
Introduction to naivebayes package

Michal Majka

March 16, 2024

1 Introduction

The naivebayes package presents an efficient implementation of the widely-used Naïve Bayes classifier.
It upholds three core principles: efficiency, user-friendliness, and reliance solely on Base R. By adhering
to the latter principle, the package ensures stability and reliability without introducing external depen-
dencies 1. This design choice maintains efficiency by leveraging the optimized routines inherent in Base
R, many of which are programmed in high-performance languages like C/C++ or FORTRAN. By following
these principles, the naivebayes package provides a reliable and efficient tool for Naïve Bayes classifica-
tion tasks, ensuring that users can perform their analyses effectively and with ease, even in the presence
of missing data. The purpose of this vignette is to offer a comprehensive understanding of the naive-
bayes package and specifically naive_bayes() function, providing clear insights into its mechanisms
and covering its functionalities in detail.

2 Installation

The naivebayes package can be installed from the CRAN repository by executing the following command
in the R console:

install.packages("naivebayes")

An alternative way of obtaining the package is first downloading the package source from https:

//CRAN.R-project.org/package=naivebayes, specifying the location of the file and running in the con-
sole:

install.packages("path_to_tar.gz", repos = NULL, type = "source")

Remember to replace "path_to_tar.gz" with the actual file path. The full source code can be viewed
either on the official CRAN repository: https://github.com/cran/naivebayes or on the development
repository: https://github.com/majkamichal/naivebayes.

After a successful installation, the package can be loaded with:

1Specialized Naïve Bayes functions within the package may optionally utilize sparse matrices if the Matrix package is installed.
However, the Matrix package is not a dependency, and users are not required to install or use it.

1

https://CRAN.R-project.org/package=naivebayes
https://CRAN.R-project.org/package=naivebayes
https://github.com/cran/naivebayes
https://github.com/majkamichal/naivebayes

library(naivebayes)

This will enable you to utilize the functionality provided by the naivebayes package in your R envi-
ronment.

3 Main functions

The general naive_bayes() function is designed to determine the class of each feature in a dataset,
and depending on user specifications, it can assume various distributions for each feature. It currently
supports the following class conditional distributions:

• Categorical distribution for discrete features (with Bernoulli distribution as a special case for bi-
nary outcomes)

• Poisson distribution for non-negative integer features

• Gaussian distribution for continuous features

• non-parametrically estimated densities via Kernel Density Estimation for continuous features

In addition to the general Naïve Bayes function, the package provides specialized functions for var-
ious types of Naïve Bayes classifiers. The specialized functions are carefully optimized for efficiency,
utilizing linear algebra operations to excel when handling dense matrices. Additionally, they can also
exploit sparsity of matrices for enhanced performance:

• Bernoulli Naïve Bayes via bernoulli_naive_bayes()

• Multinomial Naïve Bayes via multinomial_naive_bayes()

• Poisson Naïve Bayes via poisson_naive_bayes()

• Gaussian Naïve Bayes via gaussian_naive_bayes()

• Non-Parametric Naïve Bayes via nonparametric_naive_bayes()

These specialized classifiers are tailored to different assumptions about the underlying data distribu-
tions, offering users versatile tools for classification tasks. Moreover, the package incorporates various
helper functions aimed at enhancing the user experience. Notably, the model fitting functions provided
by the package can effectively handle missing data, ensuring that users can utilize the classifiers even in
the presence of incomplete information.

4 Naïve Bayes Model

The Naïve Bayes is a family of probabilistic models that utilize Bayes’ theorem under the assumption of
conditional independence between the features to predict the class label for a given problem instance.
This section introduces the Naïve Bayes framework in a somewhat formal way.

2

Let us assume that a single problem instance x = (x1, x2, . . . , xd) is given. It consists of d values, each
being an outcome of a measurement of a different characteristic Xi. For instance, for d = 3, the charac-
teristics X1, X2 and X3 may represent age, yearly income and education level, respectively, and x1, x2, x3

are their measurements of a particular person. Furthermore, given X = x, which is a compact notation
for (X1 = x1, . . . , Xd = xd), we are interested in predicting another characteristic Y, which can take on
K possible values denoted by (C1, . . . , CK). In other words, we have a multi-class classification problem
with K specifying the number of classes. If K = 2, the problem reduces to the binary classification. The
Xis are usually referred to as "features" or "independent variables" and Y as "response" or "dependent
variable". In the following, Xis are assumed to be random variables.

In the Naïve Bayes framework, this classification problem is tackled first by applying the Bayes’
theorem to the class specific conditional probabilities P(Y = Ck|X = x) and hence decomposing them
into the product of the likelihood and the prior scaled by the likelihood of the data:

P(Y = Ck| X = x) =
P(Y = Ck)P(X = x |Y = Ck)

P(X = x)
(1)

Since the random variables X = (X1, X2, . . . , Xd) are (naïvely) assumed to be conditionally indepen-
dent, given the class label Ck, the likelihood P(X = x|Y = Ck) on the right-hand side can be simply
re-written as

P(Y = Ck| X = x) =
P(Y = Ck) ∏d

i=1 P(Xi = xi|Y = Ck)

P(X1 = x1, . . . , Xd = xd)
(2)

Since the denominator P(X1 = x1, . . . , Xd = xd) is a constant with respect to the class label Ck, the
conditional probability P(Y = Ck| X = x) is proportional to the numerator:

P(Y = Ck| X = x) ∝ P(Y = Ck)
d

∏
i=1

P(Xi = xi|Y = Ck) (3)

In order to avoid a numerical underflow (when d >> 0), these calculations are performed on the log
scale:

log P(Y = Ck| X = x) ∝ log P(Y = CK) +
d

∑
i=1

log P(Xi = xi|Y = Ck) (4)

Finally, to obtain a final prediction, a maximum a posteriori decision rule is applied, selecting the class
with the highest sum of the log-prior probability and the log-likelihood:

Ĉ = arg max
k∈{1,...,K}

(
log P(Y = CK) +

d

∑
i=1

log P(Xi = xi|Y = Ck)

)
(5)

This process is equivalent to using the predict() function with the argument type = "class",
which performs the classification based on the same principle.

If the main focus is on obtaining class posterior probabilities P(Y = Ck|X = x), which is equiva-
lent to using the predict(..., type = "prob") function. The sum of log-prior probability and log-
likelihood in (4) is transformed back to the original scale for each class and are normalized to ensure

3

they sum up to 1.

4.1 Prior distribution

Since the response variable Y can take on K distinct values denoted as C1, . . . , CK, each prior probability
P(Y = Ck) in (1) can be interpreted as the probability of observing the label Ck. By default, these prior
probabilities are modelled with a Categorical distribution in the naivebayes package. The parameters
are estimated using Maximum Likelihood Estimation (MLE), whereby the prior probabilities correspond
to the proportions of classes in the sample (i.e., the number of samples in the class divided by the total
number of samples).

For specifying custom prior probabilities, the parameter prior can be used. For instance, if there are
three classes (K = 3) and we believe that they are equally likely then we may want to assign a uniform
prior simply with naive_bayes(..., prior = c(1/3, 1/3, 1/3). Note that the manually specified
probabilities have to follow the order of factor levels.

4.2 Available class conditional distributions

Each individual feature Xi can take on either discrete or continuous values. In the case of discrete
features, Xi can assume values from a finite or infinite set of items, where the set may be countable or
uncountable. For example, this includes scenarios such as categorical variables with a finite number
of categories or distributions like the Poisson where the set of possible values is infinitely countable.
On the other hand, for continuous features, Xi can take any real-valued number within a certain range,
allowing for a continuum of possible values.

Discrete features are identified in naive_bayes() as variables of class "character," "factor," and "log-
ical." Additionally, "integer" is treated as a discrete variable when naive_bayes(..., usepoisson =
TRUE) is used. On the other hand, continuous features are identified as variables with the class "nu-
meric." Depending on the type of feature Xi, the naive_bayes() function employs different probability
distributions to model the class conditional probability P(Xi = xi|Y = Ck)

In this subsection, the available class conditional distributions are introduced, and the process of
assigning them to the features is elaborated upon.

4.2.1 Categorical distribution

If Xi is discrete feature which takes on m possible values denoted by Xi = {value1, . . . , valuem}, then the
Categorical distribution is assumed:

P(Xi = valuel |Y = Ck) = pikl

where l ∈ {1, . . . , m}, pikl > 0 and ∑m
j=1 pikj = 1. This mathematical formalism can be translated into

plain English as follows: given the class label Ck, the probability that the i-th feature takes on the l-th
value is non-negative and the sum of M such probabilities is 1. The Bernoulli distribution is the special
case for m = 2. It is important to note that the logical (TRUE/FALSE) vectors are internally coerced to
character ("TRUE"/"FALSE") and hence are assumed to be discrete features. Also, if the feature Xi takes

4

on 0 and 1 values only and is represented in R as a "numeric" then the Gaussian distribution is assumed
by default.

If the Bernoulli distribution (m = 2) applies to all features, the model can be referred to as a "Bernoulli
Naïve Bayes". In such a case, the model can also be estimated using the specialized function
bernoulli_naive_bayes().

4.2.2 Poisson distribution

For a non-negative integer feature Xi, if the Poisson distribution is explicitly requested using naive_bayes(...,
usepoisson = TRUE), then the model assumes:

P(Xi = v|Y = Ck) =
λv

ike−λik

v!
,

where λik > 0 and v ∈ {0, 1, 2, . . .}. When this distribution applies to all features, the model is
referred to as a "Poisson Naïve Bayes". In such a case, the model can also be estimated using the special-
ized function poisson_naive_bayes().

4.2.3 Gaussian distribution

For a continuous feature Xi, the Gaussian distribution is assumed by default:

P(Xi = v|Y = Ck) =
1√

2πσ2
ik

exp

(
− (v − µik)

2

2σ2
ik

)
,

where µik and σ2
ik are the class conditional mean and variance. If this applies to all features, then the

model can be called a "Gaussian Naïve Bayes". In such a case, the model can also be estimated using the
specialized function gaussian_naive_bayes().

4.2.4 Kernel distribution

If Xi is continuous, instead of the Gaussian distribution, a kernel density estimation (KDE) can be alter-
natively used to obtain a non-parametric representation of the conditional probability density function.
It can be requested via naive_bayes(..., usekernel = TRUE). If this applies to all features then the
model can be called a "Non-parametric Naïve Bayes". In such a case, the model can also be estimated
using the specialized function nonparametric_naive_bayes().

4.2.5 Multinomial distribution

For the data X1 = x1, . . . , Xd = xd, where features represent counts or frequency, as commonly encoun-
tered in text classification tasks, the Multinomial distribution can be assumed for the class conditional
distributions:

P(X1 = x1, . . . , Xd = xd|Y = Ck) =
n!

∏d
i=1 xi!

·
d

∏
i=1

pxi
ik

5

where d is the number of features, xi represents the count or frequency of feature Xi, and pik =

P(Xi = xi|Ck) is the probability of observing feature Xi in class Ck. Additionally, the following con-
straints apply: ∑d

j=1 pjk = 1, ensuring that the sum of probabilities for all features in a class equals one,
and n = ∑d

i=1 xi, ensuring that the sum of features for a given sample equals n.
It is important to note that the Multinomial distribution is not available in the general naive_bayes()

function. Instead, the specialized function multinomial_naive_bayes() is provided, specifically de-
signed to handle data where features follow a Multinomial distribution. This model is commonly re-
ferred to as Multinomial Naïve Bayes.

4.3 Assignment of distributions to the numeric features

The assignment of distributions to numeric features in the naive_bayes() function depends on the
parameters usekernel and usepoisson, defining the type of class conditional distributions applied to
numeric variables. Below are the scenarios based on different combinations of these parameters:

• Scenario 1: Gaussian Distribution (Default)

– Description: When both usekernel and usepoisson are set to FALSE (default), the Gaussian
distribution is applied to each numeric variable.

– Example: If the dataset contains numeric variables representing continuous measurements
such as height and weight, the Gaussian distribution can be considered suitable for modelling
the distributions of these variables.

• Scenario 2: Kernel Density Estimation (KDE)

– Description: When usekernel is set to TRUE and usepoisson is FALSE, kernel density esti-
mation (KDE) is applied to each numeric variable.

– Example: If the dataset contains numeric variables with non-standard distributions, such as
multimodal or skewed data, using KDE can provide a more flexible representation of their
distributions compared to the Gaussian assumption.

• Scenario 3: Gaussian and Poisson Distributions

– Description: When usekernel is FALSE and usepoisson is TRUE, Gaussian distribution is
applied to each double vector, while the Poisson distribution is applied to each integer vector.

– Example: In a dataset where some numeric variables represent continuous measurements
(e.g., IQ) while others represent count data (e.g., the number of students achieving a low and
high mark in an exam), this scenario allows for modelling each type of variable appropriately.

• Scenario 4: KDE and Poisson Distributions

– Description: When both usekernel and usepoisson are set to TRUE, KDE is applied to each
double vector, and the Poisson distribution is applied to each integer vector.

– Example: If the dataset contains a mixture of continuous and count variables, this scenario
provides a flexible approach by using KDE for continuous variables and Poisson for count
variables.

6

5 Parameter estimation

In the context of parameter estimation, a training set (y(j), x(j)) is considered, where y(j) ∈ {C1, . . . , Ck}
denotes the class labels and x(j) = (x(j)

1 , . . . , x(j)
d) represents the feature values for each observation

j = 1, . . . , n. All observations are assumed to be independent. The objective is to fit a Naïve Bayes
model using this training data, which necessitates the estimation of parameters for the class conditional
distributions P(Xi = xi|Y = Ck). Details regarding the specification of the prior distribution were
previously discussed in subsection 4.

5.1 Categorical distribution

Each class conditional Categorical distribution is estimated from the data using the Maximum-Likelihood
method by default. However, when the discrete feature Xi encompasses a large number of possible
values relative to the sample size, certain combinations of its values and class labels may be absent, re-
sulting in zero probabilities when using Maximum-Likelihood. This issue, known as the zero-frequency
problem, can be addressed through a technique called additive smoothing.

Additive smoothing involves adding a small amount, often referred to as a pseudo-count, to the
count for every feature value-class label combination. By doing so, the probabilities of rare or unseen
combinations are adjusted, preventing them from being assigned zero probabilities. This adjustment
ensures a more robust estimation of the class conditional distributions.

In the context of Naïve Bayes classification, additive smoothing can be easily implemented by set-
ting the parameter laplace to a positive value. For example, naive_bayes(..., laplace = 1) applies
additive smoothing by adding a pseudo-count of 1 to every feature value-class label combination. The
parameter controlling additive smoothing is named laplace because it is the most popular special case
of the additive-smoothing when a pseudo-count of 1 is being used.

Interestingly, the application of additive smoothing in this context can be viewed as a Bayesian es-
timation approach. By incorporating prior knowledge, in the form of the pseudo-count, into the esti-
mation process, the estimation procedure moves from the pure Maximum-Likelihood framework and
embraces Bayesian principles. This adjustment not only mitigates the zero-frequency problem but also
introduces a degree of regularization, improving the overall robustness of the model.

It is important to note that the laplace parameter applies globally, affecting all discrete features and
integer features modelled with the Poisson distribution.

5.1.1 Maximum Likelihood

When i-th feature takes on m values in Xi = {value1, . . . , valuem}, then the corresponding Maximum-
Likelihood estimates are given by:

p̂ikl =
∑n

j=1 1(y(j) = Ck and x(j)
i = valuel)

∑n
j=1 1(y(j) = Ck)

=
cikl

∑m
j=1 cikj

where 1 is an indicator function that is 1 when the condition is satisfied and is 0 otherwise. Thus, the
Maximum-Likelihood yields very natural estimates: it is a ratio of the number of time the class label Ck

7

is observed together with the l-th value of the i-th feature to the the number of times the class label Ck

is observed.

5.1.2 Additive Smoothing and Bayesian estimation

Applying additive smoothing is commonly used to avoid zero probabilities in the context of Naïve
Bayes classification. It involves adding a pseudo-count α > 0 to the frequency of each feature value,
thereby adjusting the expected probabilities and ensuring that the resulting estimates are guaranteed to
be non-zero. The adjusted estimates are given by:

p̂ikl =
cikl + α

∑m
j=1 cikj + mα

where cikl is the frequency of the l-th value for the i-th feature and the k-th class, while m denotes
the total number of different values. When α = 0, each p̂ikl coincides with the Maximum-Likelihood
estimates. Conversely, as α increases towards infinity, these estimates converge towards uniform prob-
abilities, represented as 1

m , 1
m , . . . , 1

m .
In the context of Bayesian inference, these estimates correspond to the expected value of the posterior

distribution2, when the symmetric Dirichlet distribution with the parameter α = (α, . . . , α) is chosen as
a prior for probabilities (pik1, ..., pikm). The prior distribution is parametrized with m equal values of
α, which can be interpreted as representing α additional counts observed for each feature value. By
incorporating these pseudo-counts into the estimation process, prior knowledge is explicitly included,
ensuring that estimates cannot be zero. Moreover, since the same amount is added to each count of
feature values, no parameter is favored over any other. Typically, α is chosen to be 1, as this results in a
symmetric Dirichlet prior that is equivalent to a uniform distribution. In scenarios with a larger number
of observations, such a uniform prior has minimal impact on the estimates. Another common choice for
α is 0.5, corresponding to the widely-used non-informative Jeffreys prior.

5.2 Poisson distribution

Estimating parameters for class conditional Poisson distributions, similar to the Categorical distribu-
tion, can be accomplished through either Maximum-Likelihood estimation or a Bayesian approach by
incorporating pseudo-counts into the data.

5.2.1 Maximum Likelihood

In Maximum Likelihood Estimation, the parameter estimates for the Poisson parameter λik are simply
sample averages. This means that each class conditional parameter λik is estimated using the following
algorithm:

λ̂ik =
∑n

j=1 x(j)
i 1(y(j) = Ck)

∑n
j=1 1(y(j) = Ck)

=
Nik
Nk

.

2Details on the derivation of the posterior: https://www.youtube.com/watch?v=UDVNyAp3T38 - this resource was chosen be-
cause it is very accessible and provides great explanations.

8

https://www.youtube.com/watch?v=UDVNyAp3T38

5.2.2 Bayesian estimation via pseudo-counts

When partitioning the sample into different classes Ck, it is possible to encounter sub-samples where
only zero counts are observed. In such cases, Maximum-Likelihood estimation yields zero estimates,
posing a challenge. To address this issue, pseudo-counts can be introduced using a parameter laplace,
adding a Bayesian flavor to the parameter estimation while mitigating the problem of zero estimates.

Similar to Maximum-Likelihood estimation, the values of the i-th feature are initially partitioned
according to the k-th class Ck, resulting in a sub-sample with a potentially varying number of data
points. This is denoted by Nk = ∑n

j=1 1(y(j) = Ck), with a sub-total Nik = ∑n
j=1 x(j)

i 1(y(j) = Ck). Then, a
pseudo-count α > 0 is added to the sub-total, and the parameter λik is estimated as follows:

λ̂ik =
Nik + α

Nk

The estimate λ̂ik aligns closely with the expected value of the posterior distribution, which follows a
Gamma(Nik + α, Nk) distribution. This interpretation emerges when we adopt an improper (degenerate)
Gamma distribution as the prior for the Poisson likelihood, characterized by a shape parameter α > 0
and a rate parameter β → 0.

Introducing pseudo-counts, such as 1 and 0.5 for α, corresponds to employing specific priors. For
instance, setting α = 1 implies using a uniform prior, where all parameter values are equally likely. On
the other hand, choosing α = 0.5 corresponds to the non-informative Jeffreys prior.

5.3 Gaussian distribution

The parameters of each class conditional Gaussian distribution are estimated via Maximum-Likelihood:

µ̂ik =
∑n

j=1 x(j)
i 1(y(j) = Ck)

∑n
j=1 1(y(j) = Ck)

σ̂2
ik =

∑n
j=1(x(j)

i − µ̂ik)
2 1(y(j) = Ck)[

∑n
j=1 1(y(j) = Ck)

]
− 1

5.4 Kernel distribution

Kernel density estimation offers a non-parametric approach to estimating the probability density func-
tion of each class. This technique is particularly useful when the underlying distribution is unknown or
complex (multimodal, etc). The class conditional probability density function for the k-th class can be
estimated using kernel density estimation:

f̂hik
(x) =

1
nkhik

n

∑
j=1

K

(
x − x(j)

i
hik

)
1(y(j) = Ck),

where nk is number of samples in the k-th class, K(·) is a kernel function that defines the shape of the
density curve and hik is a class specific bandwidth controlling smoothness. The estimation is performed

9

using built in R function stats::density(). In general, there are 7 different smoothing kernels and 5
different bandwidth selectors available.

Table 1: Available smoothing kernels and bandwidth selectors in stats::density(...).
Kernels Bandwidth selectors

Gaussian nrd0 (Silverman’s rule-of-thumb)
Epanechnikov nrd (variation of the rule-of-thumb)
Rectangular ucv (unbiased cross-validation)
Triangular bcv (biased cross-validation)
Biweight SJ (Sheather & Jones method)
Cosine
Optcosine

By default, the Gaussian kernel and Silverman’s rule-of-thumb bandwidth selector are chosen. For
more details on available kernel functions and bandwidth selectors, refer to help(density) and help(bw.nrd0).

5.5 Multinomial distribution

The parameter estimation for the Multinomial distribution is very analogous to that in the Categori-
cal distribution described in 5.1. In fact, Categorical distribution is a special case of the Multinomial
distribution.

5.5.1 Maximum Likelihood

For d features, X1 = x1, . . . , Xm = xd, let Nik = ∑n
j=1 x(j)

i 1(y(j) = Ck) denote the total count of the feature
Xi occurring in instances belonging to class Ck, and Nk = ∑d

i=1 Nik denotes the total count of all features
observed within class Ck. Then, the Maximum-Likelihood estimates for the Multinomial distribution
parameters are given by:

p̂ik =
Nik
Nk

This equation computes the relative frequency of feature Xi in class Ck, obtained by dividing the
count of Xi in class Ck by the total count of all features in that class.

5.5.2 Bayesian estimation via pseudo-counts

In practice, encountering the zero-count problem, where certain feature values do not occur in some
classes, is common. To address this issue and prevent zero probabilities, additive smoothing can be
applied by adding a small pseudo-count α > 0 to each count via the laplace parameter. The adjusted
estimates are given by:

p̂ik =
Nik + α

Nk + αd

where Nik represents the count of feature Xi occurring in instances belonging to class Ck, Nk is the

10

count of all features observed within class Ck, d is the number of features, and α is the smoothing pa-
rameter.

As previously discussed in Section 5.1, these estimates align with the Bayesian perspective, where
the symmetric Dirichlet distribution with parameter α = (α, . . . , α) serves as a prior for the Multinomial
probabilities (p1k, . . . , pdk). This choice ensures that the counts are always greater than zero and allows
for the incorporation of additional information without favoring any specific parameter. Popular choices
for α include 1, corresponding to the uniform prior, and 0.5, corresponding to the Jeffreys prior.

6 General usage

This section provides a comprehensive demonstration of the functionalities of the naive_bayes() func-
tion through two illustrative examples.

6.1 Training with Formula Interface

The first example showcases the process of training a Naïve Bayes classification model using the formula
interface. It covers steps such as data preparation, model fitting, summary of the model, classification
of new data, and visualization of fitted distributions. This example serves as a practical guide for users
looking to utilize the formula interface for classification tasks.

Section: General usage - Training with formula interface

library(naivebayes)

naivebayes 1.0.0 loaded

For more information please visit:

https://majkamichal.github.io/naivebayes/

Simulate data

n <- 100

set.seed(1)

data <- data.frame(class = sample(c("classA", "classB"), n, TRUE),

bern = sample(LETTERS[1:2], n, TRUE),

cat = sample(letters[1:3], n, TRUE),

logical = sample(c(TRUE,FALSE), n, TRUE),

norm = rnorm(n),

count = rpois(n, lambda = c(5,15)))

Split data into train and test sets

train <- data[1:95,]

test <- data[96:100, -1]

General usage via formula interface

nb <- naive_bayes(class ~ ., train, usepoisson = TRUE)

11

Show summary of the model

summary(nb)

##

================================= Naive Bayes ==================================

##

- Call: naive_bayes.formula(formula = class ~ ., data = train, usepoisson = TRUE)

- Laplace: 0

- Classes: 2

- Samples: 95

- Features: 5

- Conditional distributions:

- Bernoulli: 2

- Categorical: 1

- Poisson: 1

- Gaussian: 1

- Prior probabilities:

- classA: 0.4842

- classB: 0.5158

##

--

Classification

predict(nb, test, type = "class") # nb %class% test

[1] classA classB classA classA classA

Levels: classA classB

Posterior probabilities

predict(nb, test, type = "prob") # nb %prob% test

classA classB

[1,] 0.6708181 0.3291819

[2,] 0.2792804 0.7207196

[3,] 0.6214784 0.3785216

[4,] 0.5806921 0.4193079

[5,] 0.7074807 0.2925193

Tabular and visual summaries of fitted distributions for a given feature

tables(nb, which = "norm")

--

:: norm (Gaussian)

--

12

##

norm classA classB

mean 0.01676159 0.02924558

sd 1.07402111 0.94078797

##

--

plot(nb, which = "norm")

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

norm

D
en

si
ty

classA
classB

Get names of assigned class conditional distributions

get_cond_dist(nb)

bern cat logical norm count

"Bernoulli" "Categorical" "Bernoulli" "Gaussian" "Poisson"

6.2 Training with matrix/data.frame - vector interface

The second example demonstrates model fitting and classification using the matrix/data.frame - vector
interface. It involves simulating data with multiple predictors, fitting a Naïve Bayes model, summariz-
ing the model, and performing classification on new data.

Section: Model fitting and classification using matrix/data.frame - vector interface

library(naivebayes)

13

Simulate data

n_vars <- 10

n <- 1e6

y <- sample(x = c("a", "b"), size = n, replace = TRUE)

Discrete features

X1 <- matrix(data = sample(letters[5:9], n * n_vars, TRUE),

ncol = n_vars)

X1 <- as.data.frame(X1)

Fit a Naive Bayes model using matrix/data.frame - vector interface

nb_cat <- naive_bayes(x = X1, y = y)

Show summary of the model

summary(nb_cat)

##

================================= Naive Bayes ==================================

##

- Call: naive_bayes.default(x = X1, y = y)

- Laplace: 0

- Classes: 2

- Samples: 1000000

- Features: 10

- Conditional distributions:

- Categorical: 10

- Prior probabilities:

- a: 0.5005

- b: 0.4995

##

--

Classification

system.time(pred2 <- predict(nb_cat, X1))

user system elapsed

0.302 0.019 0.322

head(pred2)

[1] a a b a b a

Levels: a b

14

6.3 Specialized Gaussian Naive Bayes

This example focuses on showcasing the functionalities of the gaussian_naive_bayes() function, which
is specifically designed for handling continuous data with Gaussian distribution assumptions. It in-
cludes steps such as data preparation, model fitting, summary, and classification, providing insights
into the practical application of this specialized function. Other specialized fitting functions have anal-
ogous interface.

Section: Model estimation through a specialized fitting function

library(naivebayes)

Prepare data (matrix and vector inputs are strictly necessary)

data(iris)

M <- as.matrix(iris[, 1:4])

y <- iris$Species

Train the Gaussian Naive Bayes

gnb <- gaussian_naive_bayes(x = M, y = y)

summary(gnb)

##

============================= Gaussian Naive Bayes =============================

##

- Call: gaussian_naive_bayes(x = M, y = y)

- Samples: 150

- Features: 4

- Prior probabilities:

- setosa: 0.3333

- versicolor: 0.3333

- virginica: 0.3333

##

--

Parameter estimates

coef(gnb)

setosa:mu setosa:sd versicolor:mu versicolor:sd virginica:mu

Sepal.Length 5.006 0.3524897 5.936 0.5161711 6.588

Sepal.Width 3.428 0.3790644 2.770 0.3137983 2.974

Petal.Length 1.462 0.1736640 4.260 0.4699110 5.552

Petal.Width 0.246 0.1053856 1.326 0.1977527 2.026

virginica:sd

Sepal.Length 0.6358796

Sepal.Width 0.3224966

15

Petal.Length 0.5518947

Petal.Width 0.2746501

coef(gnb)[c(TRUE, FALSE)] # show only means

setosa:mu versicolor:mu virginica:mu

Sepal.Length 5.006 5.936 6.588

Sepal.Width 3.428 2.770 2.974

Petal.Length 1.462 4.260 5.552

Petal.Width 0.246 1.326 2.026

tables(gnb, 1)

--

:: Sepal.Length (Gaussian)

--

setosa versicolor virginica

mu 5.0060000 5.9360000 6.5880000

sd 0.3524897 0.5161711 0.6358796

##

--

Visualization of fitted distributions

plot(gnb, which = 1)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sepal.Length

D
en

si
ty

setosa
versicolor
virginica

16

Classification

head(predict(gnb, newdata = M, type = "class")) # head(gnb %class% M)

[1] setosa setosa setosa setosa setosa setosa

Levels: setosa versicolor virginica

Posterior probabilities

head(predict(gnb, newdata = M, type = "prob")) # head(gnb %prob% M)

setosa versicolor virginica

[1,] 1 2.981309e-18 2.152373e-25

[2,] 1 3.169312e-17 6.938030e-25

[3,] 1 2.367113e-18 7.240956e-26

[4,] 1 3.069606e-17 8.690636e-25

[5,] 1 1.017337e-18 8.885794e-26

[6,] 1 2.717732e-14 4.344285e-21

Equivalent calculation via naive_bayes

gnb2 <- naive_bayes(M, y)

head(predict(gnb2, newdata = M, type = "prob"))

setosa versicolor virginica

[1,] 1 2.981309e-18 2.152373e-25

[2,] 1 3.169312e-17 6.938030e-25

[3,] 1 2.367113e-18 7.240956e-26

[4,] 1 3.069606e-17 8.690636e-25

[5,] 1 1.017337e-18 8.885794e-26

[6,] 1 2.717732e-14 4.344285e-21

17

7 Appendix

7.1 Practical examples: parameter estimation

This subsection provides a practical demonstration of parameter estimation in the Naïve Bayes model.
It is aimed at students who are learning about the technical aspects of model fitting for the first time.

7.1.1 Categorical distribution

In this example, the well-known iris dataset is modified by introducing a random categorical feature
called "new" with 3 levels/categories. The parameters are then estimated using Maximum-Likelihood
Estimation (MLE) and Bayesian estimation with pseudo-counts.

It’s important to highlight that the example is intentionally designed to have one level with a very
low probability of occurrence, which may not appear in the sample. Consequently, MLE may fail to pro-
vide a meaningful estimate for this level, resulting in a 0 probability estimate. This situation could lead
to misleading results since it implies that the event is impossible, which might not be the case. Moreover,
assigning a 0 probability to a category makes the calculation of posterior probabilities misleading, as it
effectively renders the posterior probability 0 regardless of the probabilities assigned by other features.

In contrast, Bayesian estimation with the addition of pseudo counts offers a more reliable estimate,
ensuring that even unlikely levels receive non-zero probabilities.

library(naivebayes)

Prepare data: --

data(iris)

iris2 <- iris

N <- nrow(iris2)

n_new_factors <- 3

factor_names <- paste0("level", 1:n_new_factors)

Add a new categorical feature, where one level is very unlikely

set.seed(2)

iris2$new <- factor(sample(paste0("level", 1:n_new_factors),

prob = c(0.005, 0.7, 0.295),

size = 150,

replace = TRUE), levels = factor_names)

Define class and feature levels: -------------------------------------

Ck <- "setosa"

level1 <- "level1"

level2 <- "level2"

level3 <- "level3"

18

level1 did not show up in the sample but we know that it

has 0.5% probability to occur.

table(iris2$new)

Parameter estimation: --

ML-estimates

ck_sub_sample <- table(iris2$new[iris$Species == Ck])

ck_mle <- ck_sub_sample / sum(ck_sub_sample)

Bayesian estimation via symmetric Dirichlet prior with concentration parameter 0.5

(corresponds to the Jeffreys' uninformative prior)

laplace <- 0.5

N1 <- sum(iris2$Species == Ck & iris2$new == level1) + laplace

N2 <- sum(iris2$Species == Ck & iris2$new == level2) + laplace

N3 <- sum(iris2$Species == Ck & iris2$new == level3) + laplace

N <- sum(iris2$Species == Ck) + laplace * n_new_factors

ck_bayes <- c(N1, N2, N3) / N

Compare estimates

rbind(ck_mle, ck_bayes)

Unlike MLE, the Bayesian estimate for level1 assigns positive probability

but is slightly overestimated. Compared to MLE,

estimates for level2 and level3 have been slightly shrunken.

In general, the higher value of laplace, the more resulting

distribution tends to the uniform distribution.

When laplace would be set to infinity

then the estimates for level1, level2 and level3

would be 1/3, 1/3 and 1/3.

Comparison with estimates obtained with naive_bayes function:

nb_mle <- naive_bayes(Species ~ new, data = iris2)

nb_bayes <- naive_bayes(Species ~ new, data = iris2, laplace = laplace)

MLE

rbind(ck_mle,

"nb_mle" = tables(nb_mle, which = "new")[[1]][,Ck])

19

Bayes

rbind(ck_bayes,

"nb_bayes" = tables(nb_bayes, which = "new")[[1]][,Ck])

Impact of 0 probabilities on posterior probabilities:

new_data <- data.frame(new = c("level1", "level2", "level3"))

The posterior probabilities are NaNs, due to division by 0 when normalization

predict(nb_mle, new_data, type = "prob", threshold = 0)

By default, this is remediated by replacing zero probabilities

with a small number given by threshold.

This leads to posterior probabilities being equal to prior probabilities

predict(nb_mle, new_data, type = "prob")

7.1.2 Gaussian distribution

In this example, the famous iris dataset is again used to demonstrate the Maximum-Likelihood esti-
mation of the mean and variance in class conditional Gaussian distributions.

Prepare data: --

data(iris)

Define the feature and class of interest

Xi <- "Petal.Width" # Selected feature

Ck <- "versicolor" # Selected class

Build class sub-sample for the selected feature

Ck_Xi_subsample <- iris[iris$Species == Ck, Xi]

Maximum-Likelihood Estimation (MLE)

mle_norm <- cbind("mean" = mean(Ck_Xi_subsample),

"sd" = sd(Ck_Xi_subsample))

MLE estimates obtained using the naive_bayes function

nb_mle <- naive_bayes(x = iris[Xi], y = iris[["Species"]])

rbind(mle_norm,

"nb_mle" = tables(nb_mle, which = Xi)[[Xi]][,Ck])

20

7.1.3 Kernel Density Estimation

In this example, kernel density estimation (KDE) is used to estimate class conditional densities for
Sepal.Width variable from the iris dataset.

Prepare data: --

data(iris)

Selected feature

Xi <- "Sepal.Width"

Classes

C1 <- "setosa"

C2 <- "virginica"

C3 <- "versicolor"

Build class sub-samples for the selected feature

C1_Xi_subsample <- iris[iris$Species == C1, Xi]

C2_Xi_subsample <- iris[iris$Species == C2, Xi]

C3_Xi_subsample <- iris[iris$Species == C3, Xi]

Estimate class conditional densities for the selected feature

dens1 <- density(C1_Xi_subsample)

dens2 <- density(C2_Xi_subsample)

dens3 <- density(C3_Xi_subsample)

Visualisation: ---

plot(dens1, main = "", col = "blue", xlim = c(1.5, 5), ylim = c(0, 1.4))

lines(dens2, main = "", col = "red")

lines(dens3, main = "", col = "black")

legend("topleft", legend = c(C1, C2, C3),

col = c("blue", "red", "black"),

lty = 1, bty = "n")

Compare to the naive_bayes: --

nb_kde <- naive_bayes(x = iris[Xi], y = iris[["Species"]], usekernel = TRUE)

plot(nb_kde, prob = "conditional")

dens3

nb_kde$tables[[Xi]][[C3]]

tables(nb_kde, Xi)[[1]][[C3]]

21

Use custom bandwidth selector: ---------------------------------------

?bw.SJ

nb_kde_SJ_bw <- naive_bayes(x = iris[Xi], y = iris[["Species"]],

usekernel = TRUE, bw = "SJ")

plot(nb_kde, prob = "conditional")

Visualize all available kernels: -------------------------------------

kernels <- c("gaussian", "epanechnikov", "rectangular","triangular",

"biweight", "cosine", "optcosine")

iris3 <- iris

iris3$one <- 1

sapply(kernels, function (ith_kernel) {

nb <- naive_bayes(formula = Species ~ one, data = iris3,

usekernel = TRUE, kernel = ith_kernel)

plot(nb, arg.num = list(main = paste0("Kernel: ", ith_kernel),

col = "black"), legend = FALSE)

invisible()

})

7.1.4 Poisson distribution

This example illustrates the parameter estimation for class conditional Poisson features based on simu-
lated data.

Simulate data: ---

cols <- 2

rows <- 10

set.seed(11)

M <- matrix(rpois(rows * cols, lambda = c(0.1,1)), nrow = rows,

ncol = cols, dimnames = list(NULL, paste0("Var", seq_len(cols))))

y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE))

Xi <- M[,"Var1", drop = FALSE]

MLE: ---

Estimate lambdas for each class

tapply(Xi, y, mean)

Compare with naive_bayes

pnb <- naive_bayes(x = Xi, y = y, usepoisson = TRUE)

tables(pnb, 1)

22

Adding pseudo-counts via laplace parameter: --------------------------

laplace <- 1

Xi_pseudo <- Xi

Xi_pseudo[y == "classB",][1] <- Xi_pseudo[y == "classB",][1] + laplace

Xi_pseudo[y == "classA",][1] <- Xi_pseudo[y == "classA",][1] + laplace

Estimates

tapply(Xi_pseudo, y, mean)

Compare with naive_bayes

pnb <- naive_bayes(x = Xi, y = y, usepoisson = TRUE, laplace = laplace)

tables(pnb, 1)

7.1.5 Multinomial distribution

This example is based on simulated data generated for an artificial scenario. It simulates word counts for
a collection of documents, distinguishing between spam and non-spam categories. The data generation
process is artificial and does not represent real-world documents. It serves as a simplified illustration of
estimating multinomial probabilities for each class.

Prepare data for an artificial example: --------------------------------------

set.seed(1)

cols <- 3 # words

rows <- 100 # all documents

rows_spam <- 10 # spam documents

Probability of no-spam for each word

prob_non_spam <- prop.table(runif(cols)) # C_1

Probability of spam for each word

prob_spam <- prop.table(runif(cols)) # C_2

Simulate counts of words according to the multinomial distributions

M1 <- t(rmultinom(rows - rows_spam, size = cols, prob = prob_non_spam))

M2 <- t(rmultinom(rows_spam, size = cols, prob = prob_spam))

M <- rbind(M1, M2)

colnames(M) <- paste0("word", 1:cols) ; rownames(M) <- paste0("doc", 1:rows)

head(M)

Simulate response with spam/no-spam

y <- c(rep("non-spam", rows - rows_spam), rep("spam", rows_spam))

23

Additive smoothing

laplace <- 0.5

Estimate the multinomial probabilities p_{ik} (i is word, k is class)

p1 = (p_11, p_21, p_31) (non-spam)

p2 = (p_12, p_22, p_32) (spam)

N_1 <- sum(M1)

N_i1 <- colSums(M1)

p1 <- (N_i1 + laplace) / (N_1 + cols * laplace)

N_2 <- sum(M2)

N_i2 <- colSums(M2)

p2 <- (N_i2 + laplace) / (N_2 + cols * laplace)

Combine estimated Multinomial probabilities for each class

cbind("non-spam" = p1, "spam" = p2)

Compare to the multinomial_naive_bayes

mnb <- multinomial_naive_bayes(x = M, y = y, laplace = laplace)

coef(mnb)

colSums(coef(mnb))

24

	Introduction
	Installation
	Main functions
	Naïve Bayes Model
	Prior distribution
	Available class conditional distributions
	Categorical distribution
	Poisson distribution
	Gaussian distribution
	Kernel distribution
	Multinomial distribution

	Assignment of distributions to the numeric features

	Parameter estimation
	Categorical distribution
	Maximum Likelihood
	Additive Smoothing and Bayesian estimation

	Poisson distribution
	Maximum Likelihood
	Bayesian estimation via pseudo-counts

	Gaussian distribution
	Kernel distribution
	Multinomial distribution
	Maximum Likelihood
	Bayesian estimation via pseudo-counts

	General usage
	Training with Formula Interface
	Training with matrix/data.frame - vector interface
	Specialized Gaussian Naive Bayes

	Appendix
	Practical examples: parameter estimation
	Categorical distribution
	Gaussian distribution
	Kernel Density Estimation
	Poisson distribution
	Multinomial distribution

