
A demonstration of the nproc package
Yang Feng, Jingyi Jessica Li and Xin Tong

2017-09-26

We provide a detailed demo of the usage for the nproc package.

Introduction

Installation and Package Loading

Neyman-Pearson Classifier

Neyman-Pearson Receiver Operator Characteristic Band

Introduction

Let (X,Y) be random variables where X ∈ X is a vector of d features and Y ∈ {0, 1} represents a binary class
label. A data set that contains independent observations {(xi, yi)}n+m

i=1 sampled from the joint distribution of
(X,Y) are often divided into training data {(xi, yi)}ni=1 and test data {(xi, yi)}n+m

i=n+1.

Based on training data, a classifier φ(·) is a mapping φ : X → {0, 1} that returns the predicted class label
given X. Classification error occurs when φ(X) 6= Y , and the binary loss is defined as 1(φ(X) 6= Y), where
1(·) denotes the indicator function. The risk is defined as R(φ) = E[1(φ(X) 6= Y)] = P (φ(X) 6= Y), which
can be expressed as a weighted sum of type I and II errors: R(φ) = P (Y = 0)R0(φ) + P (Y = 1)R1(φ), where
R0(φ) = P (φ(X) 6= Y |Y = 0) denotes the type I error, and R1(φ) = P (φ(X) 6= Y |Y = 1) denotes the type II
error.

The classical classification paradigm aims to find an oracle classifier φ∗ by minimizing the risk, φ∗ =
arg minφR(φ).

In contrast, the NP classification paradigm aims to mimic the NP oracle classifier φ∗
α with respect to a

pre-specified type I error upper bound α, φ∗
α = arg minφ: R0(φ)≤αR1(φ), where α reflects users’ conservative

attitude (priority) towards the type I error. In practice, since we do not know the class distirbution, we do
not expect to enforce that the type I error is bounded from above strictly; instead, we wish the type I error is
bounded by α with probability at least 1− δ, where δ ∈ (0, 1) is another user-specified hyper-parameter.

The nproc package provides two essential tools for NP classification: i). a function npc that adapts popular
classification algorithms, such as linear discriminant analysis, logistic regression, support vector machines and
random forrests to the NP paradigm; and ii) a function nproc that constructs NP-ROC bands, an alternative
to the popular ROC curves, that allows visualization and comparison of NP classifiers.

Installation and Package Loading

The simplest way to obtain the nproc package is to install it directly from CRAN. Type the following
command in R console:
install.packages("nproc", repos = "http://cran.us.r-project.org")

Users may change the repos options depending on their locations and preferences. Other options such as the
directories to which we want to install the packages can be altered in the command. For more details, see
help(install.packages).

Here the nproc package has been downloaded and installed to the default directories.

1

Alternatively, users can download the package source at http://cran.r-project.org/web/packages/nproc/index.
html and type Unix commands to install it to the desired location.

Then we can load the nproc package:
library(nproc)

Neyman-Pearson Classifier

Here, we demonstrate how to construct a Neyman-Pearson classifier when a user has priority to control the
type I error. Note that a user can also control the type II error under specific levels by switching the class
labels and applying the npc function.

In the first step, we create a dataset (x,y) from a logistic regression model with 2 features and sample size
1000.
n = 1000
set.seed(0)
x = matrix(rnorm(n*2),n,2)
c = 1+3*x[,1]
y = rbinom(n,1,1/(1+exp(-c)))

A visualization of the two classes.
plot(x[y==1,],col=1,xlim=c(-4,4),xlab='x1',ylab='x2')
points(x[y==0,],col=2,pch=2)
legend("topright",legend=c('Class 1','Class 0'),col=1:2,pch=c(1,2))

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

x1

x2

Class 1
Class 0

Then, we call the npc function to construct Neyman-Pearson classifiers. Suppose we want to use linear
discriminant analysis, we set method = “lda”. The default type I error upper bound is alpha=0.05, while the
alpha value can be changed to any user specified value in (0, 1). The tolerance upper bound δ also has the
default value at 0.05.
fit = npc(x, y, method = "lda", alpha = 0.05)

2

http://cran.r-project.org/web/packages/nproc/index.html
http://cran.r-project.org/web/packages/nproc/index.html

We can now evaluate the prediction performance of the NP classifier fit on a test set (xtest, ytest) generated
as follows.
xtest = matrix(rnorm(n*2),n,2)
ctest = 1+3*xtest[,1]
ytest = rbinom(n,1,1/(1+exp(-ctest)))

We calculate the overall accuracy of the classifier as well as the realized type I error on test data. It is shown
that the type I error is smaller than alpha.Strictly speaking, to demonstrate the effectiveness of the fit
classifier under the NP paradigm, we should repeat this experiment many times, and show that in 1− δ of
these repetitions, type I error (approximated by empirical type I error on a large test data set) is smaller
than alpha.
pred = predict(fit,xtest)
fit.score = predict(fit,x)
accuracy = mean(pred$pred.label==ytest)
cat("Overall Accuracy: ", accuracy,'\n')

Overall Accuracy: 0.682
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Type I error: 0.02631579

The base classification method implemented in the npc function includes the following options.

• logistic: Logistic regression. glm function with family = ‘binomial’
• penlog: Penalized logistic regression with LASSO penalty. glmnet in glmnet package
• svm: Support Vector Machines. svm in e1071 package
• randomforest: Random Forest. randomForest in randomForest package
• lda: Linear Discriminant Analysis. lda in MASS package
• nb: Naive Bayes. naiveBayes in e1071 package
• ada: Ada-Boost. ada in ada package

Now, we can change the classification method of choice to logistic regression and change alpha to 0.1.
fit = npc(x, y, method = "logistic", alpha = 0.1)
pred = predict(fit,xtest)
accuracy = mean(pred$pred.label == ytest)
cat("Overall Accuracy: ", accuracy,'\n')

Overall Accuracy: 0.769
ind0 = which(ytest == 0)
typeI = mean(pred$pred.label[ind0] != ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Type I error: 0.09473684

To construct each NP classifier, npc function randomly splits class 0 sample into two equal halves; the first
half, together with the class 1 sample, is used to train the base classification method, and the second half is
reserved to find the threshold on the scores. To increase stability, the nproc package provides implementation
of ensembled classifiers, which are majority votes of the NP classifiers constructed from different sample
splitting. The parameter value split is the number of random splits. In the following codes, we change its
number to 11.
fit = npc(x, y, method = "logistic", alpha = 0.1, split = 11)
pred = predict(fit,xtest)

3

accuracy = mean(pred$pred.label == ytest)
cat("Overall Accuracy: ", accuracy,'\n')

Overall Accuracy: 0.77
ind0 = which(ytest == 0)
typeI = mean(pred$pred.label[ind0] != ytest[ind0]) #type I error on test set
cat('Type I error: ', typeI, '\n')

Type I error: 0.09473684

Let’s compare the performance of different methods on our simulated dataset.
methodlist = c("logistic", "penlog", "randomforest", "svm",

"lda", "nb", "ada")
for(method in methodlist){
fit = npc(x, y, method = method, alpha = 0.05)
pred = predict(fit,xtest)
accuracy = mean(pred$pred.label==ytest)
cat(method, ': Overall Accuracy: ', accuracy,'\n')
ind0 = which(ytest==0)
typeI = mean(pred$pred.label[ind0]!=ytest[ind0]) #type I error on test set
cat(method, ': Type I error: ', typeI, '\n')
}

logistic : Overall Accuracy: 0.681
logistic : Type I error: 0.02631579
penlog : Overall Accuracy: 0.682
penlog : Type I error: 0.02631579
randomforest : Overall Accuracy: 0.58
randomforest : Type I error: 0.02105263
svm : Overall Accuracy: 0.505
svm : Type I error: 0.06052632
lda : Overall Accuracy: 0.682
lda : Type I error: 0.02631579
nb : Overall Accuracy: 0.685
nb : Type I error: 0.02631579
ada : Overall Accuracy: 0.72
ada : Type I error: 0.05

Back to Top

Neyman-Pearson Receiver Operator Characteristic (NP-ROC) Band

The function nproc constructs Neyman-Pearson Receiver Operator Characteristic (NP-ROC) band for an
NP classifier. When we plot an NP-ROC band, the horizontal axis is the alpha value, and the vertical axis is
the type II error conditioning on training data. When we section the band vertically at each alpha value,
the lower point on the segment is a high probability lower bound of the (1-type II error) of the NP classifier
corresponding to that alpha value, and the the upper point on the segment is a high probability upper bound
of the (1-type II error) of the NP classifier corresponding to that alpha value.

In the following demo, we use the same data as in the previous section.
fit = nproc(x, y, method = "nb")
plot(fit)

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

type I error upper bound α

1
−

 c
on

di
tio

na
l t

yp
e

II
er

ro
r

Note that, to create an NP-ROC band, there is no need to construct an NP classifier using the npc function
first.

When we choose linear discriminant analysis as the base method, we do as follows.
fit2 = nproc(x, y, method = "lda")
plot(fit2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

type I error upper bound α

1
−

 c
on

di
tio

na
l t

yp
e

II
er

ro
r

The compare function compares two NP classifiers at different α values (their δ values have to be the same)
by inespecting their NP-ROC bands. The following code displayes the NP-ROC bands generated by logistic
regression with the two predictors. The region marked in red is the alpha range in which the second NP
classifier dominates the first, and the black region means otherwise. The uncolored region means we cannot

5

claim supriority of one or the other with confidence.
n = 1000
set.seed(0)
x1 = c(rnorm(n), rnorm(n) + 1)
x2 = c(rnorm(n), rnorm(n)*sqrt(6) + 1)
y = c(rep(0,n), rep(1,n))
fit1 = nproc(x1, y, split = 11, method = 'lda')
fit2 = nproc(x2, y, split = 11, method = 'lda')
v = compare(fit1, fit2)
legend('topleft',legend = c(expression(X[1]),expression(X[2])),col = 1:2,lty = c(1,1))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

type I error upper bound α

1
−

 c
on

di
tio

na
l t

yp
e

II
er

ro
r

X1

X2

Lastly, we have implemented a web-based interface using the shiny app. It can be invoked by the following
command after the package is loaded.

shiny::runApp(system.file('nproc', package='nproc'))

Back to Top

6

	Introduction
	Installation and Package Loading
	Neyman-Pearson Classifier
	Neyman-Pearson Receiver Operator Characteristic (NP-ROC) Band

