Package ‘multigroup.vaccine’

February 9, 2026

Type Package

Title Analyze Outbreak Models of Multi-Group Populations with
Vaccination

Version 0.1.1

Description Model infectious disease dynamics in populations
with multiple subgroups having different vaccination rates, transmission
characteristics, and contact patterns. Calculate final and intermediate
outbreak sizes, form age-structured contact models with automatic fetching
of U.S. census data, and explore vaccination scenarios with an interactive
'shiny' dashboard for a model with two subgroups, as described in Nguyen et
al. (2024) <doi:10.1016/j.jval.2024.03.039> and Duong et al. (2026)
<doi:10.1093/ofid/0faf695.217>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

Imports deSolve, graphics, shiny, stats, bslib (>= 0.9.0), htmltools,
socialmixr

Suggests knitr, rmarkdown, testthat (>= 3.0.0),
Config/testthat/edition 3
VignetteBuilder knitr

URL https://epiforesite.github.io/multigroup-vaccine/
Depends R (>=2.10)
NeedsCompilation no

Author Damon Toth [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-7393-4814>),
Jake Wagoner [aut] (ORCID: <https://orcid.org/0009-0000-5053-2281>),
Willy Ray [aut],
George Vega Yon [ctb] (ORCID: <https://orcid.org/0000-0002-3171-0844>),
Centers for Disease Control and Prevention's Center for Forecasting and
Outbreak Analytics [fnd] (Cooperative agreement CDC-RFA-FT-23-0069)

Maintainer Damon Toth <damon. toth@hsc.utah.edu>

https://doi.org/10.1016/j.jval.2024.03.039
https://doi.org/10.1093/ofid/ofaf695.217
https://epiforesite.github.io/multigroup-vaccine/
https://orcid.org/0000-0001-7393-4814
https://orcid.org/0009-0000-5053-2281
https://orcid.org/0000-0002-3171-0844

2 aggregateByAgeGroups

Repository CRAN
Date/Publication 2026-02-09 20:10:05 UTC

Contents
aggregateByAgeGroups e 2
contactMatrixAgeSchool 4
contactMatrixPolymod 5
contactMatrixPropPref L 6
finalsize 6
getCensusData e 8
getCensusDataPath 10
getCityData e e e e e e 11
getFinalSizeAnalytic L 12
getFinalSizeDist 13
getFinalSizeDistEscape 13
getFinalSizeODE 14
getSizeAtTime L e 15
getStateFIPS L L 16
listCounties o e e 16
odeSIR 17
TUN_MY_APP « « v v e 18
transmissionRates L 19
VAXIEPNUIN © « . oo v v e e et e e e e e e e e e e e e e e e e 19
Index 21

aggregateByAgeGroups Aggregate population counts into age groups

Description

Aggregate per-age population counts into coarser age groups defined by the (sorted) lower bounds
in age_groups. When length(age_groups) == 1, all ages >= that value are aggregated into
a single open-ended group ("Xplus"). When length(age_groups) > 1, groups are formed as
age_groups[i] to age_groups[i+1] -1 for i = 1:(n-1) and age_groups[n] and above for the
final group. Human-readable labels are produced: "underl" for the 0-0 group, "ageX" for single-
year groups, "XtoY" for ranges, and "Xplus" for the final open group. When verbose = TRUE, the
function prints aggregation summaries to the console for each group using cat().

Usage

aggregateByAgeGroups(ages, pops, age_groups, verbose = FALSE)

aggregateByAgeGroups 3

Arguments
ages Numeric vector of ages (typically integers) corresponding to the entries in pops.
pops Numeric vector of population counts for each age; must be the same length as
ages. Note: NA values in pops will propagate into group sums because na.rm
= TRUE is not used; clean or impute missing values beforehand if required.
age_groups Numeric vector of lower bounds for desired age groups. Must be sorted in as-
cending order. If length is 1, the single value defines an "Xplus" group (ages >=
X). For length > 1, contiguous non-overlapping groups are created as described
above.
verbose Logical, if TRUE prints aggregation messages for each group. Default is FALSE.
Details

* Group boundaries are inclusive at both ends for finite ranges (i.e. ages satisfying lower <= age
<= upper). For the last group the upper bound is infinite.

* Ifno ages fall into a group the aggregated count for that group is O (because sum(numeric(@))

* When verbose = TRUE, the function writes progress messages to the console with cat() for
each aggregated group (useful for debugging / logging). By default (verbose = FALSE), the
function is silent.

Value

A named list with components:

pops Numeric vector of aggregated population counts, one element per group.
labels Character vector of labels for each group (e.g. "underl", "age5", "Oto4", "65plus").

age_ranges List of numeric vectors of length 2 giving the inclusive lower and upper bounds for
each group; the upper bound for the final group is Inf.

Examples

Multiple groups example

ages <- 0:100

pops <- rep(100, length(ages))
aggregateByAgeGroups(ages, pops, c(@0, 5, 18, 65))

Single open-ended group (65plus)
aggregateByAgeGroups(ages, pops, 65)

4 contactMatrixAgeSchool

contactMatrixAgeSchool
Calculate a contact matrix for age groups and schools

Description

Calculate a contact matrix for age groups and schools

Usage
contactMatrixAgeSchool (
agelims,
agepops,
schoolagegroups,
schoolpops,
schportion
)
Arguments
agelims minimum age in years for each age group
agepops population size of each age group
schoolagegroups
index of the age group covered by each school
schoolpops population size of each school
schportion portion of within-age-group contacts that are exclusively within school
Value

a square matrix with the contact rate of each group (row) with members of each other group (col-
umn)

Examples

contactMatrixAgeSchool (agelims = c(@, 5, 18), agepops = c(500, 1300, 8200),
schoolagegroups = c(2, 2), schoolpops = c(600, 700), schportion = 0.7)

contactMatrixPolymod 5

contactMatrixPolymod Calculate a contact matrix for age groups based on Polymod contact
survey data

Description

Calculate a contact matrix for age groups based on Polymod contact survey data

Usage

contactMatrixPolymod(agelims, agepops = NULL)

Arguments
agelims minimum age in years for each age group. The maximum valid age limit is 90,
as the socialmixr contact_matrix function supports ages up to 90. Age limits
greater than 90 will be replaced with 90 and a warning will be issued.
agepops population size of each group, defaulting to demography of Polymod survey
population. If provided, must match the length of the age groups defined by
agelims (after any adjustments for exceeding the 90-year limit).
Details

The socialmixr contact_matrix function supports age limits up to 90. Any age limits above 90 will
be adjusted to 90 with a warning, and the corresponding populations will be aggregated into a single
"90+" group.

Value

A symmetric contact matrix with row and column names indicating the age groups.

Examples

#Default population distribution uses population data from POLYMOD survey locations:
contactMatrixPolymod(agelims = c(@, 5, 18))

#Specifying the age distribution will lead to an adjusted version:
contactMatrixPolymod(agelims = c(@, 5, 18), agepops = c(500, 1300, 8200))

6 finalsize

contactMatrixPropPref Calculate group contact matrix with proportional mixing and prefer-
ential mixing within group

Description

Calculate group contact matrix with proportional mixing and preferential mixing within group

Usage

contactMatrixPropPref (popsize, contactrate, ingroup)

Arguments

popsize population size of each group

contactrate overall contact rate of each group

ingroup fraction of each group’s contacts that are exclusively in-group
Value

a square matrix with the contact rate of each group (row) with members of each other group (col-
umn)

Examples

contactMatrixPropPref (popsize = c(100, 150, 200), contactrate = c(1.1, 1, 0.9),
ingroup = c(0.2, 0.25, 0.22))

finalsize Calculate final outbreak size or distribution of a multigroup
transmission model for a given basic reproduction number, con-
tact/transmission assumptions, and initial conditions

Description

Calculate final outbreak size or distribution of a multigroup transmission model for a given basic
reproduction number, contact/transmission assumptions, and initial conditions

finalsize 7

Usage

finalsize(
popsize,
RO,
contactmatrix,
relsusc,
reltransm,
initR,
initI,
initVv,
method = "ODE",
nsims = 1

Arguments

popsize the population size of each group
RO the basic reproduction number

contactmatrix matrix of group-to-group contact rates

relsusc relative susceptibility to infection per contact of each group
reltransm relative transmissibility per contact of each group
initR initial number of each group already infected and removed (included in size
result)
initI initial number of each group infectious
initVv initial number of each group vaccinated
method the method of final size calculation or simulation to use
nsims the number of simulations to run for stochastic methods
Value

a vector (nsims = 1) or matrix (nsims > 1) with the final number infected from each group (column)
in each simulation (row)

Examples

popsize <- c(800, 200)

RO <- 2

contactmatrix <- contactMatrixPropPref(popsize = popsize, contactrate = c(1, 1),
ingroup = c(0.2, 0.2))

relsusc <- c(1, 1)

reltransm <- c(1, 1)

initR <- c(0, 0)

initl <- c(1, 0)

initV <- 0.2 * popsize

Default method "ODE" numerical solves ordinary differential equations until infectious count
is close to 0

finalsize(popsize, RO, contactmatrix, relsusc, reltransm, initR, initI, initV)

8 getCensusData
finalsize(popsize, RO, contactmatrix, relsusc, reltransm, initR, initI, initV,
method = "analytic")
finalsize(popsize, RO, contactmatrix, relsusc, reltransm, initR, initI, initV,
method = "stochastic”, nsims = 10)
All "escaped” outbreaks set to deterministic final size:
finalsize(popsize, RO, contactmatrix, relsusc, reltransm, initR, initI, initV,
method = "hybrid”, nsims = 10)
getCensusData Get Census Population Data by Age and County
Description
Downloads and processes U.S. Census Bureau population estimates for a specified state and county,
organized by age groups. Supports single-year age data with optional sex disaggregation.
Usage
getCensusData(
state_fips,
county_name,
year = 2024,
age_groups = NULL,
by_sex = FALSE,
csv_path = NULL,
cache_dir = NULL,
verbose = FALSE
)
Arguments
state_fips Two-digit FIPS code for the state (e.g., "49" for Utah)
county_name Name of the county (e.g., "Salt Lake County")
year Census estimate year: 2020-2024 for July 1 estimates, or 2020.1 for April 1,
2020 base
age_groups Vector of age limits for grouping (e.g., c(0, 5, 18, 65)). Default NULL returns
single-year ages 0-85+
by_sex Logical, if TRUE returns separate male/female groups
csv_path Optional path to a previously downloaded census CSV file. If provided, data
will be read from this file instead of downloading. Use cache_dir for automatic
caching.
cache_dir Optional directory path for caching downloaded census files. If provided, the
function will check for an existing cached file and use it, or download and save
a new one. Default is NULL (no caching). Use "." for current directory or
specify a custom path like "~/census_cache"
verbose Logical, if TRUE prints messages about data loading and age aggregation. De-

fault is FALSE.

getCensusData

Value

A list containing:

county County name
state State name
year Census year
total_pop Total population
age_pops Vector of populations by age group
age_labels Labels for each age group
sex_labels If by_sex=TRUE, labels indicating sex
data Full filtered data frame

Examples

Use the included example data (recommended for package examples)
slc_data <- getCensusData(
state_fips = "49",

county_name = "Salt Lake County"”,
year = 2024,
csv_path = getCensusDataPath()

Get age groups without sex disaggregation
slc_grouped <- getCensusData(

state_fips = "49",

county_name = "Salt Lake County”,

year = 2024,

age_groups = c(0, 5, 18, 65),

csv_path = getCensusDataPath()

Get age groups by sex

slc_by_sex <- getCensusData(
state_fips = "49",
county_name = "Salt Lake County”,
year = 2024,
age_groups = c(0, 5, 18, 65),
by_sex = TRUE,
csv_path = getCensusDataPath()

Download from web (requires internet)
slc_web <- getCensusData(
state_fips = "49",
county_name = "Salt Lake County”,
year = 2024
)

10 getCensusDataPath

Use caching to avoid repeated downloads
slc_cached <- getCensusData(
state_fips = "49",

county_name = "Salt Lake County”,
year = 2024,
cache_dir = "~/census_cache”
)
getCensusDataPath Get path to example census data file
Description

Returns the path to the example Utah census data CSV file included with the package. This is useful
for examples, testing, and when internet access is not available.

Usage

getCensusDataPath()

Value

Character string with the path to the example census CSV file for Utah (FIPS 49)

Examples

Get path to example Utah census file
utah_csv <- getCensusDataPath()

Use it with getCensusData

slc_data <- getCensusData(
state_fips = "49",
county_name = "Salt Lake County”,
year = 2024,
csv_path = getCensusDataPath()

getCityData 11

getCityData Get City Population Data by Age

Description

Reads and processes population data for specific cities from ACS 5-year estimates, organized by age
groups. The ACS data provides 5-year age groupings (0-4, 5-9, etc.) which can be disaggregated
into single-year ages or aggregated into custom age groups.

Usage

getCityData(
city_name,
csv_path,
age_groups = c(@, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85),
verbose = FALSE

)
Arguments
city_name Name of the city (e.g., "Hildale city, Utah")
csv_path Path to the city population CSV file
age_groups Vector of age limits for grouping. If NULL, returns single-year ages (disaggre-
gated from 5-year ACS groups). Default uses 5-year intervals: ¢(0,5,10,...,85)
verbose Logical, if TRUE prints messages about age aggregation. Default is FALSE.
Value

A list containing:

city City name
year Data year
total_pop Total population
age_pops Vector of populations by age group
age_labels Labels for each age group
data Full data frame
Examples

Load Hildale data with default 5-year age groups
hildale_data <- getCityData(
city_name = "Hildale city, Utah”,
csv_path = system.file("extdata”, "hildale_ut_2023.csv"”, package = "multigroup.vaccine"”)

)

Load with single-year ages (disaggregated)

12 getFinalSizeAnalytic

hildale_single <- getCityData(
city_name = "Hildale city, Utah”,
csv_path = system.file("extdata”, "hildale_ut_2023.csv", package = "multigroup.vaccine”),
age_groups = NULL

)

Load with custom age groups

hildale_custom <- getCityData(
city_name = "Hildale city, Utah”,
csv_path = system.file("extdata”, "hildale_ut_2023.csv", package = "multigroup.vaccine”),
age_groups = c(0, 18, 65)

)

getFinalSizeAnalytic Calculate final size of outbreak: the total number of infections in each
group, by solving the analytic final size equation

Description
Calculate final size of outbreak: the total number of infections in each group, by solving the analytic
final size equation

Usage

getFinalSizeAnalytic(transmrates, recoveryrate, popsize, initR, initI, initV)

Arguments

transmrates matrix of group-to-group (column-to-row) transmission rates

recoveryrate inverse of mean infectious period

popsize the population size of each group
initR initial number of each group already infected and removed (included in final
size)
initl initial number of each group infectious
initv initial number of each group vaccinated
Value

vector of final sizes (number of infected over whole outbreak) for each group

Examples

getFinalSizeAnalytic(transmrates = matrix(@.2, 2 ,2), recoveryrate = 0.3,
popsize = c(100, 150), initR = c(@, @), initl = c(0, 1), initV = c(10, 10))

getFinalSizeDist 13

getFinalSizeDist Estimate the distribution of final outbreak sizes by group using
stochastic simulations of multi-group model

Description
Estimate the distribution of final outbreak sizes by group using stochastic simulations of multi-group
model

Usage

getFinalSizeDist(n, transmrates, recoveryrate, popsize, initR, initI, initV)

Arguments
n the number of simulations to run
transmrates matrix of group-to-group (column-to-row) transmission rates

recoveryrate inverse of mean infectious period

popsize the population size of each group
initR initial number of each group already infected and removed (included in size
result)
initI initial number of each group infectious
initv initial number of each group vaccinated
Value

a matrix with the final number infected from each group (column) in each simulation (row)

Examples

getFinalSizeDist(n = 10, transmrates = matrix(@0.2, 2 ,2), recoveryrate = 0.3,
popsize = c(100, 150), initR = c(@, @), initl = c(0, 1), initV = c(10, 10))

getFinalSizeDistEscape
Estimate the distribution of final outbreak sizes by group using a hy-
brid model: stochastic simulations for smaller-sized outbreaks and
deterministic ordinary differential equation model for "escaped" out-
breaks

Description

Estimate the distribution of final outbreak sizes by group using a hybrid model: stochastic simu-
lations for smaller-sized outbreaks and deterministic ordinary differential equation model for "es-
caped" outbreaks

14 getFinalSizeODE

Usage

getFinalSizeDistEscape(
n,
transmrates,
recoveryrate,
popsize,
initR,
initI,
initV

Arguments

n the number of simulations to run
transmrates matrix of group-to-group (column-to-row) transmission rates

recoveryrate inverse of mean infectious period

popsize the population size of each group
initR initial number of each group already infected and removed (included in size
result)
initI initial number of each group infectious
initv initial number of each group vaccinated
Value

a matrix with the final number infected from each group (column) in each simulation (row)

Examples

getFinalSizeDistEscape(n = 10, transmrates = matrix(@.2, 2 ,2), recoveryrate = 0.3,
popsize = c(100, 150), initR = c(@, @), initl = c(0, 1), initV = c(10, 10))

getFinalSizeODE Calculate outbreak final size, the total number of infections in each
group, by numerically solving the multi-group ordinary differential
equation
Description

Calculate outbreak final size, the total number of infections in each group, by numerically solving
the multi-group ordinary differential equation

Usage

getFinalSizeODE(transmrates, recoveryrate, popsize, initR, initI, initV)

getSizeAtTime 15

Arguments

transmrates matrix of group-to-group (column-to-row) transmission rates

recoveryrate inverse of mean infectious period

popsize the population size of each group
initR initial number of each group already infected and removed (included in final
size)
initl initial number of each group infectious
initv initial number of each group vaccinated
Value

vector of final sizes (number of infected over whole outbreak) for each group

Examples

getFinalSizeODE(transmrates = matrix(@0.2, 2 ,2), recoveryrate = 0.3,
popsize = c(100, 150), initR = c(@, @), initl = c(@, 1), initV = c(10, 10))

getSizeAtTime Calculate outbreak size at a given time

Description

Calculate outbreak size at a given time

Usage

getSizeAtTime(time, transmrates, recoveryrate, popsize, initR, initI, initV)

Arguments
time the time at which to calculate the outbreak size
transmrates matrix of group-to-group (column-to-row) transmission rates

recoveryrate inverse of mean infectious period

popsize the population size of each group
initR initial number of each group already infected and removed (included in size
result)
initI initial number of each group infectious
initv initial number of each group vaccinated
Value

a list with totalSize (total cumulative infections) and activeSize (total currently infected) in each
group at the specified time

16 listCounties

Examples

getSizeAtTime(time = 30, transmrates = matrix(@0.2, 2 ,2), recoveryrate = 0.3,
popsize = c(100, 150), initR = c(@, @), initl = c(0, 1), initV = c(10, 10))

getStateFIPS Get state FIPS code by state name

Description

Get state FIPS code by state name

Usage

getStateFIPS(state_name)

Arguments

state_name State name (e.g., "Utah")

Value

Two-digit FIPS code as character

Examples

getStateFIPS("Utah”) # Returns "49"

listCounties List available counties for a state

Description

List available counties for a state

Usage

listCounties(
state_fips,
year = 2024,
csv_path = NULL,
cache_dir = NULL,
verbose = FALSE

odeSIR

Arguments

state_fips
year
csv_path
cache_dir
verbose

Value

17

Two-digit FIPS code for the state

Census year (2020-2024), default 2024

Optional path to a previously downloaded census CSV file

Optional directory path for caching downloaded census files

Logical, if TRUE prints messages about data loading. Default is FALSE.

Character vector of county names

Examples

Use the included example data
utah_counties <- listCounties(
state_fips = "49",

year = 2024,

csv_path = getCensusDataPath()

)

Download from web (requires internet)
utah_counties_web <- listCounties(state_fips = "49", year = 2024)

With caching

utah_counties_cached <- listCounties(state_fips = "49", cache_dir = "~/census_cache")

odeSIR

Ordinary differential equation function for multi-group susceptible-
infectious-removed (SIR) model used as "func" argument passed to
the ode() function from deSolve package

Description

Ordinary differential equation function for multi-group susceptible-infectious-removed (SIR) model
used as "func" argument passed to the ode() function from deSolve package

Usage

odeSIR(time, state, par)

Arguments

time
state

par

vector of times at which the function will be evaluated

vector of number of individuals in each group at each state: S states followed by
I states followed by R states

vector of parameter values: group-to-group transmission rate matrix elements
(row-wise) followed by recovery rate

18 run_my_app

Value

a list of three vectors of derivatives dS, dI, and dR for each group, evaluated at the given state values

Examples

Intended only for use as the func argument to the ode() function from the deSolve package:

yO <- c(S1 = 79999, S2 = 20000, I1 =1, I2 = 0, R1 = 0, R2 = Q)

parms <- c(betall = 1.6e-6, beta21 = 1.5e-6, betal2 = 1.4e-6, beta22 = 8.7e-6, recoveryrate = 1/7)
times <- seq(@, 350, len = 10)

deSolve::ode(yQ, times, odeSIR, parms)

run_my_app Runs the shiny app

Description

Runs the shiny app

Usage

run_my_app(...)

Arguments

Further arguments passed to shiny: :shinyAppDir().

Details

The app featured in this package is the one presented in the shiny demo: https://shiny.posit.
co/r/getstarted/shiny-basics/lesson1/index.html.

Value

Starts the execution of the app, printing the port on the console.

Examples

To be executed interactively only
if (interactive()) {

run_my_app()
3

https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/index.html
https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/index.html

transmissionRates 19

transmissionRates Calculate transmission rate matrix for multi-group model with speci-
fied RO

Description

Calculate transmission rate matrix for multi-group model with specified RO

Usage

transmissionRates(R@, meaninf, reltransm)

Arguments

RO overall basic reproduction number

meaninf mean duration of infectious period

reltransm matrix with relative transmission rates, from column-group to row-group
Value

a matrix of transmission rates to (row) and from (column) each group, in same time units as meaninf

Examples

transmissionRates(R@ = 15, meaninf = 7,
reltransm = rbind(c(1, 0.5, 0.9), c(0.3, 1.9, 1), c(0.3, 0.6, 2.8)))

vaxrepnum Calculate reproduction number for a multigroup model with a given
state of vaccination and immunity

Description
Calculate reproduction number for a multigroup model with a given state of vaccination and immu-
nity

Usage

vaxrepnum(meaninf, popsize, trmat, initR, initV, vaxeff)

20

Arguments

meaninf
popsize
trmat
initR
initV

vaxeff

Value

vaxrepnum

mean infectious period with same time units as trmat

the population size of each group

matrix of group-to-group (column-to-row) transmission rates
initial number of each group already infected and immune
initial number of each group vaccinated

effectiveness (0 to 1) of vaccine in producing immunity to infection

the reproduction number

Examples

meaninf <- 7

popsize <- c(200, 800)

initR <- c(0,)
initV <- c(0, 0)
vaxeff <- 1

trmat <- matrix(c(0.63, 0.31, 0.19, 1.2), 2, 2)
vaxrepnum(meaninf, popsize, trmat, initR, initV, vaxeff)
vaxrepnum(meaninf, popsize, trmat, initR, initV = c(160, 750), vaxeff)

Index

aggregateByAgeGroups, 2

contactMatrixAgeSchool, 4
contactMatrixPolymod, 5
contactMatrixPropPref, 6

finalsize, 6

getCensusData, 8
getCensusDataPath, 10
getCityData, 11
getFinalSizeAnalytic, 12
getFinalSizeDist, 13
getFinalSizeDistEscape, 13
getFinalSizeODE, 14
getSizeAtTime, 15
getStateFIPS, 16

listCounties, 16
odeSIR, 17

run_my_app, 18

shiny: :shinyAppDir(), I8
transmissionRates, 19

vaxrepnum, 19

21

	aggregateByAgeGroups
	contactMatrixAgeSchool
	contactMatrixPolymod
	contactMatrixPropPref
	finalsize
	getCensusData
	getCensusDataPath
	getCityData
	getFinalSizeAnalytic
	getFinalSizeDist
	getFinalSizeDistEscape
	getFinalSizeODE
	getSizeAtTime
	getStateFIPS
	listCounties
	odeSIR
	run_my_app
	transmissionRates
	vaxrepnum
	Index

