Package 'mazeinda'

October 13, 2022

Title Monotonic Association on Zero-Inflated Data
Version 0.0.2
Author Alice Albasi [aut, cre]
Maintainer Alice Albasi <albasialice@gmail.com></albasialice@gmail.com>
Description Methods for calculating and testing the significance of pairwise monotonic association from and based on the work of Pimentel (2009) <doi:10.4135 9781412985291.n2="">. Computation of association of vectors from one or multiple sets can be performed in parallel thanks to the packages 'foreach' and 'doMC'.</doi:10.4135>
Depends R (>= 3.3.0)
Imports foreach
License GPL-3
Encoding UTF-8
RoxygenNote 6.0.1
Suggests doMC, gamlss.dist, knitr, testthat, R.rsp, rmarkdown
VignetteBuilder R.rsp, knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-09 07:10:07 UTC
R topics documented:
associate
Index

2 associate

asso	~ 1	21	ᅡᅀ

Associate pairwise vectors form one or two sets

Description

Given two matrices m_1 and m_2 , computes all pairwise correlations of each vector in m_1 with each vector in m_2 . Thanks to the package foreach, computation can be done in parallel using the desired number of cores.

Usage

```
associate(m1, m2, parallel = FALSE, n_cor = 1, estimator = "values", d1, d2, p11 = 0, p01 = 0, p10 = 0)
```

Arguments

m1, m2	matrices whose columns are to be correlated. If no estimation calculations are needed, default is NA.
parallel	should the computations for associating the matrices be done in parallel? Default is \ensuremath{FALSE}
n_cor	number of cores to be used if the computation is run in parallel. Default is 1
estimator	string indicating how the parameters p_{11} , p_{01} , p_{10} , p_{00} are to be estimated. The default is 'values', which indicates that they are estimated based on the entries of x and y. If estimates=='mean', each p_{ij} is estimated as the mean of all pairs of column vectors in m_1 , and of m_2 if needed. If estimates=='own', the p_{ij} 's must be given as arguments.
d1, d2	sets of vectors used to estimate p_{ij} parameters. If just one set is needed set d_1 = d_2 .
p11	probability that a bivariate observation is of the type (m,n), where m,n>0.
p01	probability that a bivariate observation is of the type $(0,n)$, where $n>0$.
p10	probability that a bivariate observation is of the type $(n,0)$, where $n>0$.

Details

To find pairwise monotonic associations of vectors within one set m, run associate(m,m). Note that the values on the diagonal will not be necessarely 1 if the vectors contain 0's, as it can be seen by the formula $p_{11}^2t_{11}+2*(p_{00}p_{11}-p_{01}p_{10})$

Value

matrix of correlation values.

combine 3

Examples

```
 v1=c(\emptyset,\emptyset,1\emptyset,\emptyset,0,12,2,1,\emptyset,\emptyset,0,0,0,1) \\ v2=c(\emptyset,1,1,\emptyset,0,0,1,1,64,3,4,2,32,0) \\ associate(v1,v2) \\ m1=matrix(c(\emptyset,\emptyset,1\emptyset,\emptyset,0,12,2,1,\emptyset,\emptyset,0,0,0,1,1,64,3,4,2,32,0,0,43,54,3,0,0,3,20,1),6) \\ associate(m1,m1) \\ m2=matrix(c(\emptyset,1,1,0,0,0,1,1,64,3,4,2,32,0,0,43,54,3,0,0,3,20,10,0,0,12,2,1,0,0),6) \\ associate(m1,m2) \\ \\
```

combine

combine

Description

Designed to combine the matrix of correlation values with the matrix of p-values so that in the cases when the null hypothesis cannot be rejected with a level of confidence indicated by the significance, the correlation is set to zero. Thanks to the package foreach, computation can be done in parallel using the desired number of cores.

Usage

```
combine(m1, m2, sl = 0.05, parallel = FALSE, n_cor = 1, estimator = "values", d1, d2, p11 = 0, p01 = 0, p10 = 0)
```

Arguments

,	matrices whose columns are to be correlated. If no estimation calculations are needed, default is NA. $ \\$
sl	level of significance for testing the null hypothesis. Default is 0.05.
	should the computations for associating the matrices be done in parallel? Default is \ensuremath{FALSE}
n_cor	number of cores to be used if the computation is run in parallel. Default is 1
	string indicating how the parameters p_{11} , p_{01} , p_{10} , p_{00} are to be estimated. The default is 'values', which indicates that they are estimated based on the entries of x and y. If estimates=='mean', each p_{ij} is estimated as the mean of all pairs of column vectors in m_1 , and of m_2 if needed. If estimates=='own', the p_{ij} 's must be given as arguments.
	sets of vectors used to estimate p_{ij} parameters. If just one set is needed set $d_1 = d_2$.
p11	probability that a bivariate observation is of the type (m,n), where m,n>0.
p01	probability that a bivariate observation is of the type $(0,n)$, where $n>0$.
p10	probability that a bivariate observation is of the type $(n,0)$, where $n>0$.

4 test_associations

Details

To test pairwise monotonic associations of vectors within one set m, run combine(m,m). Note that the values on the diagonal will not be necessarily significant if the vectors contain 0's, as it can be seen by the formula $p_{11}^2t_{11} + 2*(p_{00}p_{11} - p_{01}p_{10})$. The formula for the variance of the estimator proposed by Pimentel(2009) does not apply in case p_{11} , p_{01} , p_{10} , p_{00} attain the values 0 or 1. In these cases the R function cor.test is used. Note that while independence implies that the estimator is 0, if the estimator is 0, it does not imply that the vectors are independent.

Value

matrix of combined association values and p-values.

test_associations test_associations

Description

To test pairwise monotonic associations of vectors within one set m, run test_associations(m,m). Note that the values on the diagonal will not be necessarily significant if the vectors contain 0's, as it can be seen by the formula $p_{11}^2t_{11} + 2*(p_{00}p_{11} - p_{01}p_{10})$. The formula for the variance of the estimator proposed by Pimentel(2009) does not apply in case p_{11} , p_{00} , p_{01} , p_{10} attain the values 0 or 1. In these cases the R function cor.test is used. Note that while independence implies that the estimator is 0, the estimator being 0 does not imply that the vectors are independent.

Usage

```
test_associations(m1, m2, parallel = FALSE, n_cor = 1,
  estimator = "values", d1, d2, p11 = 0, p01 = 0, p10 = 0)
```

Arguments

m1, m2	matrices whose columns are used to estimate the p_{ij} parameters. If no estimation calculations are needed, default is NA. Both are necessary if cross-correlating pairwise the vectors from two datasets.
parallel	should the computations for combining the matrices be done in parallel? Default is FALSE.
n_cor	number of cores to be used if the computation is run in parallel. Default is 1.
estimator	string indicating how the parameters p_{11} , p_{01} , p_{10} , p_{00} are to be estimated. The default is 'values', which indicates that they are estimated based on the entries of x and y. If estimates=='mean', each p_{ij} is estimated as the mean of all pairs of column vectors in m_1 , and of m_2 if needed. If estimates=='own', the p_{ij} 's must be given as arguments.
d1, d2	sets of vectors used to estimate p_{ij} parameters. If just one set is needed set d_1 = d_2 .
p11	probability that a bivariate observation is of the type (m,n), where m,n>0
p01	probability that a bivariate observation is of the type $(0,n)$, where $n>0$.
p10	probability that a bivariate observation is of the type $(n,0)$, where $n>0$.

test_associations 5

Details

Given two matrices m_1 and m_2 , computes all pairwise correlations of each vector in m_1 with each vector in m_2 . Thanks to the package foreach, computation can be done in parallel using the desired number of cores.

Value

matrix of p-values of association.

Examples

```
 \begin{array}{l} v1 = c(\emptyset,\emptyset,1\emptyset,\emptyset,0,12,2,1,\emptyset,\emptyset,0,\emptyset,0,1) \\ v2 = c(\emptyset,1,1,\emptyset,\emptyset,1,1,64,3,4,2,32,\emptyset) \\ test\_associations(v1,v2) \\ m1 = matrix(c(\emptyset,\emptyset,10,\emptyset,0,12,2,1,\emptyset,0,0,0,0,1,1,64,3,4,2,32,0,0,43,54,3,0,0,3,20,1),6) \\ test\_associations(m1,m1) \\ m2 = matrix(c(\emptyset,1,1,0,0,0,1,1,64,3,4,2,32,0,0,43,54,3,0,0,3,20,10,0,0,12,2,1,0,0),6) \\ test\_associations(m1,m2) \\ m3 = matrix(abs(rnorm(36)),6) \\ m4 = matrix(abs(rnorm(36)),6) \\ test\_associations(m3,m4) \\ \end{array}
```

Index

```
associate, 2
combine, 3
test_associations, 4
```