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Abstract

Since causal paths are important for all sciences, my package ‘gen-
eralCorr’ provides sophisticated R functions using four orders of stochas-
tic dominance and generalized partial correlation coefficients. A new
test replaces Hausman-Wu medieval-style diagnosis of endogeneity re-
lying on showing that a dubious cure (instrumental variables) works.
An updated weighted index summarizes causal path results from three
criteria: (Cr1) lower absolute magnitudes of local Hausman-Wu test
statistic, (Cr2) lower absolute residuals, both quantified by stochas-
tic dominance of four orders, and (Cr3) from goodness of fit. We
illustrate with air-pollution data and causal strength of six variables
driving ‘excess bond premium,’ a good predictor of US recessions.

1 Introduction

Econometrics still relies on the medieval diagnosis of a disease (endogeneity)
because a remedy of instrumental variables (IV) estimator appears to“work.”
Actually, the IV remedy has been long known to be seriously flawed as shown
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by Bound et al. (1995) with a provocative title “the cure can be worse than
the disease”. This paper illustrates the use of an R package “generalCorr”
to develop a new test which does not use any IV estimator. We indicate
the very few lines of code needed to assess the preponderance of evidence in
support of a causal path using macroeconomic examples which can serve as
a template in many areas of research.

Review of Hausman-Wu test

Consider a possibly non-linear nonparametric regression:

Y = f(X1, X2, . . . Xp) + ε1, (1)

where the researcher wants to make sure that E(Xiε1) 6= 0 holds. Assuming
linear regressions, Wu (1973) provided a formal test of exogeneity of Xi often
called Hausman-Wu test. It defines a vector of contrasts, d = bOLS − bIV ,
between ordinary least squares (OLS), an efficient but potentially inconsistent
(due to endogeneity) estimator and inefficient but consistent (by assumption)
IV estimator. The covariance matrix of d can be shown to be Vd = V (bIV )−
V (bOLS), and a quadratic form, d′(Vd)

−1d, is asymptotically a χ2(p), with p
degrees of freedom. The Hausman-Wu test amounts to medieval diagnosing
of a disease (endogeneity) by showing that a cure (bIV ) works.

Koopmans (1950) test checks whether exogenous variables“approximately
cause” the endogenous variables, i.e., whether the causal path Xi → Y holds.
The underlying concept is same as in modern texts such as (Davidson and
MacKinnon, 2004, p. 89) stating that the data generating process (DGP)
generating Xi should be independent of Y manifest through the randomness
of ε1.

New Test Compares Flipped Models

Now consider a model obtained by flipping Y and Xi

Xi = f(Y,X1, X2, . . . Xi−1, Xi+1, . . . Xp) + ε2. (2)

which assumes the approximate path Y → Xi. Engle et al. (1983) assume
p = 1 and that f is a linear function to prove that both flipped models have
identical R2 = r2xy values, where rxy is the correlation coefficient. Therefore,
these authors argued that Koopmans’ approximate causality criterion is “am-
biguous” without offering a practical alternative. This paper demonstrates
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that the alleged ambiguity is due to linearity and readily avoided in modern
computing environment by extending Vinod (2015b).

Urgency of Replacing the Hausman-Wu test

Many authors including Bound et al. (1993) and Kiviet and Niemczyk (2007),
have warned that in finite samples IV estimators “have systematic estima-
tion errors too, and may even have no finite moments.” Moreover they can
be very inefficient (even in large samples) and unnecessarily change the orig-
inal specification. This paper is motivated by the following disadvantages of
Hausman-Wu tests:

1. One must replace Xi with ad hoc, potentially weak and/or irrelevant
instrumental variable Z̃i before testing for exogeneity of Xi.

2. The test needs to be repeated for each potential Z̃i replacing each Xi.

3. Davidson and MacKinnon (2004) show that degrees of freedom p for
the χ2(p) test is too large when a subset of Xi are exogenous.

4. The Chi-square sampling distribution is subject to unverified assump-
tions of linearity and normality, especially unrealistic in finite samples.

Retaining p = 1 and relaxing linearity, consider a general nonlinear non-
parametric kernel regression Model 1:

Yt = G1(Xt) + ε1t, t = 1, . . . , T, (3)

where errors are no longer Normal and independent. Our nonparametric
estimate g1(x) of the population conditional mean function G1(x) is:

g1(x) =

∑T
t=1 YtK(Xt−x

h
)∑T

t=1K(Xt−x
h

)
, (4)

where K(.) is the well known Gaussian kernel function and h is the bandwidth
parameter often chosen by leave-one-out cross validation, Li and Racine
(2007) and (Vinod, 2008, Sec. 8.4).
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Intuition behind Cr1 to Cr3

The intuition behind our criteria can be explained with a common elementary
statistics example used for teaching that correlation is not causation. See
Section 4 for example details. The flipped variables are comparable violent
crime rate (crim) and police officer deployment (off) rate in 28 European
countries. Since most policemen are not murderers, the data generating
process (DGP) for crim is intuitively likely to be self-driven or exogenous,
while the DGP of police deployment would respond more to changing crim
rates and less likely to be self-driven. Hence, the regression specification:
off = f1(crim) + ε1, should perform superior to: crim = f2(off) + ε2. Our
criteria Cr1 to Cr3 quantify three ways of assessing such superiority for more
general situations where control variables Z may be present.

In light of the econometric literature on ‘exogenous’ variables, our Cr1
uses the Hausman-Wu inspired requirement that the covariance between the
right hand side variable and regression errors should be ‘smaller’ for the
superior model. Our Cr2 requires absolute values of residuals of the superior
specification to be ‘smaller.’ Our Cr3 requires the superior model to have
a larger R2. Since flipped OLS regressions always yield identical R2, we
must use nonlinear (kernel) regressions for a meaningful comparison which
admits distinct R2 values. Of course, we have appropriate thresholds and
tests allowing for the possibility that no model is found to be significantly
superior.

Kernel Regressions in generalCorr package

It is well known that kernel regression fits are superior to OLS. The flipped
kernel regression Model 2, obtained by interchanging X and Y in eq. (3), is:

Xt = G2(Yt) + ε2t, t = 1, . . . , T. (5)

The generalized measures of correlation defined by eq. (2) in Zheng et al.
(2012) are:

[GMC(Y |X), GMC[X|Y ] =

[
[1− E(Y − E(Y |X))2

var(Y )
], [1− E(X − E(X|Y ))2

var(X)
]

]
,

(6)

which are computed simply as the R2 values of flipped Models 1 and 2. Since
they generally do differ from each other, the ambiguity in Koopmans’ method
mentioned above is removed.
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As measures of correlation the non-negative GMC’s in the range [0,1] pro-
vide no information regarding the up or down overall direction of the relation
between Y and X, revealed by the sign of rxy, the Pearson coefficient. Since
a true generalization of of rxy should not provide less information, Vinod
(2014) and Vinod (2015a) propose the following modification. A general
asymmetric correlation coefficient from the GMC(Y |X) is:

r∗y|x = sign(rxy)
√
GMC(Y |X), (7)

where −1 ≤ r∗y|x ≤ 1. A matrix of generalized correlation coefficients denoted
by R∗ is asymmetric: r∗x|y 6= r∗y|x, as desired. A function in the generalCorr
package, gmcmtx0, provides the R∗ matrix from a matrix of data.

Our new test of exogeneity uses the “preponderance of evidence” stan-
dard quantified by a comprehensive index, which is a weighted sum of causal
direction signs using three criteria Cr1 to Cr3. Our Cr3 which compares R2

of flipped models is from Vinod (2014). Since elementary statistics teaches
us not to rely on R2 alone, an additional criterion (Cr1) considers evidence
from probability distributions of the absolute magnitudes of local Hausman-
Wu test statistic by using stochastic dominance (SD). Similarly our second
criterion Cr2 compares absolute residuals.

An outline of the remaining paper is as follows. Section 2 provides an op-
erational definition of kernel causality including our assumptions, definitions,
a description of our ‘sum’ criterion incorporating Cr1 to Cr3, and decision
rules explained with a simulation. Section 3 considers statistical inference
using the bootstrap. Section 4 considers examples with a subection 4.1 for
the famous Klein I model and 4.2 considers what macroeconomic variables
drive (cause) excess bond premium known to be a good predictor of reces-
sions. All examples include bootstrap inference for the new test. Section 5
contains a summary and final remarks.

2 Kernel Causality Explained

Assessing philosophically true causality from non-experimental data is non-
trivial, Pearl (2009). Instead, we define a modified causality, called kernel
causality which holds only under certain assumptions, and where the name
kernel causality acknowledges that all our criteria rely on nonlinear nonpara-
metric kernel regressions. We emphasize that Kernel causality has almost
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nothing to do with Granger causality typically involving linear time series
regressions.

Kernel Causality Assumptions:

Our assumptions are:

(A1) Assume that a DGP consists of (X, Y, Z), three sets of variables with
main focus on dependence (causal) links between X and Y with Z
representing additional (confounding or control) variable(s), if any.

(A2) There exists a conditional expectation function E(Y |X,Z) for Model
1 and analogous function E(X|Y, Z) for Model 2 obtained by flipping
X and Y .

(A3) Model 1 DGP is such that X is independently generated (or exoge-
nous) and the dependence of Y on X can be nonlinear and subject to
nonnormal random noise. Model 2 data generation is identical, except
for flipped X and Y .

(A4) It is possible to compare whether Model 1 or Model 2 is better sup-
ported by the data by using quantifiable empirical criteria.

Note that we are assuming away functional relations such as Boyle’s law
(pressure *volume = a constant) because it fails A1 and A3: (i) It fails A1
because one does not typically focus on knowing whether pressure causes
volume or vice versa. (ii) It fails A3 because both pressure and volume can
be independently generated in a typical laboratory.

If a majority of Cr1 to Cr3 support the causal path (X → Y ), assump-
tions A1 to A4 guarantee that X is exogenous (independently generated) and
kernel causes Y . We begin with two digressions: (i) stochastic dominance,
needed for Cr1 and Cr2, and (ii) partial correlations needed for Cr3.

Digression 1: Stochastic Dominance Notation

Let us describe stochastic dominance (SD) concepts surveyed in Levy (1992)
without attempting to summarize the vast and growing published and unpub-
lished literature motivated by financial economists’ portfolio choice problem.
We say that one density f(x) dominates another density f(y) in the first
order (SD1) if their respective empirical cumulative distribution functions
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(ecdf) satisfy: F (x) ≤ F (y). It is well known that SD1 provides a compre-
hensive picture of the ranking between two probability distributions with a
focus on locally defined first moment (mean).

The underlying computation requires bringing the two densities on a com-
mon ‘support,’ requiring ecdf’s to have up to 2T possible jumps or steps.
Hence there are 2T estimates of F (x) − F (y) denoted by a 2T × 1 vec-
tor (sd1). Anderson (1996) shows how a simple pre-multiplication by a large
patterned matrix implements computation of (sd1). Let us use a simple aver-
age Av(sd1) whose sign (+1, 0,−1) helps summarize the first order stochastic
dominance into only one number.

Second order dominance (SD2) of f(x) over f(y) requires further integrals
of ecdf’s to satisfy:

∫
F (x) ≤

∫
F (y). One computes the numerical integral

by using the trapezoidal rule described in terms of a large patterned matrix
whose details are given in (Vinod, 2008, ch.4) and in Anderson (1996). The
2T estimates of SD2 denoted by (sd2) are locally defined variances. Their
simple average is denoted as Av(sd2), whose sign (+1, 0,−1) summarizes the
information regarding second order dominance.

Similarly, SD of order 3 is estimated by a vector (sd3) of 2T locally
defined skewness values defined from

∫ ∫
F (x) ≤

∫ ∫
F (y). The sd3 is further

summarized by the sign of Av(sd3). Analogous SD of order 4 for kurtosis
requires

∫ ∫ ∫
F (x) ≤

∫ ∫ ∫
F (y) and measures investor ‘prudence’ according

to Vinod (2004). Average of pointwise kurtosis estimates of SD4 are Av(sd4),
whose sign (+1, 0,−1) summarizes the SD4 dominance information.

Remark 1: By analogy with two streams of investment returns, stochas-
tic dominance allows us to study realistic but fuzzy inequalities (may not hold
for subsets of points) of the type (xt < yt) for t = 1, . . . , T . Stochastic domi-
nance of four orders associated with the four moments yield 2T estimates of
sd1 to sd4. The signs of their averages, Av(sd1) to Av(sd4), indicate whether
the inequality holds true in an overall sense.

Digression 2: Partial Correlations

Note that the partial correlation between (X1, X2) after removing the effect
of (X3) is:

r12;3 =
r12 − r13r23√

(1− r213)
√

(1− r223)
. (8)
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Kendall and Stuart (1977) show that an alternative definition of r12,3 is a
simple correlation between residuals of the regression: X1 = f(X2, X3) +
error and similar residuals of the regression: X2 = f(X1, X3) + error. We
use this method in our generalization as follows.

We consider the generalized correlations between Xi and Xj after remov-
ing the effect of a set of variable(s) in Xk. Let us first define ui,k as the
residual of kernel regression of Xi on all control variable(s) Xk. Similarly
define uj,k as the residual of kernel regression of Xj on all control variable(s)
Xk. Next, we define a symmetric version of generalized partial correlation
coefficient in the presence of control variable(s) as:

u∗ij;k =
cov(ui,kuj,k)

σ(ui,k)σ(uj,k)
, (9)

a symmetric correlation coefficient between two relevant residuals.
Now we recall eq. (7) based on GMC’s to obtain asymmetric general-

ized partial correlation coefficients. Denote the sign of the correlation in eq.
(9) as sign(u∗ij;k). Finally we are ready to define an asymmetric matrix of
generalized partial correlation coefficients using the R2 of kernel regression:
ui,k = f((uj,k) + err as GMC(ui,k|uj,k). Note that the generalized partial
correlations will be asymmetric since GMC’s are asymmetric.

Thus, we can define:

r∗(Xi, Xj;Xk) = sign(u∗ij;k)
√

[GMC(ui,k|uj,k)]. (10)

Often, we simplify the notation and write the generalized partial correla-
tions as r∗i,j;k. Section 4.5 provides an illustrative example implementing the
generalized partial correlation coefficients from data.

2.1 Kernel Causality from Flipped Model Choice

We determine whether X drives Y , or vice versa by considering the evidence
from the majority of three criteria. They are:

(Cr1) Our first criterion is based on the test statistic involved in Hausman-
Wu null hypothesis for testing exogeneity. If the causal path Xi → Y
is chosen when the following inequality cumulatively holds for the set
of t = 1, 2, . . . , T , using kernel regression residuals of eq. (3) times a
right hand side regressor.
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|(Xit)ε̂1t| < |(Yt)ε̂2t|. (11)

Package ‘generalCorr’ older versions (≤ 1.0.9) have absolute values of
local gradients of kernel regressions as Cr1. When one spells out the
expression in eq. (11) by replacing ε̂1t we have Hxi→y = E(XitYt) −
E(a1tXit+b1tX

2
it), where the local gradients b1t are multiplied by squares

of right hand side variables X2
it. The largest contribution to magnitudes

of these quantities will be made by the square term and its coefficient
the local gradients. Hence the model with smaller absolute gradient is
preferred between the flipped models.

It is not surprising that the older choice of Cr1 based on gradients
also works well in simulations. The newer versions of ‘generalCorr’
are expected to continue to provide an option to use older Cr1. For
example, the commands causeSummary and silentPairs have versions
using the older definition of Cr1 (using gradients) as causeSummary0,
and silentPairs0, respectively

(Cr2) The path X → Y should have “smaller” absolute residuals (superior
local fit) than those of the flipped model, that is, for t = 1, 2, . . . , T :

|Yt − g1(Xt, Zt)| = (|ε̂1t|) < |Xt − g2(Yt, Zt)| = (|ε̂2t|). (12)

(Cr3) The fit (and forecasts) implied by the path X → Y should have a
larger R2 = GMC(Y |X,Z) than those of reversed path:

|r∗(y|x; z)| > |r∗(x|y; z)|, (13)

where generalized partial correlation coefficients defined in eq. (??)
remove the effect of control variable(s), if any.

The inequalities of equations (11) and (12) are fuzzy, requiring stochastic
dominance tools summarized in Remark 1 above. Let us begin with some
definitions.

Definition 1: According to Legal Information Institute (2017) the pre-
ponderance of evidence means a burden to show that greater than 50% of
evidence points to something.
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Definition 2: Assuming A1 to A4, we say that X is the kernel cause of
Y (causal path: X → Y ), if at least two of Cr1 to Cr3 criteria satisfying the
preponderance of evidence standard support the path.

Definition 3: Bidirectional causality (X ↔ Y ) or causality marred by
the presence of confounding variable(s) occurs if the evidence does not sup-
port either (X → Y ) or (Y → X).

Remark 2: If relations are strictly linear and/or the errors are precisely
normally distributed, flipped R2 are almost identical creating an ambiguity
of Koopmans’ criterion criticized by Engle et al. (1983). Since we are using
kernel regressions, not OLS, this problem obviously disappears, especially in
light of assumption A3 and stochastic dominance for Cr1 and Cr2 unrelated
to normality or linearity.

2.2 Weighted sum index from Cr1, Cr2 and Cr3

Applying Remark 1 to the inequality (11) for Cr1, we compute Av(sd`) for
` = 1, . . . 4, magnitudes from absolute gradients of two flipped models. Define
a tolerance constant τ = 0.01, say. If |Av(sd`)| < τ , we say that the sign is
ambiguous, denoted as zero for the `-th SD. When |Av(sd`)| > τ , only the
signs of Av(sd`) not their magnitudes matter. These signs (sg) from the set
(+1, 0,−1), are denoted as sg1`, where the first subscript 1 refers to Cr1. In
practice, the signs sg11 to sg14 are rarely distinct.

Since it is cumbersome to track four signs, we propose a weighted sum,
using the signs, (+1, 0,−1), not magnitudes of Av(sd1) to Av(sd4). Statisti-
cal theory suggests that weights on magnitudes should be inversely propor-
tional to the increasing sampling variances of the first four central moments.
We choose the following weakly declining weights: (1.2/4, 1.1/4, 1.05/4,
1/4), with an option to change them in the R functions silentPairs and
causeSummary of the ‘generalCorr package.

Denote a summary sign index based on Cr1 as sC1. It is computed as:

sC1 = [1.2 ∗ sg11 + 1.1 ∗ sg12 + 1.05 ∗ sg13 + sg14]/4. (14)

When all four (Av(sd1) to Av(sd4)) suggest the same sign, ie, all are (±1),
the largest magnitude of our weighted index of sign by Cr1 is sC1 = ±1.0875.

Analogous signs (+1, 0,−1) of Av(sd1) to Av(sd4) representing absolute
residuals help define their weighted sum for Cr2 is

sC2 = [1.2 ∗ sg21 + 1.1 ∗ sg22 + 1.05 ∗ sg23 + sg24]/4. (15)
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As before, if all four dominance measures suggest the same sign, the largest
magnitude of sC2 is 1.0875. Hence, the sign index based on Cr2 lies in the
closed interval: sC2 ∈ [−1.0875, 1.0875].

The computation of a Cr3 from the inequality test of (13) states that
X → Y if the sign defined as: sg3 = (+1, 0,−1) of the absolute difference
between flipped partial correlations equals (−1). We denote the sign index
based on Cr3 as:

sC3 = sign(|r∗(x|y; z)| − |r∗(y|x; z)|) (16)

where the largest score, max(sg3)= 1. When sg3 < 0, the causal path by Cr3
is X → Y . Note that index always lies in the closed interval: sC3 ∈ [−1, 1].

So far, we have three sign indexes (sC1, sC2, sC3) for the three criteria,
summarizing the evidence supporting the causal path: X → Y . Since our
definition of kernel causality requires us to consider all three criteria, we
compute their ‘sum’ defined as:

sum = sC1 + sC2 + sC3, (17)

from the observed sample data. Let us denote the corresponding true un-
known population value with upper case letters as ‘SUM’. When (SUM < 0)
holds, the causal path is X → Y . Based on the preponderance of evidence,
the sign of sum suggests the direction of the path, while its magnitude ap-
proximates the strength of sample evidence in support of that causal path.

Combining the three largest possible scores verify that: max(sum) =
3.175, and sum ∈ [−3.175, 3.175], a closed interval. A summary unanimity
index is defined as ui = 100(sum/3.175), always in the range [–100,100].
Since the ‘sum’ and ‘summary index’ measure the extent of agreement among
the three criteria, its magnitude is a reasonable indicator of the strength (or
unanimity) of evidence for a particular causal path. When the population
parameter is smaller than a threshold value, (UI < τ where τ = 15, say,) we
can conclude that the causal path is X → Y .

Single number summarizing Cr1 to Cr3

The R command causeSummary(mtx,ctrl=Z, nam=colnames(mtx)) requires
a data matrix with p columns called ‘mtx’ with the first column for the depen-
dent variable and remaining column(s) for regressors. The order of columns
is very important. For example, mtx=cbind(x1,x2,x3), where the matrix
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‘mtx’ has three columns, denoted as p = 3. Our flipped models fix the first
column x1 and pair it with either x2 or x3 for flipping. We do not pair x2
with x3. Thus we always have p − 1 possible flipped pairs. The code indi-
cates an error if p < 2 or if it is not a matrix. Sometimes one needs to use
as.matrix(mtx). Note that control variables are a separate argument (not
within mtx), as in: causeSummary(mtx, ctrl=0), where the default value
zero means absence of control variable(s).

The output of ‘causeSummary’ is self-explanatory based on ‘preponder-
ance of evidence’ from a weighted combination of Cr1 to Cr3. Since we have
exactly (p− 1) possible causal path pairs, the summary reports each printed
to the screen. For each pair it reports the name of the causal variable, then
the name of the response variable, the strength index in terms of unanimity
of the sign of the reported causal path. It also reports Pearson correlation co-
efficient and its p-value for testing the null hypothesis: ρ = 0. If the strength
is close to zero, in the range [−5, 5], one should conclude that X ↔ Y , even
though the computer output wrongly picks one of the two paths.

The code su=causeSummary(mtx);xtable(su) may be used to create a
Latex table of results from the output of the function. It is a matrix of (p−1)
rows and 5 columns providing summary of pair-wise causal path results.
The first column entitled ‘cause’ names the causal variable, while the second
column entitled ‘response’ names the response. The third column entitled
‘strength’ has absolute value of summary strength index, printed above but
now in the positive range [0,100], summarizing preponderance of evidence
from Cr1 to Cr3 from four orders of stochastic dominance and generalized
partial correlations. The fourth column entitled ‘corr’ has Pearson correlation
coefficient while the fifth column entitled ‘p-value’ is for testing the null of
zero Pearson correlation coefficient.

Our notion of causality is not the true philosophical causality, but an
approximation where a ‘kernel cause’ is simply the variable which is generated
independently. That is, its innovations are self-generated. The dependent
variable or the response variable responds to the innovations of the other
variable in the flipped pair. This notion of causality allows us to create the
causal and dependent variable pairs for the purpose of a simulation. After
considering such a simulation in the next subsection, we discuss bootstrap
statistical inference using the bootstrap proportion P ∗(±1) of occurrences of
positive or negative signs in Section 3, further illustrated in our examples
later.
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Decision Rules

The ‘preponderance of evidence’ supports one of the three causal paths listed
below when the sample unanimity index ‘ui’ is inside one of the three intervals
(two half-open and one closed, using τ = 15):

R1: X1+j → X1 if (ui ∈ (−100,−15]) or sum ∈ (−3.175,−0.476].

R2: X1+j ← X1 if (ui ∈ (15, 100]) or sum ∈ (0.476, 3.175].

R3: X1+j ↔ X1 if (ui ∈ [−15, 15]) or sum ∈ (−0.476, 0.476]).

2.3 Simulation for checking decision rules

The simulation generates the X variable independently and then define Y to
depend on X after adding a noise term, ε ∼ N(0, 1), a the standard normal
deviate. Here the causal path is known to be X → Y , by construction. Our
sample size is n = 100 and our mtx=cbind(X,Y) enters X as the first column
implying that the correct signs are positive.

Let m denote the count for indeterminate signs when we repeat the exper-
iments N = 1000 times. Define the success probability for each experiment
as:

(succ.prob) =
(count of correct signs)

N −m
. (18)

1. Time regressor:

X = {1, 2, 3, . . . , n}
Y = 3 + 4X + ε

2. Uniform Quadratic:

X has n uniform random numbers
Y = 3 + 4X − 3X2 + ε

3. Two Uniforms:

X1, X2 each have n uniform random numbers
Y = 3 + 4X1 + 3X2 + ε

4. Three Uniforms:

X1, X2, X3 each have n uniform random numbers
Y = 3 + 4X1 + 5X2− 6X3 + ε
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The large success rate reported on the last row of Table 1 for the exper-
iments shows that our decision rules using a ‘sum’ from Cr1 to Cr3 work
well. Thus, our procedure using flipped models to identify independently
generated (causal) variables is supported by the simulation.

Table 1: Summary statistics for results of using the ‘sum’ measure for cor-
rect identification of causal path indicated by its positive sign using N=1000
repetitions, n=100 sample size.

Expm=1 Expm=2 Expm=3 Expm=4
Min. 1.000 -3.175 -3.175 -3.175

1st Qu. 1.500 1.000 1.000 1.175
Median 2.575 1.000 1.175 3.175

Mean 2.373 1.084 1.658 2.110
3rd Qu. 3.175 1.175 3.175 3.175

Max. 3.175 3.175 3.175 3.175
succ.prob 1.000 0.905 0.882 0.970

The above simulation uses the causeSummary0 command when τ = 0,
using an older version of Cr1 based on gradients. The results of a simula-
tion using the causeSummary command are omitted for brevity, since they
are very similar. For example, when τ = 0 the success probabilities using
causeSummary command of the newer version: (1.000, 0.829, 0.987, 0.963)
are quite comparable to the last line of Table 1. Unfortunately, the newer
choice of Cr1 is not always superior to the older Cr1 in these simulations,
where the correct causal path is known.

Even though our definition of Cr1 used in the latest versions of ‘gener-
alCorr’ package (ver. ≥ 1.1.0) is intuitively more directly aligned with the
Hausman-Wu test statistic, it is not unequivocally superior to the older Cr1
based on local linear kernel regression gradients in our simulations. Hence,
both R functions causeSummary and causeSummary0 may be tried and using
any sign disagreement as suggestive of uncertainty of estimated causal paths,
even without computer intensive bootstraps described in the next section.

3 A Bootstrap Exogeneity Test

Statistical inference regarding causal paths and exogeneity uses the ‘sum’
statistic defined in equation (17) for estimating the parameter ‘SUM’ men-
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tioned before. Equivalently we can bootstrap the sample unanimity index,
ui = 100(sum/3.175), with the parameter UI mentioned above.

What is the sampling distribution of the ‘sum’ test statistic? We use the
maximum entropy bootstrap (meboot) R package described in Vinod and
López-de-Lacalle (2009) because it retains the dependence structure (e.g.
rankings of countries) in the data recently supported by simulations in Yalta
(2016), Vinod (2015b) and elsewhere. Here we use the meboot package to
compute a large number (J = 999) of resamples of (X, Y, Z) data. These are
an approximation to what the data might look like due to random variation in
the population, or the ensemble. The observed (X, Y, Z) data represent only
one realization from the ensemble. One can, of course, use other bootstrap
algorithms.

Recall that sC1 to sC3 is a weighted sum of only three numbers (–1,
0, +1), implying an ordered categorical random variable. Since their sum
defined in equation (17) can have only a finite set of values, the sampling
distribution of the sum statistic has nonzero mass only at those set of points
in the closed interval:

sum ∈ [−3.175, 3.175]. (19)

Since computing the sum automatically cancels positive numbers with neg-
ative numbers, its magnitude measures a weighted vote count, as it were, in
favor of the most enduring (empirically supported) sign of the sum. If, for
example, sum = −3.175, reaching the lower limit of the range, Cr1 to Cr3
are unanimity supporting the causal path X → Y .

Let sumj denote the j-th bootstrap sum where j = 1, . . . J , for each
flipped pair. A direct study of the properties of the sampling distribution
looks at the summary statistics of the J replicates sumj, such as: (mean,
median, quartiles), etc. The signs of these summary statistics reveal the
most preponderant sign in the bootstrap approximation to their population,
illustrated later in Table 2 below. The sign of the mode (most frequently
observed sumj) is also of interest.

A further summary of the sampling distribution can be obtained by com-
puting bootstrap proportion of positive or negative values:

P ∗(+1) = #(sumj > 0.5)/J, and P ∗(−1) = #(sumj < −0.5)/J, (20)

where #(sumj > 0) denotes the number of occurrences of positive signs
out of J computations while ignoring the magnitudes. Thus P ∗(±1) is a
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bootstrap approximation to the probability of a positive or negative sign in
determining the causal path direction.

In the context of simultaneous equation models, consider the null hypoth-
esis that Xj of eq. (1) is exogenous. Then the path implied by eq. (1) should
have greater support than (2). We expect the preponderance of evidence
supporting a negative ‘SUM’.

Define the null and alternative hypotheses for exogeneity as:

H0 : SUM ≤ 0, against H1 : SUM > 0, (21)

Negative values of SUM are desirable, if we want to assure ourselves that
the regressor is exogenous. A simple rule for statistical inference is to re-
ject the hypothesized exogeneity whenever the bootstrap proportion P ∗(+1)
sufficiently exceeds P ∗(−1) for the problem at hand. The Definition 1 sug-
gests preponderance of evidence or > 50% standard. In our experience and
illustrations below a much larger percentage is often attainable.

4 Application Examples

Let us begin with an example mentioned earlier where the cause is intuitively
known to illustrate our statistical inference using the sum and ui statistics.
Vinod (2015a) describes a cross section data example where Y denotes the
number of police officers per 1000 population, and X denotes the number of
crimes per 1000 population in T =29 European countries in 2008.

require(generalCorr);require(Hmisc)

attach(EuroCrime)#bring package data into memory

causeSummary(cbind(crim,off))

pcause(crim,off,n999=29)

The output of above code given below shows that crime causes officer
deployment with strength 100, while bootstrap resampling success proportion
is about 0.59.

causeSummary(cbind(crim,off))

[1] crim causes off strength= 100

[1] corr= 0.99 p-val= 0

cause response strength corr. p-value
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[1,] "crim" "off" "100" "0.99" "0"

pcause(crim,off,n999=29) #illustrative bootstrap

[1] 0.5862069

A single bootstrap computation for these data when J = 999 on a home
PC requires about 20 minutes of CPU time. An approximate sampling distri-
bution of ‘sum’ statistic for these data is depicted in Figure 1. We are using
a histogram because the sampling distribution is categorical with nonzero
frequency counts only at a finite set of points. The mode is clearly seen at
–3.175 in the histogram. suggesting that the path (crime→officer deploy-
ment) is not due to random noise, but likely to be present in the popula-
tion. The descriptive statistics for the set of J values of (sumj) are: (first
quartile=–3.175, median =–1.175, third quartile=1), and proportion of neg-
atives, P ∗(−1) = 0.641.

Histogram of ‘sum' for Crime Data

‘sum' values
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Figure 1: European Crime Data Approximate Sampling Distribution of the
sum statistic

17



4.1 Klein I simultaneous equations model

This section reports the results for our three criteria regarding exogeneity of
each of the regressors of the three equations of the famous Klein I model. Let
us use the following four-character abbreviations using the upper case trail-
ing L for lagged version of a variable: cons=consumption, coPr=corporate
profits, coPL= corporate profits with a lag, wage=wages, inve=investment,
capL=capital with a lag, prWg=private sector wages, gnpL=GNP with a
lag, and finally, tren=time trend.

Klein’s specification of the expected consumption equation (stated in
terms of fitted coefficients) is:

E(cons) = a10 + a11 coPr + a12 coPL + a13 wage. (22)

The second (investment) equation of the Klein I model is given by:

E(inve) = a20 + a21 coPr + a22 coPL + a23 capL. (23)

The third (wage) equation of the Klein I model is given by:

E(prWg) = a30 + a31 gnp + a32 gnpL + a33 tren. (24)

We report summary statistics for all three criteria combined into the
sumj, j = 1, . . . J defined in eq. (17) leading to a J = 999 × 1 vector of
summary signs, for brevity.

Table 2: Klein I model: Bootstrap summary statistics for ‘sum’ of eq. (17)
using 999 resamples to represent the population. A positive mean and median
with a large P ∗(+1) imply the relevant regressor might not be exogenous.

cons inve prWg
Minimum -3.1750 -3.1750 -3.1750

1st Quartile, Q1 -1.1750 -1.1750 -1.1750
Median 1.0000 -0.9250 0.0875

Mean 0.4443 -0.1892 0.1874
3rd Quartile, Q3 1.1750 1.1750 1.1750

Maximum 3.1750 3.1750 3.1750
P ∗(+1) 0.597 0.481 0.504

Three columns of Table 2 are for the three equations of the Klein I model.
The rows report descriptive statistics: the minimum, maximum, quartiles
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Q1 and Q3, mean and median based on J = 999 bootstrap realizations.
The bottom row of the Table reports the bootstrap probability of a positive
result, P ∗(+1) defined in eq. (20), which are all close to 0.5. The fact
that all equations have the same minimum, maximum, Q1 and Q3 show
that the bootstrap variability is considerable in both tails making the causal
path subject to sampling variability, implying considerable uncertainty in the
estimated ‘sum.’

The signs of means and medians are both positive in columns 1 and 3 for
consumption and private wage equations, implying that wage appears to be
endogenous in the consumption equation (22), while gnp may be endogenous
in the private wage equation (24). The P ∗(+1) = 0.481 < 0.5, along with
the negative sign of the mean and the median in the second column entitled
‘inve’ suggests that coPr appears to be exogenous in the investment equation
(23).

4.2 Macro Risk Factors for Excess Bond Premium

US Macroeconomists and Federal Reserve researchers have developed new
awareness of their failure to forecast the great recession of 2007-2008. Some
have developed new data series. For example, Gilchrist and Zakrajek (2012)
have developed excess bond premium (EBP) and shown that it predicts risk
of a recession. It is interesting to find what causes the EBP itself, possibly
allowing us to understand why EBP predicts recession risk.

Potential causes are: unemployment rate (UnemR), credit creation (Cr-
Crea, not seasonally adjusted), credit destruction (CrDstr, not seasonally
adjusted), yield on 10-year treasury bonds (Yld10, not seasonally adjusted),
effective federal funds rate (EffFFR), and money stock (M2, seasonally ad-
justed billions of dollars). Arguments for using separate variables for CrCrea
and CrDstr are found in Contessi and Francis (2013) with additional refer-
ences. We use Federal Reserve’s quarterly data from 1973Q1 to 2012Q4, with
some data missing. Our software tools can efficiently handle missing data.

We study endogeneity of variables in the following regression model:

EBP = f(UnemR,CrCrea,CrDstr,Yld10,EffFFR,M2) (25)

After getting the data and relevant packages into R memory, we can use
the following commands:

19



mtx=cbind(EBP,UnemR,CrCrea, CrDstr,Yld10,EffFFR,M2)

p=NCOL(ntx);print(colnames(mtx)[2:p])

silentPairs(mtx)#newer version of Cr1

silentPairs0(mtx)#zero suggests older version of Cr1

The output of this shows that only CrCrea, CrDstr and M2 are negative
implying that they are exogenous.

"UnemR" "CrCrea" "CrDstr" "Yld10" "EffFFR" "M2"

NewCr1 3.175 -1.000 -1.000 3.175 3.175 -1.000

OldCr1 1.000 -1.000 -1.000 3.175 1.000 -1.000

The above output of ‘sum’ index is in the range: [−3.175, 3.175]. The re-
sults in more intuitive translated range: [−100, 100] plus Pearson correlation
and its p-values require simple code:

su=causeSummary(mtx)

su0=causeSummary0(mtx)#zero suggests older version of Cr1

require(xtable)

xtable(su); xtable(su0)

The Latex Table is printed in the following Table 3. Note that only CrCrea,
CrDstr and M2 are likely to be independently generated (exogenous) causing
the excess bond premium, while the other variables seem to be caused by EBP
(endogenous). None of the magnitudes in the column entitled ‘strength’ is
less than the threshold 0.476 for ‘sum’ according to our decision rule R3,
implying that we do not have bidirectional paths.

Causal directions in Table 3 for old Cr1 and new Cr1 are identical. The
strengths in rows 1 and 1.old are distinct with ui = 100, 31.496, respectively.
Same discrepancy hold between rows 5 and 5.old. Thus the difference between
two versions of Cr1 are not found to be significant for this example.

What about sampling variability of strength index? The bootstrap infer-
ence is computer time intensive. It requires the function pcause as illustrated
in the following code.

p=NCOL(mtx)

ou2=matrix(NA,nrow=p-1,ncol=2)

for (i in 2:p){

pp=pcause(mtx[,1],mtx[,i],n999=999)

ou2[i-1,1]=colnames(mtx)[i]
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Table 3: Excess Bond Premium and possible causes using new Cr1 and old
Cr1 indicated by row names

cause response strength corr. p-value
1 EBP UnemR 100 0.1443 0.06875

1.old EBP UnemR 31.496 0.1443 0.0688
2 CrCrea EBP 31.496 -0.087 0.27387

2.old CrCrea EBP 31.496 -0.087 0.2739
3 CrDstr EBP 31.496 0.1998 0.01132

3.old CrDstr EBP 31.496 0.1998 0.0113
4 EBP Yld10 100 0.064 0.42165

4.old EBP Yld10 100 0.064 0.4216
5 EBP EffFFR 100 0.0657 0.40915

5.old EBP EffFFR 31.496 0.0657 0.4091
6 M2 EBP 31.496 -0.0103 0.8976

6.old M2 EBP 31.496 -0.0103 0.8976

ou2[i-1,2]=round(pp,6) }

print(ou2)

colnames(ou2)=c("variable", "P(-1,0,1)")

xtable(ou2)

The printed output of the above code is suppressed for brevity. Instead,
our Table 4 shows that sampling distribution results provide a distinct piece
of information not covered by the results about the strength or p-value in
Table 3.

Table 4: Bootstrap success rates for causal direction using 999 resamples
variable P(±1)

1 UnemR 0.801802
2 CrCrea 0.927928
3 CrDstr 0.626627
4 Yld10 0.947948
5 EffFFR 0.600601
6 M2 1
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Graphics on Pair-wise Relations

Pretty scatterplots with locally best fitting lines for each pair of data have
now become possible with a nice R package called ‘PerformanceAnalytics’
by Carl and Peterson (2010) with the function chart.Correlation modified
for our purposes in the following code.

require(PerformanceAnalytics)

chartCorr2=function(mtx,temp="temp",nam=colnames(mtx)){

p=NCOL(mtx)

#print(c("colnames=",nam))

if (p<2) stop("chartCorr2 has input mtx with <2 columns")

nameoplot=nam[2:p]

print(nameoplot)

for (i in 2:p) {

mypath<-file.path("C:",temp,paste(nameoplot[i-1],".pdf",sep=""))

pdf(file=mypath,width=9,height=7)

chart.Correlation(mtx[,c(1,i)])

dev.off()

}# end i loop

}#end function

chartCorr2(mtx)

All figures are analogous. Histograms of the two variables is seen in the
diagonal panels. The South West panel has a scatter diagram and locally
best fitting free hand curve. The number in the North East panel is the
ordinary correlation coefficient whose font size suggests its statistical signif-
icance, with stars increasing with 10%, 5% and 1% level. Figures provide
visual impressions while the exact correlation coefficients and their p-values
are also found in Table 3 with more decimal points.

Our evidence including Figure 2 suggests that the variation in UnemR is
endogenous, caused by EBP with a scatterplot having a mildly up-down-up
pattern.

Our evidence including Figure 3 suggests that the variation in credit cre-
ation is exogenous. Its scatterplot is mostly flat and lots of noise.

Our evidence including Figure 4 suggests that the variation in credit de-
struction is exogenous. This scatterplot is also mostly flat with lots of noise,
similar to credit creation.
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Figure 2: Scatterplot with nonlinear curve: EBP-UnemR
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Figure 3: Scatterplot with nonlinear curve: EBP-CrCrea
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Figure 4: Scatterplot with nonlinear curve: EBP-CrDstr
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Figure 5: Scatterplot with nonlinear curve: EBP-Yld10
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Our evidence including Figure 5 suggests that the variation in the yield
on 10-year notes is endogenous, caused by EBP with a scatterplot having a
mildly up-down pattern.
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Figure 6: Scatterplot with nonlinear curve: EBP-EffFFR

Our evidence including Figure 6 suggests that the variation in the effective
federal funds rate is endogenous, caused by EBP with a scatterplot having a
mildly up-down pattern. The non-deterministic variation in Effective Federal
Funds rate (EffFFR) is less ”original or independent” than the correspond-
ing variation in EBP. When EBP is negative and rises toward zero EffFFR
increases, but beyond zero it decreases with increase in EBP. It would be
interesting to consider the ”surprise” component of the effective FFR and its
relationship with the EBP

Our evidence including Figure 7 suggests that the variation in money
stock M2 is exogenous with a scatterplot having a mildly down-up pattern.
The non-deterministic variation in EBP is less ”original or independent” than
the corresponding variation in money stock M2. ). The graphics reveals that
when EBP is negative and rises toward zero as M2 decreases, but beyond the
zero EBP M2 increases with increase in EBP.
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Figure 7: Scatterplot with nonlinear curve: EBP-M2

4.3 Airquality data

Our next example shows how the causeSummary function of the package pro-
vides reasonable results showing that all meteorological variables are exoge-
nous for Ozone (ppb) air pollution in New York in 1973, using some famous
data always available in R.

library(generalCorr)

c1=causeSummary(as.matrix(airquality))

library(xtable)

xtable(c1)

The results in Table 5 show that solar radiation (lang) and temperature
(degrees F) have strongly independent variation, influencing Ozone pollution
levels with high strength of 100 for both, suggesting unanimity of Cr1 and
Cr2 criteria at all four stochastic dominance levels and further confirmed by
Cr3. The results in Table 6 using older Cr1 are almost identical.

Other variables: Wind (mph), month number (1:12) and Day number
(1:31) also affect Ozone, but the causal direction is not unanimous. Hence the
strength index is only 31.496 for them. Not surprisingly, high wind reduces
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Table 5: Ozone pollution and its various known causes using newer Cr1
cause response strength corr. p-value

1 Solar.R Ozone 31.496 0.3483 0.00018
2 Wind Ozone 100 -0.6015 0
3 Temp Ozone 31.496 0.6984 0
4 Month Ozone 100 0.1645 0.0776
5 Day Ozone 100 -0.0132 0.88794

Table 6: Ozone pollution and its various known causes using older Cr1
cause response strength corr. p-value

1 Solar.R Ozone 100 0.3483 2e-04
2 Wind Ozone 31.496 -0.6015 0
3 Temp Ozone 100 0.6984 0
4 Month Ozone 31.496 0.1645 0.0776
5 Day Ozone 31.496 -0.0132 0.8879

Ozone pollution is indicated by the significantly negative (–0.6015) Pearson
correlation coefficient with a near zero p-value. Additional comments about
Tables 5 and 6 are omitted for brevity.

We use following code to generate a table of bootstrap results.

options(np.messages=FALSE)

bb=bootPairs(airquality, n999=999)

ap=apply(bb$out,2,summary)

ap2=rbind(ap,bb$probSign)#P* at the bottom of summary table

xtable(ap2,digits=3)

The results are summarized in Table 7, where the ‘sum’ index is in the
range [−3.175, 3.175]. We can focus of the means to obtain the overall effect.
The bottom row of Table 7 reports the relative frequency of negative values
according to the definition (18) implying a success probability in obtaining
a negative sign after removing from the denominator all bootstrap estimates
m lying in the bidirectional range [−0.05, 0.05]. For our example, m = 0 for
all columns. The bottom line shows that the negative signs in all columns
are very reliably estimated. It may be convenient to simply set m = 0 in the
denominator (N −m), leading to conservative estimates of success rates.
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Table 7: Variability of ‘sum’ over 999 bootstrap resamples using airquality
data

Solar.R Wind Temp Month Day
Min. -3.175 -3.175 -3.175 -3.175 -3.175

1st Qu. -3.175 -2.575 -1.500 -1.600 -1.000
Median -3.175 -1.000 -1.175 -1.000 -1.000

Mean -2.347 -1.539 -1.520 -1.531 -0.957
3rd Qu. -1.175 -1.000 -1.175 -1.000 -1.000

Max. 1.975 1.175 1.000 -0.500 2.025
P ∗(−1) 0.9459 0.9299 0.9710 1.0000 0.9760

4.4 ‘silentMtx’ illustrated with ‘mtcars’ automobile data

In some engineering applications the causal direction is up to the engineer in
the sense that she can change engineered settings for one variable to study
its effect on some other variable. We use well known ‘mtcars’ data always
available in R to describe the function ‘silentMtx’ which prints a signed ma-
trix of unanimity indexes in the range [–100, 100] for each pair of variables
allowing for some variables to be treated as control. Let us use the sixth
variable ‘wt’ or weight of the car as the control.

require(np);require(generalCorr);options(np.messages=FALSE)

silentMtx(mtcars[,1:4],ctrl=mtcars[,6])

silentMtx0(mtcars[,1:4],ctrl=mtcars[,6])

The interpretation of signed unanimity indexes is self-explanatory in the
following R outpout.

[1] "Negative index means the column named variable

kernel-causes row named"

[1] "Positive index means the row named variable

kernel-causes column named"

[1] "abs(index)=sign unanimity by weighted sum of

3 signs from Cr1 to Cr3"

#using silentMtx command for newer Cr1 version

mpg cyl disp hp

mpg 100.000 37.008 -31.496 -100.000

cyl -37.008 100.000 37.008 18.110
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disp 31.496 -37.008 100.000 37.008

hp 100.000 -18.110 -37.008 100.000

#using silentMtx0 command for older Cr1

mpg 100.000 -31.496 -31.496 -100.000

cyl 31.496 100.000 -31.496 -31.496

disp 31.496 31.496 100.000 -31.496

hp 100.000 31.496 31.496 100.000

For example, the negative elements [1,4] =(–100, –100) in the upper and
lower parts of the above output matrix suggest that the column 4 ‘horse
power variable’ kernel causes the ‘miles per gallon’ or the row 1 variable, or:
‘hp’→‘mpg’. The absolute values of the unanimity index (=100) suggests
that the path direction is unanimously supported by Cr1 to Cr3 under both
definitions of Cr1.

The elements at the diagonally opposite locations [4,1] in the output
matrix have the opposite positive sign, meaning reverse causal path with
the same meaning: Column 1 variable is kernel caused by the row 4 variable
or ‘mpg’←‘hp’. Both paths are exactly the same even though the signs are
opposite, as they should be. Of course, the signs and magnitudes of all pairs
do not match for the two distinct definitions of Cr1.

If the argument matrix ‘mtx’ has p rows, ‘silentPairs’ provides a useful
summary vector with (p − 1) elements, focused on the first column paired
with all other columns in the range [–3.175, 3.175]. By contrast, ‘silentMtx’
provides a useful summary matrix of all causal path pairs converted to the
intuitive range [–100, 100].

4.5 ‘parcorMany’ illustrated with ‘mtcars’ data

The R function parcorMany creates a matrix of generalized partial correla-
tion coefficients between all pairs of variables after removing the effect of
remaining variables and also after removing the effect of control variables if
any, when the dependencies are computed from kernel regressions.

parcorMany(mtcars[,1:4],ctrl=mtcars[,6])

Since we have four basic variables and one control variable, we have choose(4,2)
or six pairs or three flipped pairs. In the following output column entitled
nami and namj provide names ofXi andXj while partij and partji provide the
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partial correlations. The column entitled ‘rijMrji’ reports the difference be-
tween their absolute values useful for our third criterion Cr3: (abs(partij)
- abs(partji)).

> parcorMany(mtcars[,1:4],ctrl=mtcars[,6])

nami namj partij partji rijMrji

[1,] "mpg" "cyl" "-0.0033" "-0.3428" "-0.3395"

[2,] "mpg" "disp" "0.0634" "0.0421" "0.0213"

[3,] "mpg" "hp" "-0.0845" "-0.0883" "-0.0037"

This function is included at the request of a package user.

5 Summary and Final Remarks

Medicine has long rejected medieval-style diagnoses of diseases by simply
showing that a cure works. Hausman-Wu tests are shown to be similarly
flawed as they use IV estimators which can“do more harm than good”(Bound
et al., 1995, p. 449), and are criticized as being“very inefficient”by Kiviet and
Niemczyk (2007), Dufour, and others. This paper suggests an alternative.

Koopmans (1950) suggested that exogenous variables Xi should “approx-
imately cause” the dependent variables Y , but not vice versa. Engle et al.
(1983) correctly show that Koopmans’ methods cannot unambiguously iden-
tify the causal direction, since two flipped linear regressions, (Y on Xi) and
(Xi on Y ), have the same R2. We show that modern computing tools and
concepts including Zheng et al. (2012) allow us to remove the linearity as-
sumption and focus on Koopmans’ valuable insight that exogenous variables
should have an independently generated DGP, manifesting itself in three dis-
tinct quantifiable criteria: Cr1 to Cr3.

We suggest that the endogeneity problem is present in an equation if the
left-hand-side variable ‘kernel causes’ the right-hand-side variable in terms
of preponderance of evidence. Hence, we define kernel causality as requir-
ing satisfaction of at least two out of three criteria Cr1 to Cr3. The Cr3
uses ‘goodness of fit’ when it compares generalized (partial) correlation co-
efficients, suggested in Vinod (2014), such that |r∗y|x| > |r∗x|y| implies that X
is the kernel cause of Y . Vinod (2015a) reports favorable simulations using
Cr3 alone. Section 2.3 here shows how independently generated (exogenous)
variables are mostly correctly identified by using flipped model performance
comparisons based on a summary of Cr1 to Cr3.
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Since it is not safe to rely on goodness of fit alone, the other two criteria
(Cr1, Cr2) here yield two fuzzy inequalities. The Cr1 involves absolute values
of Hausman-Wu test statistic from the cross product of regressor and local
residual of kernel regression. The R package ‘generalCorr’ has an option to
use an older version of Cr1 involving absolute values of the gradients of local
linear kernel regressions. The Cr2 involves absolute values of local kernel
regression residuals.

Financial economics has long ago developed tools for a comprehensive
study of fuzzy inequalities between stock market returns of two competing
investment opportunities (e.g., mutual funds) called stochastic dominance of
orders 1 to 4 (or SD1 to SD4). See a survey in Levy (1992) and discussion of
SD4 in Vinod (2004). Our sample statistics measuring SD1 to SD4 are called
Av(sd1) to Av(sd4) which are further aggregated by using weights inversely
related to their sampling variances. Weighted sums quantify the Cr1 and
Cr2.

Our decision rules based on the ‘sum’ statistic incorporating all three
criteria are simulated in section 2.3 with high success rate. Our new bootstrap
test for exogeneity in section 3 can do statistical inference for the ‘sum’
statistic, using about a thousand estimates. Descriptive statistics of these
estimates, illustrated in Table 2, provide a view of their sampling distribution
to assess the preponderant sign and hence the causal direction.

If the causal path is from the left hand side variable to a right hand
side variable, or is bidirectional, endogeneity problem exists and researchers
may well add extra equations leading to a simultaneous equations model.
Koopmans’ “departmental principle” gives practitioners some flexibility in
designating certain non-economic variables as exogenous, without having to
add extra equations and eliminating a need for exogeneity testing.

We illustrate the new bootstrap exogeneity test using the famous Klein
I simultaneous equations model. Our Section 4.2 considers a novel model
explaining the ‘excess bond premium’ (EBP) known to be a good predictor
of US recessions. We study detailed relation between EBP and six variables
including various criteria and graphics, providing software tools for imple-
mentation based on the R package ‘generalCorr.’ Our evidence suggests that
the variation in three variables: credit creation (CrCrea), credit destruc-
tion (CrDstr) and money stock (M2), is exogenous (independenly generated)
causing changes in EBP.

Clearly, practitioners can use our summary functions implemented with
very few lines of code. The ability to treat potentially confounding variables
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as control may be particularly valuable. It is straightforward to extend and
modify our tools, if indicated by future research, since they are open source.

References

Anderson, G., 1996. Nonparametric tests of stochastic dominance in income
distributions. Econometrica 64(5), 1183–1193.

Bound, J., Jaeger, D. A., Baker, R., 1993. The Cure Can Be Worse than
the Disease: A Cautionary Tale Regarding Instrumental Variables. NBER
Working Paper No. 137.
URL http://ssrn.com/paper=240089

Bound, J., Jaeger, D. A., Baker, R., 1995. Problems with instrumental vari-
ables estimation when the correlation between the instruments and the
endogenous explanatory variables is weak. Journal of the American Statis-
tical Association 90, 443–450.

Carl, P., Peterson, B. G., 2010. PerformanceAnalytics: Econometric tools for
performance and risk analysis.
URL http://CRAN.R-project.org/package=PerformanceAnalytics

Contessi, S., Francis, J., 2013. u.s. commercial bank lending through 2008:q4:
new evidence from gross credit flows. Economic Inquiry 51(1), 428–444.

Davidson, R., MacKinnon, J. G., 2004. Econometric Theory and Methods.
New York: Oxford Univ. Press.

Engle, R. F., Hendry, D. F., Richard, J.-F., 1983. Exogeneity. Econometrica
51, 277–304.

Gilchrist, S., Zakrajek, E., 2012. Credit spreads and business cycle fluctua-
tions. American Economic Review 102(4), 1692–1720.

Kendall, M., Stuart, A., 1977. The Advanced Theory of Statistics, 4th Edi-
tion. Vol. 1. New York: Macmillan Publishing Co.

Kiviet, J. F., Niemczyk, J., 2007. The asymptotic and finite-sample distri-
butions of OLS and simple IV in simultaneous equations. Computational
Statistics & Data Analysis 51, 3296–3318.

32

http://ssrn.com/paper=240089
http://CRAN.R-project.org/package=PerformanceAnalytics


Koopmans, T. C., 1950. When is an equation system complete for statistical
purposes. Tech. rep., Yale University.
URL http://cowles.econ.yale.edu/P/cm/m10/m10-17.pdf

Legal Information Institute, 2017. Wex Legal Dictionary. Cornell Law
School, Ithaka, NY.
URL https://www.law.cornell.edu/wex/preponderance_of_the_

evidence

Levy, H., 1992. Stochastic dominance and expected utility: Survey and anal-
ysis. Management Science 38(4), 555–593.

Li, Q., Racine, J. S., 2007. Nonparametric Econometrics. Princeton Univer-
sity Press.

Pearl, J., 2009. Causality: Models, Reasoning and Inference. New York: Wi-
ley.

Vinod, H. D., 2004. Ranking mutual funds using unconventional utility the-
ory and stochastic dominance. Journal of Empirical Finance 11(3), 353–
377.

Vinod, H. D., 2008. Hands-on Intermediate Econometrics Using R: Templates
for Extending Dozens of Practical Examples. World Scientific, Hackensack,
NJ, ISBN 10-981-281-885-5.
URL http://www.worldscibooks.com/economics/6895.html

Vinod, H. D., 2014. Matrix algebra topics in statistics and economics using R.
In: Rao, M. B., Rao, C. R. (Eds.), Handbook of Statistics: Computational
Statistics with R. Vol. 34. North Holland, Elsevier Science, New York,
Ch. 4, pp. 143–176.

Vinod, H. D., 2015a. Generalized correlation and kernel causality with ap-
plications in development economics. Communications in Statistics - Sim-
ulation and ComputationAccepted Nov. 10, 2015.
URL http://dx.doi.org/10.1080/03610918.2015.1122048

Vinod, H. D., 2015b. New bootstrap inference for spurious regression
problems. Journal of Applied Statistics.
URL http://www.tandfonline.com/doi/full/10.1080/02664763.

2015.1049939

33

http://cowles.econ.yale.edu/P/cm/m10/m10-17.pdf
https://www.law.cornell.edu/wex/preponderance_of_the_evidence
https://www.law.cornell.edu/wex/preponderance_of_the_evidence
http://www.worldscibooks.com/economics/6895.html
http://dx.doi.org/10.1080/03610918.2015.1122048
http://www.tandfonline.com/doi/full/10.1080/02664763.2015.1049939
http://www.tandfonline.com/doi/full/10.1080/02664763.2015.1049939
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