
The mvp package: fast multivariate polynomials in R

Robin K. S. Hankin

2023-03-20

Introduction

The mvp package provides some functionality for fast manipulation of multivariate polynomials, using the
Standard Template library of C++, commonly known as the STL. It is comparable in speed to the spray

package for sparse arrays, while retaining the symbolic capabilities of the mpoly package (Kahle 2013). I
present some timing results separately, in inst/timings.Rmd. The mvp package uses the excellent print and
coercion methods of mpoly. The mvp package provides improved speed over mpoly, the ability to handle
negative powers, and a more sophisticated substitution mechanism.

The STL map class

A map is a sorted associative container that contains key-value pairs with unique keys. It is interesting here
because search and insertion operations have logarithmic complexity. Multivariate polynomials are considered
to be the sum of a finite number of terms, each multiplied by a coefficient. A term is something like x2y3z.
We may consider this term to be the map

{"x" -> 2, "y" -> 3, "z" -> 1}

where the map takes symbols to their (integer) power; it is understood that powers are nonzero. An mvp

object is a map from terms to their coefficients; thus 7xy2
− 3x2yz5 would be

{{"x" -> 1, "y" -> 2} -> 7, {"x" -> 2, 'y" -> 1, "z" ->5} -> -3}

and we understand that coefficients are nonzero. In C++ the declarations would be

typedef vector <signed int> mypowers;

typedef vector <string> mynames;

typedef map <string, signed int> term;

typedef map <term, double> mvp;

Thus a term maps a string to a (signed) integer, and a mvp maps terms to doubles. One reason why the map

class is fast is that the order in which the keys are stored is undefined: the compiler may store them in the
order which it regards as most propitious. This is not an issue for the maps considered here as addition and
multiplication are commutative and associative.

Note also that constant terms are handled with no difficulty (constants are simply maps from the empty map
to its value), as is the zero polynomial (which is simply an empty map).

1

The package in use

Consider a simple multivariate polynomial 3xy + z3 + xy6z and its representation in the following R session:

library("mvp",quietly=TRUE)

(p <- as.mvp("3 x y + zˆ3 + x yˆ6 z"))

#> mvp object algebraically equal to

#> 3 x y + x yˆ6 z + zˆ3

Coercion and printing are accomplished by the mpoly package (there is no way I could improve upon Kahle’s
work). Note carefully that the printed representation of the mvp object is created by the mpoly package
and the print method can rearrange both the terms of the polynomial (3xy + z3 + xy6z = z3 + 3xy + xy6z,
for example) and the symbols within a term (3xy = 3yx, for example) to display the polynomial in a
human-friendly form.

However, note carefully that such rearranging does not affect the mathematical properties of the polynomial
itself. In the mvp package, the order of the terms is not preserved (or even defined) in the internal representation
of the object; and neither is the order of the symbols within a single term. Although this might sound odd, if
we consider a marginally more involved situation, such as

(M <- as.mvp("3 stoat goatˆ6 -4 + 7 stoatboatˆ3 bloat -9 float boat goat gloatˆ6"))

#> mvp object algebraically equal to

#> -4 + 7 bloat stoatboatˆ3 - 9 boat float gloatˆ6 goat + 3 goatˆ6 stoat

dput(M)

#> structure(list(names = list(character(0), c("bloat", "stoatboat"

#>), c("boat", "float", "gloat", "goat"), c("goat", "stoat")),

#> power = list(integer(0), c(1L, 3L), c(1L, 1L, 6L, 1L), c(6L,

#> 1L)), coeffs = c(-4, 7, -9, 3)), class = "mvp")

it is not clear that any human-discernible ordering is preferable to any other, and we would be better off
letting the compiler decide a propitious ordering. In any event, the mpoly package can specify a print order:

print(M,order="lex", varorder=c("stoat","goat","boat","bloat","gloat","float","stoatboat"))

#> mvp object algebraically equal to

#> 3 stoat goatˆ6 - 9 goat boat gloatˆ6 float + 7 bloat stoatboatˆ3 - 4

Arithmetic operations

The arithmetic operations *, +, - and ˆ work as expected:

(S1 <- rmvp(5,2,2,4))

#> mvp object algebraically equal to

#> 3 aˆ2 c + 5 bˆ2 + 3 bˆ2 d + 4 cˆ2 dˆ2

(S2 <- rmvp(5,2,2,4))

#> mvp object algebraically equal to

#> 2 aˆ2 d + 5 aˆ2 dˆ2 + 3 b c + c dˆ2 + 4 dˆ3

S1 + S2

#> mvp object algebraically equal to

#> 3 aˆ2 c + 2 aˆ2 d + 5 aˆ2 dˆ2 + 3 b c + 5 bˆ2 + 3 bˆ2 d + c dˆ2 + 4 cˆ2 dˆ2 + 4

#> dˆ3

S1 * S2

#> mvp object algebraically equal to

#> 9 aˆ2 b cˆ2 + 10 aˆ2 bˆ2 d + 31 aˆ2 bˆ2 dˆ2 + 15 aˆ2 bˆ2 dˆ3 + 12 aˆ2 c dˆ3 + 3

#> aˆ2 cˆ2 dˆ2 + 8 aˆ2 cˆ2 dˆ3 + 20 aˆ2 cˆ2 dˆ4 + 6 aˆ4 c d + 15 aˆ4 c dˆ2 + 12 b

#> cˆ3 dˆ2 + 5 bˆ2 c dˆ2 + 3 bˆ2 c dˆ3 + 20 bˆ2 dˆ3 + 12 bˆ2 dˆ4 + 15 bˆ3 c + 9

#> bˆ3 c d + 16 cˆ2 dˆ5 + 4 cˆ3 dˆ4

S1ˆ2

2

#> mvp object algebraically equal to

#> 30 aˆ2 bˆ2 c + 18 aˆ2 bˆ2 c d + 24 aˆ2 cˆ3 dˆ2 + 9 aˆ4 cˆ2 + 40 bˆ2 cˆ2 dˆ2 +

#> 24 bˆ2 cˆ2 dˆ3 + 25 bˆ4 + 30 bˆ4 d + 9 bˆ4 dˆ2 + 16 cˆ4 dˆ4

Substitution

The package has two substitution functionalities. Firstly, we can substitute one or more variables for a
numeric value. Define a mvp object:

(S3 <- as.mvp("x + 5 xˆ4 y + 8 yˆ2 x zˆ3"))

#> mvp object algebraically equal to

#> x + 8 x yˆ2 zˆ3 + 5 xˆ4 y

And then we may substitute x = 1:

subs(S3, x = 1)

#> mvp object algebraically equal to

#> 1 + 5 y + 8 yˆ2 zˆ3

Note the natural R idiom, and that the return value is another mvp object. We may substitute for the other
variables:

subs(S3, x = 1, y = 2, z = 3)

#> [1] 875

(in this case, the default behaviour is to return the the resulting polynomial coerced to a scalar). We can
suppress the coercion using the lose argument:

subs(S3, x = 1, y = 2, z = 3,lose=FALSE)

#> mvp object algebraically equal to

#> 875

The idiom also allows one to substitute a variable for an mvp object:

subs(as.mvp("a+b+c"), a="xˆ6")

#> mvp object algebraically equal to

#> b + c + xˆ6

Note carefully that subs() depends on the order of substitution:

subs(as.mvp("a+b+c"), a="xˆ6",x="1+a")

#> mvp object algebraically equal to

#> 1 + 6 a + 15 aˆ2 + 20 aˆ3 + 15 aˆ4 + 6 aˆ5 + aˆ6 + b + c

subs(as.mvp("a+b+c"), x="1+a",a="xˆ6")

#> mvp object algebraically equal to

#> b + c + xˆ6

Pipes

Substitution works well with pipes:

as.mvp("a+b") %>% subs(a="aˆ2+bˆ2") %>% subs(b="xˆ6")

#> mvp object algebraically equal to

#> aˆ2 + xˆ6 + xˆ12

Vectorised substitution

Function subvec()allows one to substitute variables for numeric values using vectorised idiom:

3

p <- rmvp(6,2,2,letters[1:3])

p

#> mvp object algebraically equal to

#> 6 a b + 5 aˆ2 b + 3 aˆ2 c + 2 aˆ3 + 4 b c + bˆ3

subvec(p,a=1,b=2,c=1:5) # supply a named list of vectors

#> [1] 43 54 65 76 87

Differentiation

Differentiation is implemented. First we have the deriv() method:

(S <- as.mvp("a + 5 aˆ5*bˆ2*cˆ8 -3 xˆ2 aˆ3 b cˆ3"))

#> mvp object algebraically equal to

#> a - 3 aˆ3 b cˆ3 xˆ2 + 5 aˆ5 bˆ2 cˆ8

deriv(S, letters[1:3])

#> mvp object algebraically equal to

#> -27 aˆ2 cˆ2 xˆ2 + 400 aˆ4 b cˆ7

deriv(S, rev(letters[1:3])) # should be the same.

#> mvp object algebraically equal to

#> -27 aˆ2 cˆ2 xˆ2 + 400 aˆ4 b cˆ7

Also a slightly different form: aderiv(), here used to evaluate ∂
6
S

∂a3∂b∂c2 :

aderiv(S, a = 3, b = 1, c = 2)

#> mvp object algebraically equal to

#> 33600 aˆ2 b cˆ6 - 108 c xˆ2

Again, pipes work quite nicely:

S %<>% aderiv(a=1,b=2) %>% subs(c="xˆ4") %>% `+`(as.mvp("oˆ99"))

S

#> mvp object algebraically equal to

#> 50 aˆ4 xˆ32 + oˆ99

Taylor series

The package includes functionality to deal with Taylor and Laurent series:

(X <- as.mvp("1+x+xˆ2 y")ˆ3)

#> mvp object algebraically equal to

#> 1 + 3 x + 3 xˆ2 + 3 xˆ2 y + xˆ3 + 6 xˆ3 y + 3 xˆ4 y + 3 xˆ4 yˆ2 + 3 xˆ5 yˆ2 +

#> xˆ6 yˆ3

trunc(X,3) # truncate, retain only terms with total power <= 3

#> mvp object algebraically equal to

#> 1 + 3 x + 3 xˆ2 + 3 xˆ2 y + xˆ3

trunc1(X,x=3) # truncate, retain only terms with power of x <= 3

#> mvp object algebraically equal to

#> 1 + 3 x + 3 xˆ2 + 3 xˆ2 y + xˆ3 + 6 xˆ3 y

onevarpow(X,x=3) # retain only terms with power of x == 3

#> mvp object algebraically equal to

#> 1 + 6 y

second order taylor expansion of f(x)=sin(x+y) for x=1.1, about x=1:

sinxpy <- horner("x+y",c(0,1,0,-1/6,0,+1/120,0,-1/5040)) # sin(x+y)

dx <- as.mvp("dx")

t2 <- sinxpy + aderiv(sinxpy,x=1)*dx + aderiv(sinxpy,x=2)*dxˆ2/2

4

(t2 %<>% subs(x=1,dx=0.1)) # (Taylor expansion of sin(y+1.1), left in symbolic form)

#> mvp object algebraically equal to

#> 0.8912877 + 0.4534028 y - 0.4458333 yˆ2 - 0.07597222 yˆ3 + 0.03659722 yˆ4 +

#> 0.003291667 yˆ5 - 0.001527778 yˆ6 - 0.0001984127 yˆ7

(t2 %>% subs(y=0.3)) - sin(1.4) # numeric; should be small

#> [1] -1.416914e-05

Function series() will decompose an mvp object into a power series in a single variable:

p <- as.mvp("aˆ2 x b + xˆ2 a b + b c xˆ2 + a b c + cˆ6 x")

p

#> mvp object algebraically equal to

#> a b c + a b xˆ2 + aˆ2 b x + b c xˆ2 + cˆ6 x

series(p,'x')

#> xˆ0(a b c) + xˆ1(aˆ2 b + cˆ6) + xˆ2(a b + b c)

This works nicely with subs() if we wish to take a power series about x-v, where v is any mvp object. For
example:

p %>% subs(x="xmv+a+b") %>% series("xmv")

#> xmvˆ0(a b c + 2 a bˆ2 c + a bˆ3 + a cˆ6 + aˆ2 b c + 3 aˆ2 bˆ2 + 2

#> aˆ3 b + b cˆ6 + bˆ3 c) + xmvˆ1(2 a b c + 2 a bˆ2 + 3 aˆ2 b + 2 bˆ2 c

#> + cˆ6) + xmvˆ2(a b + b c)

is a series in powers of x-a-b. We may perform a consistency check by a second substitution, returning us to
the original expression:

p == p %>% subs(x="xmv+a+b") %>% subs(xmv="x-a-b")

#> [1] TRUE

If function series() is given a variable name ending in _m_foo, where foo is any variable name, then this is
typeset as (x-foo). For example:

as.mvp('xˆ3 + x*a') %>% subs(x="x_m_a + a") %>% series("x_m_a")

#> (x-a)ˆ0(aˆ2 + aˆ3) + (x-a)ˆ1(a + 3 aˆ2) + (x-a)ˆ2(3 a) + (x-a)ˆ3(1)

So above we see the expansion of x2 + ax in powers of x − a. If we want to see the expansion of a mvp in
terms of a more complicated expression then it is better to use a nonce variable v:

as.mvp('xˆ2 + x*a+bˆ3') %>% subs(x="x_m_v + aˆ2+b") %>% series("x_m_v")

#> (x-v)ˆ0(a b + 2 aˆ2 b + aˆ3 + aˆ4 + bˆ2 + bˆ3) + (x-v)ˆ1(a + 2 aˆ2

#> + 2 b) + (x-v)ˆ2(1)

where it is understood that v = a + b2. Function taylor() is a convenience wrapper that does some of the
above in one step:

p <- as.mvp("1+x-x*y+a")ˆ2

taylor(p,'x','a')

#> (x-a)ˆ0(1 + 4 a - 2 a y + 4 aˆ2 - 4 aˆ2 y + aˆ2 yˆ2) + (x-a)ˆ1(2 +

#> 4 a - 6 a y + 2 a yˆ2 - 2 y) + (x-a)ˆ2(1 - 2 y + yˆ2)

But it’s not as good as I expected it to be and frankly it’s overkill.

Extraction

Given a multivariate polynomial, one often needs to extract certain terms. Because the terms of an mvp

object have an implementation-dependent order, this can be difficult. But we can use function onevarpow():

5

P <- as.mvp("1 + z + yˆ2 + x*zˆ2 + x*y")ˆ4

onevarpow(P,x=1,y=2)

#> mvp object algebraically equal to

#> 12 zˆ2 + 24 zˆ3 + 12 zˆ4

Negative powers

The mvp package handles negative powers, although the idiom is not perfect and I’m still working on it.
There is the invert() function:

(p <- as.mvp("1+x+xˆ2 y"))

#> mvp object algebraically equal to

#> 1 + x + xˆ2 y

invert(p)

#> mvp object algebraically equal to

#> 1 + xˆ-2 yˆ-1 + xˆ-1

In the above, p is a regular multivariate polynomial which includes negative powers. It obeys the same
arithmetic rules as other mvp objects:

p + as.mvp("zˆ6")

#> mvp object algebraically equal to

#> 1 + x + xˆ2 y + zˆ6

The disordR package

It is possible to examine the coefficients of an mvp object:

a <- as.mvp("5 + 8*xˆ2*y - 13*y*xˆ2 + 11*z - 3*x*yz")

a

#> mvp object algebraically equal to

#> 5 - 3 x yz - 5 xˆ2 y + 11 z

coeffs(a)

#> A disord object with hash 64e403dc35ccd68b1bcbd3e0444c72f4e57b50fd and elements

#> [1] 5 -3 -5 11

#> (in some order)

Above, note that the result of coeffs() is a disord object, defined in the disordR package. The order of
the elements unspecified as the STL map class holds the keys and values in an implementation-specific order.
This device stops the user from illegal operations on the coefficients. For example, suppose we had another
mvp object, b:

b <- a*2

b

#> mvp object algebraically equal to

#> 10 - 6 x yz - 10 xˆ2 y + 22 z

coeffs(a) + coeffs(b)

#> coeffs(a) + coeffs(b)

#> Error in check_matching_hash(e1, e2, match.call()):

#> hash codes 64e403dc35ccd68b1bcbd3e0444c72f4e57b50fd and d4875b2ede120f28db25aa644df3ea95f5be7d58 do not

above, we get an error because the coefficients of a and b are possibly stored in a different order and therefore
vector addition makes no sense. However, we can operate on coefficients of a single mvp object at will:

coeffs(a) > 0

#> A disord object with hash 64e403dc35ccd68b1bcbd3e0444c72f4e57b50fd and elements

6

#> [1] TRUE FALSE FALSE TRUE

#> (in some order)

coeffs(a) + coeffs(a)ˆ4

#> A disord object with hash 64e403dc35ccd68b1bcbd3e0444c72f4e57b50fd and elements

#> [1] 630 78 620 14652

#> (in some order)

Extraction also works but subject to standard disordR idiom restrictions:

coeffs(a)[coeffs(a) > 0]

#> A disord object with hash d924dbdd1a759c7429f51ea6af15c5d0aa1599df and elements

#> [1] 5 11

#> (in some order)

But “mixing” objects is forbidden:

coeffs(a)[coeffs(b) > 0]

#> .local(x = x, i = i, j = j, drop = drop)

#> Error in check_matching_hash(x, i, match.call()):

#> hash codes 64e403dc35ccd68b1bcbd3e0444c72f4e57b50fd and d4875b2ede120f28db25aa644df3ea95f5be7d58 do not

Extraction methods work, again subject to disordR restrictions:

coeffs(a)[coeffs(a)<0] <- coeffs(a)[coeffs(a)<0] + 1000 # add 1000 to every negative coefficient

a

#> mvp object algebraically equal to

#> 5 + 997 x yz + 995 xˆ2 y + 11 z

In cases like this where the replacement object is complicated, using magrittr would simplify the idiom and
reduce the opportunity for error:

library("magrittr")

b

#> mvp object algebraically equal to

#> 10 - 6 x yz - 10 xˆ2 y + 22 z

coeffs(b)[coeffs(b)%%3==1] %<>% `+`(100) # add 100 to every element equal to 1 modulo 3

b

#> mvp object algebraically equal to

#> 110 - 6 x yz - 10 xˆ2 y + 122 z

One good use for this is to “zap” small elements:

x <- as.mvp("1 - 0.11*x + 0.005*x*y")ˆ2

x

#> mvp object algebraically equal to

#> 1 - 0.22 x + 0.01 x y + 0.0121 xˆ2 - 0.0011 xˆ2 y + 0.000025 xˆ2 yˆ2

Then we can zap as follows:

cx <- coeffs(x)

cx[abs(cx) < 0.01] <- 0

coeffs(x) <- cx

x

#> mvp object algebraically equal to

#> 1 - 0.22 x + 0.01 x y + 0.0121 xˆ2

(I should write a method for zapsmall() that does this)

7

Multivariate generating functions

We can see the generating function for a chess knight:

knight(2)

#> mvp object algebraically equal to

#> aˆ-2 bˆ-1 + aˆ-2 b + aˆ-1 bˆ-2 + aˆ-1 bˆ2 + a bˆ-2 + a bˆ2 + aˆ2 bˆ-1 + aˆ2 b

How many ways are there for a 4D knight to return to its starting square after four moves? Answer:

constant(knight(4)ˆ4)

#> [1] 12528

References

Kahle, D. 2013. “Mpoly: Multivariate Polynomials in r.” R Journal 5 (1): 162.

8

	Introduction
	The STL map class
	The package in use
	Arithmetic operations
	Substitution
	Pipes

	Vectorised substitution
	Differentiation
	Taylor series
	Extraction
	Negative powers

	The disordR package
	Multivariate generating functions
	References

