
    function(y) {
        new("dot")[as.freealg(x), as.freealg(y)]
    }
}
<bytecode: 0x7fb5f7a18b78>
<environment: namespace:freealg>
```

The adjoint operator: definition

Given an associative algebra \mathcal{A} and $X, Y \in \mathcal{A}$, we define the *Lie Bracket* [X, Y] as XY - YX. In the freealg package this is implemented with the. [] construction:

```
> X <- as.freealg("X")
> Y <- as.freealg("Y")
> .[X,Y]

free algebra element algebraically equal to
- 1*YX + 1*XY
```

The Jacobi identity

The Lie bracket is bilinear and satisfies the Jacobi condition:

```
> X <- rfalg(3)
> Y <- rfalg(3)
> Z <- rfalg(3)
> X # Y and Z are similar objects

free algebra element algebraically equal to
+ 1*aba + 2*ca + 3*cb

> .[X,Y] # quite complicated

free algebra element algebraically equal to
- 3*aaababa - 6*aaabca - 9*aaabcb - 1*aaba + 1*abaa + 3*abaaaab + 2*abab - 2*aca - 3*acb - 2*baba - 4*bca - 6*bcb + 2*caa + 6*caaaab + 4*cab + 3*cba + 9*cbaaab + 6*cbb

> .[X,.[Y,Z]] + .[Y,.[Z,X]] + .[Z,.[X,Y]] # Zero by Jacobi

free algebra element algebraically equal to
0
```

The adjoint map: definition

Now we define the adjoint as follows. Given a Lie algebra \mathfrak{g} , and $X \in \mathcal{A}$, we define a linear map $\mathrm{ad}_X \colon \mathfrak{g} \longrightarrow \mathfrak{g}$ with

$$ad_X(Y) = [X, Y]$$

In the freealg package, this is implemented using the ad() function:

```
> ad(X)

function (y)
{
    new("dot")[as.freealg(x), as.freealg(y)]
}
<bytecode: 0x7fb5f7a19048>
<environment: 0x7fb613b91680>

See how function ad() returns a function. We can play with this:
> f <- ad(X)
> f(Y)
```

free algebra element algebraically equal to
- 3*aaababa - 6*aaabca - 9*aaabcb - 1*aaba + 1*abaa + 3*abaaaab + 2*abab 2*aca - 3*acb - 2*baba - 4*bca - 6*bcb + 2*caa + 6*caaaab + 4*cab + 3*cba +
9*cbaaab + 6*cbb

$$> f(Y) == X*Y-Y*X$$

[1] TRUE

The first thing to note is that ad_X is NOT a Lie homomorphism, for any particular (non-constant) value of X. If ϕ is a Lie homomorphism then $\phi([x,y]) = [\phi(x),\phi(y)]$. There is no reason to expect the adjoint to be a Lie homomorphism, but it does not hurt to check:

```
> phi <- ad(Z)
> phi(.[X,Y]) == .[phi(X),phi(Y)]
```

[1] FALSE

With this definition, it is easy to calculate, say, [Z, [Z, [Z, [Z, X]]]]:

```
> f <- ad("x")
> f(f(f(f(f("y")))))
```

free algebra element algebraically equal to + 1*xxxxxy - 5*xxxxyx + 10*xxxyxx - 10*xxxyxxx + 5*xyxxxx - 1*yxxxxx

Above, we see that ad() coerces its argument to a freealg object.

The adjoint operator is a derivation

A derivation of a Lie bracket is a function $\phi: \mathfrak{g} \longrightarrow \mathfrak{g}$ that satisfies

$$\phi([Y, Z]) = [\phi(Y), Z] + [Y, \phi(Z)].$$

We will verify that ad_X is indeed a derivation:

[1] TRUE

The adjoint operator $ad: \mathfrak{g} \longrightarrow End(\mathfrak{g})$ is a Lie homomorphism

Even though ad_X is not a Lie homomorphism, we can view the adjoint operator as a map from a Lie algebra to its endomorphism group, and this is a Lie homomorphism. We are asserting that

$$\mathrm{ad}_{[X,Y]}=[\mathrm{ad}_X,\mathrm{ad}_Y]$$

In package idiom we would have:

```
> ad(.[X,Y])(Z) == .[ad(X),ad(Y)](Z)

[1] TRUE

Observe that ".[ad(X),ad(Y)]" is a function:
> .[ad(X),ad(Y)]

function (z)
{
    i(j(z)) - j(i(z))
}
<environment: 0x7fb613b49800>
```

which we evaluate (on the right hand side) at Z.

Adjoints in other contexts

Function ad() works in a more general context than the free algebra. For example, we might use it for matrices:

```
> f <- ad(matrix(c(4,6,2,3),2,2))
> M <- matrix(1:4,2,2)
> f(M)

free algebra element algebraically equal to
- 1*ab - 1*ac - 1*ad - 1*af + 1*ba - 1*bf + 1*ca - 1*cf + 1*da - 1*df + 1*fa + 1*fb + 1*fc + 1*fd
```

Note on the definition of ad()

It would seem that one could define ad() as follows:

which would be a lot clearer. However, "." is an object, loaded via the lazydata system. Writing R extensions says, in a footnote:

Note that lazy-loaded datasets are not in the package's namespace so need to be accessed via ::, e.g. survival::survexp.us.

This would make it "freelg::.[x,y]", which is not really any better IMO.

Affiliation:

Robin K. S. Hankin Auckland University of Technology

E-mail: hankin.robin@gmail.com