
moveHMM workflow: wild haggis analysis

Théo Michelot

2023-05-08

This vignette briefly describes the workflow of a typical analysis in moveHMM, including data

preparation, model specification, model fitting, and visualisation of results. As an example,

we use the data set of 15 wild haggises (Haggis scoticus; Figure 1) from Michelot, Langrock,

and Patterson (2016). This vignette is only meant to be used as an example to learn about

the functionalities of moveHMM, but please consult another source for more technical details

(e.g., Michelot, Langrock, and Patterson (2016), Langrock et al. (2012), Zucchini, MacDonald,

and Langrock (2016)).

Figure 1: Wild haggis (Haggis scoticus)

1

1 Data preparation

The data set is included in moveHMM by default, which includes the first three tracks from

the study of Michelot, Langrock, and Patterson (2016). This data set is already in the format

expected by moveHMM, with columns:

• ID: an identifier for the track/individual;

• x: Easting or longitude coordinate;

• y: Northing or latitude coordinate.

These three variables are required, and should have these names. The other two columns,

slope and temp, are covariates that will be included in the analysis later.

head(haggis_data)

ID x y slope temp

1 1 0.000000 0.000000 25.957002 10.344959

2 1 -1.068761 -0.194650 18.606632 8.352531

3 1 -6.152549 2.051343 16.524004 13.529650

4 1 -6.703983 3.338480 9.154917 10.951095

5 1 -6.541667 3.553843 5.547686 11.243328

6 1 -7.160298 1.960377 8.129402 13.187280

The standard HMMs used in movement ecology, and implemented in this package, model

step lengths and turning angles. The first step of the analysis is therefore to derive those

variables from the observed locations. This can be done using the function prepData; here,

we specify type = "UTM" to indicate that the locations are already projected (rather than

longitude-latitude locations).

data <- prepData(haggis_data, type = "UTM")

head(data)

ID step angle x y slope temp

1 1 1.0863417 NA 0.000000 0.000000 25.957002 10.344959

2 1 5.5578218 -0.5961622 -1.068761 -0.194650 18.606632 8.352531

3 1 1.4002860 -0.7500230 -6.152549 2.051343 16.524004 13.529650

4 1 0.2696813 -1.0506197 -6.703983 3.338480 9.154917 10.951095

5 1 1.7093394 -2.8660552 -6.541667 3.553843 5.547686 11.243328

6 1 1.1529149 2.3676683 -7.160298 1.960377 8.129402 13.187280

2

The output data frame has two new columns: step (step lengths), and angle (turning angle).

2 Model fitting

In moveHMM, the models are fitted using the function fitHMM. It implements maximum

likelihood estimation, using the numerical optimiser nlm. The likelihood function captures

how plausible the data are, given a set of parameters, and nlm explores the space of parameter

values to find the one that maximise the likelihood. For this reason, it is necessary to choose

initial parameter values, from where nlm can start its exploration, and these are specified

using the stepPar0 and anglePar0 arguments in fitHMM. The choice of starting values can

affect the performance of the optimiser, and in some cases its ability to find the maximum

likelihood estimates. Some guidance on how to choose those values is provided in another

vignette, called “A short guide to choosing initial parameter values for the estimation in

moveHMM”. In summary, one approach is to look at the empirical distributions of step

lengths and turning angles, to make an educated guess about what parameter values are

plausible.

In the following, we consider a 2-state HMM where, in each state, a gamma distribution

models step length, and a von Mises distribution models turning angle. In moveHMM, the

gamma distribution is specified in terms of a mean and standard deviation, and we pick some

initial values based on the histogram of observed step lengths. The von Mises distribution

has a mean and a concentration parameter, and reasonable starting values can be chosen

based on a histogram of observed turning angles. Please refer to the dedicated vignette for

more guidance about selecting initial parameters.

hist(data$step, xlab = "step length")

hist(data$angle, breaks = seq(-pi, pi, length = 15), xlab = "turning angle")

stepPar0 <- c(1, 5, 1, 5)

anglePar0 <- c(pi, 0, 0.3, 5)

3

Histogram of data$step

step length

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

3
0
0

5
0
0

Histogram of data$angle

turning angle

F
re

q
u
e
n
c
y

−3 −2 −1 0 1 2 3

0
5
0

1
5
0

2
5
0

We can fit the model using fitHMM, with arguments nbStates (number of states), stepPar0

(initial step length parameters), and anglePar0 (initial turning angle parameters). By

default, the function uses the gamma and von Mises distributions, so we don’t need to specify

them here, but the arguments stepDist and angleDist could be included to use different

distributions.

mod1 <- fitHMM(data = data, nbStates = 2,

stepPar0 = stepPar0, anglePar0 = anglePar0)

mod1

Value of the maximum log-likelihood: -3462.487

Step length parameters:

state 1 state 2

mean 0.9977756 5.009977

sd 0.4951516 3.044708

Turning angle parameters:

state 1 state 2

mean -3.109852 -0.3082705

concentration 1.035834 8.7682400

Regression coeffs for the transition probabilities:

--

1 -> 2 2 -> 1

intercept -1.736619 -2.002033

4

Transition probability matrix:

[,1] [,2]

[1,] 0.8502571 0.1497429

[2,] 0.1189896 0.8810104

Initial distribution:

[1] 0.06369954 0.93630046

The object returned by fitHMM is a list that contains, among other things, estimates of all

model parameters. Those are automatically shown in a convenient layout when the model

object is printed, but they can also be accessed as mod1$mle.

Note that the parameter estimates are pooled across individuals; i.e., a common model is fitted

to all tracks in the data set. This is based on the assumption that all animals follow similar

movement patterns, and parameters can then be viewed as an average across individuals.

In cases where this assumption doesn’t hold, one option is to include individual-specific

covariates on the transition probabilities, to capture some of the inter-individual heterogeneity.

(See section on covariates below.)

3 Model visualisation

To understand and interpret a fitted model, it is often helpful to visualise it. The plot

function can be called on the model object to generate a few plots, including:

• histograms of the step lengths, overlaid with estimated distributions in each state. This

is helpful to check whether the fitted distributions match the data well, and to interpret

each state (e.g., does state 1 capture long or short step lengths? how variable are step

lengths in state 2?).

• histograms of the turning angles, overlaid with estimated distributions in each state.

• plots of the movement tracks, coloured by estimated state. This provides useful

information about where an when animals followed each movement type, what movement

patterns were captured in each state, etc.

plot(mod1, ask = FALSE, animals = 1)

Decoding states sequence... DONE

5

step length

D
e
n
s
it
y

0 5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4 state 1

state 2

total

turning angle

D
e
n
s
it
y

0
.0

0
.2

0
.4

0
.6

−π −π 2 0 π 2 π

state 1

state 2

total

−50 0 50 100 150 200

0
5
0

1
0
0

1
5
0

x

y

Animal ID: 1

The first state captures short step lengths (mostly between 0 and 2 km) and undirected

movement (flat distribution of turning angles), whereas the second state captures long step

lengths (between 0 and 15 km) and directed movement (peak of turning angles at zero). In

practice, these two states might therefore be used as proxies for two different behavioural

states.

4 State process inference

As shows in the plots above, it is possible to estimate a state for each observation, which

is often of great applied interest. The most common way to do this is to use the Viterbi

algorithm. The function viterbi returns a sequence of states (i.e., vector of numbers between

1 and nbStates), and these can for example be used to generate plots of the tracks, or of the

step lengths, coloured by the most likely state sequence.

Add most likely state sequence to data

data$state <- factor(viterbi(mod1))

6

Plot tracks coloured by state

ggplot(data, aes(x, y, col = state, group = ID)) +

geom_path() +

coord_equal()

Plot step lengths coloured by state

ggplot(data, aes(x = 1:nrow(data), y = step, col = state, group = ID)) +

geom_point(size = 0.3)

−100

0

100

−100 0 100

x

y

state

1

2

0

5

10

15

20

0 250 500 750 1000 1250

1:nrow(data)

s
te

p

state

1

2

An alternative to the Viterbi algorithm is to compute state probabilities, i.e., the probability

of being in each state for each observation in the data. State probabilities provide more

detailed information about the uncertainty on the state allocation, and they can be computed

with the function stateProbs. The output is a matrix with one column for each state and

one row for each observation.

sp <- stateProbs(m = mod1)

head(sp)

[,1] [,2]

[1,] 9.588177e-02 9.041182e-01

[2,] 1.215788e-06 9.999988e-01

[3,] 3.145690e-01 6.854310e-01

[4,] 9.586125e-01 4.138746e-02

[5,] 1.000000e+00 1.260704e-08

[6,] 1.000000e+00 9.504989e-10

Add prob of state 1 to data set

data$sp1 <- sp[,1]

7

ggplot(data, aes(x, y, col = sp1, group = ID)) +

geom_path() +

coord_equal() +

labs(col = "Pr(S = 1)")

−100

0

100

−100 0 100

x

y

0.25

0.50

0.75

Pr(S = 1)

5 Covariates

HMMs have been extended to allow for covariate effects on the transition probabilities. This

approach is often interesting to answer ecological questions of the form “does [some covariate]

have an effect on the animal’s behaviour?”.

We model the haggises’ transition probabilities as functions of two covariates: temperature,

and slope. We expect a non-linear effect of slope, so we include a quadratic term for that

covariate. The model formula can be specified using the usual R syntax, and passed through

the argument formula in fitHMM. The other arguments are unchanged.

mod2 <- fitHMM(data = data, nbStates = 2,

stepPar0 = stepPar0, anglePar0 = anglePar0,

formula = ~ temp + slope + I(slope^2))

Plotting the model now also returns plots of the transition probabilities over a grid of values of

each covariate (with 95% pointwise confidence intervals if plotCI = TRUE). In this example,

it looks like there is no clear effect of temperature, but a clear effect of slope. The probability

of remaining in state 2 (or of switching from state 1 to state 2) is highest when the slope is

between 10 and 30 degrees, suggesting that wild haggises move faster in that range of slopes.

8

(See Michelot, Langrock, and Patterson (2016) for more details about the interpretation, but

it has to do with their morphology.)

plot(mod2, ask = FALSE, plotTracks = FALSE, plotCI = TRUE)

Decoding states sequence... DONE

step length

D
e
n
s
it
y

0 5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4 state 1

state 2

total

turning angle

D
e
n
s
it
y

0
.0

0
.2

0
.4

0
.6

− π − π 2 0 π 2 π

state 1

state 2

total

−5 0 5 10 15 20

0
.0

0
.6

temp

1
 −

>
 1

−5 0 5 10 15 20

0
.0

0
.6

temp

1
 −

>
 2

−5 0 5 10 15 20

0
.0

0
.6

temp

2
 −

>
 1

−5 0 5 10 15 20

0
.0

0
.6

temp

2
 −

>
 2

Transition probabilities

0 10 20 30 40

0
.0

0
.6

slope

1
 −

>
 1

0 10 20 30 40

0
.0

0
.6

slope

1
 −

>
 2

0 10 20 30 40

0
.0

0
.6

slope

2
 −

>
 1

0 10 20 30 40

0
.0

0
.6

slope

2
 −

>
 2

Transition probabilities

Another useful output to interpret covariate effects is the stationary state probabilities. These

capture the probability of being in each state over the long term, and they can be derived for

a grid of covariate values to assess how animals’ activity budget depends on a covariate. The

probabilities can be computed with stationary, and plotted with plotStationary. The

stationary state probabilities make it even clearer that haggises tend to spend time in state 2

when the slope is between 10 and 30, but are likely to be in state 1 for small or large slope

values.

plotStationary(mod2, plotCI = TRUE)

9

−5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

temp

S
ta

ti
o
n
a
ry

 s
ta

te
 p

ro
b
a
b
ili

ti
e
s

state 1

state 2

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

slope

S
ta

ti
o
n
a
ry

 s
ta

te
 p

ro
b
a
b
ili

ti
e
s

state 1

state 2

Models can be compared using the AIC function, for example to decide whether or not to

keep a covariate. Here, the model with covariate is strongly preferred by AIC.

AIC(mod1, mod2)

Model AIC

1 mod2 6814.784

2 mod1 6946.975

6 Model checking

A chosen HMM formulation rests on many assumptions, including the number of states, the

types of distributions used for step length and turning angle, and the dependence structure of

the data-generating process. Visual inspection of the model outputs (e.g., fitted distributions)

is a first step to check whether it seems to capture features in the data well. Pseudo-residuals

are another tool to assess goodness-of-fit in HMMs. Similarly to residuals in linear models,

they should be independent and follow a standard normal distribution if all model assumptions

were satisfied. Deviations from these patterns suggest lack of fit.

Pseudo-residuals can be computed with pseudoRes, which returns a vector for step lengths

and one for turning angles. The function plotPR creates three plots of the pseudo-residuals

for each data variable: a time series plot, a quantile-quantile (QQ) plot against the standard

normal distribution, and an autocorrelation function (ACF) plot.

plotPR(mod2)

Computing pseudo-residuals... DONE

10

0 200 600 1000

−
3

1

Steps pseudo−residuals

Observation index

S
te

p
s
 p

s
e

u
d

o
−

re
s
id

u
a

ls

0 200 600 1000

−
4

0

Angles pseudo−residuals

Observation index

A
n

g
le

s
 p

s
e

u
d

o
−

re
s
id

u
a

ls

−3 −2 −1 0 1 2 3

−
3

−
1

1
3

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−4 −2 0 2

−
4

0
2

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

0 5 10 15 20 25 30

0
.0

0
.4

0
.8

Lag

A
C

F

0 5 10 15 20 25 30
0

.0
0

.4
0

.8

Lag

A
C

F

In the QQ plot, deviations from the diagonal line suggest that the estimated distributions do

not capture the empirical distribution of the corresponding variable. Here, the points are

aligned on the diagonal, indicating that the fit is good. The ACF plots can be used to detect

residual autocorrelation (bars that stretch beyond the confidence band around zero). In this

case, the ACF is virtually zero, suggesting that the dependence assumptions of the model are

satisfied.

7 Custom plots

The function getPlotData creates data frames in a format that is convenient for creating

custom plots of the model, including state-dependent distributions (type = "dist"), transi-

tion probabilities (type = "tpm"), and stationary state probabilities (type = "stat"). The

option format specifies whether the data frame should be wide (typically for base R plots)

or long (typically for ggplot). With this, we can recreate the plot of transition probabilities

shown above, in ggplot.

Plot of transition probs as function of slope

plotData1 <- getPlotData(m = mod2, type = "tpm", format = "long")

ggplot(plotData1$slope, aes(slope, mle)) +

facet_wrap("prob") +

geom_line() +

11

geom_ribbon(aes(ymin = lci, ymax = uci), alpha = 0.3) +

labs(y = "transition probability")

Pr(2 −> 1) Pr(2 −> 2)

Pr(1 −> 1) Pr(1 −> 2)

0 10 20 30 40 0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

slope

tr
a

n
s
it
io

n
 p

ro
b

a
b

ili
ty

Similarly, we can create a plot of stationary state probabilities as functions of slope.

Plot of stationary state probs as function of slope

plotData2 <- getPlotData(m = mod2, type = "stat", format = "long")

ggplot(plotData2$slope, aes(slope, mle, col = factor(state))) +

geom_line() +

geom_ribbon(aes(ymin = lci, ymax = uci, col = NULL,

fill = factor(state)), alpha = 0.3) +

labs(fill = "state", col = "state", y = "stationary state probabilities")

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

slope

s
ta

ti
o

n
a

ry
 s

ta
te

 p
ro

b
a

b
ili

ti
e

s

state

1

2

12

8 Other features

8.1 predict functions

The functions predictTPM and predictStationary compute the transition probabilities (or

stationary state probabilities) for a data frame of covariate values passed as input, possibly

with confidence intervals. For example, let’s say we want to predict the transition probability

matrix for temp = 0 and slope = 17.

new_data <- data.frame(temp = 0, slope = 17)

new_data

temp slope

1 0 17

tpm <- predictTPM(m = mod2, newData = new_data, returnCI = TRUE)

tpm

$mle

, , 1

toState1 toState2

fromState1 0.4650446 0.5349554

fromState2 0.0328305 0.9671695

$lci

, , 1

toState1 toState2

fromState1 0.27370706 0.3327452

fromState2 0.01418785 0.9258726

$uci

, , 1

toState1 toState2

fromState1 0.66725478 0.7262929

fromState2 0.07412736 0.9858121

13

The element mle (“maximum likelihood estimate”) is the estimate, and lci and uci are the

bounds of the confidence interval.

8.2 knownStates

The argument knownStates of fitHMM can be used to fix states that are known a priori. This

can be useful in cases where some observations have been classified into behaviours a priori,

and the problem of interest is to classify other points into those states. The models are then

semi-supervised, because we are giving some information to the model about what the states

should be (rather than letting them be completely data-driven).

In practice, knownStates should be a vector of same length as the data, where each element is

either NA (if the state is not known at that time step), or a number between 1 and nbStates

(when the state is known).

8.3 fit = FALSE

It is sometimes useful to create a model without fitting it. For example, we may fit a model

on one data set, and then wish to use that model to estimate the state sequence of another

data set. This is possible using the option fit = FALSE in fitHMM. Specifically, we can follow

these steps:

1. Fit a model to the first data set in the conventional way (as described previously).

2. Create a model for the second data set using fitHMM with fit = FALSE, passing the

estimated parameters of the previous model as starting values.

3. Use viterbi (or stateProbs) on the second model.

This procedure might be helpful for data exploration, or in cases where the full data set is

very large and it is only possible to fit a model to a subset.

References

Langrock, Roland, Ruth King, Jason Matthiopoulos, Len Thomas, Daniel Fortin, and Juan

M Morales. 2012. “Flexible and Practical Modeling of Animal Telemetry Data: Hidden

Markov Models and Extensions.” Ecology 93 (11): 2336–42.

Michelot, Théo, Roland Langrock, and Toby A Patterson. 2016. “moveHMM: An R Package

for the Statistical Modelling of Animal Movement Data Using Hidden Markov Models.”

Methods in Ecology and Evolution 7 (11): 1308–15.

14

Zucchini, Walter, Iain L MacDonald, and Roland Langrock. 2016. Hidden Markov Models

for Time Series: An Introduction Using R, Second Edition. Chapman; Hall/CRC.

15

	Data preparation
	Model fitting
	Model visualisation
	State process inference
	Covariates
	Model checking
	Custom plots
	Other features
	predict functions
	knownStates
	fit = FALSE

	References

