Partitioning the R2 of GLMMs into variation explained by each 
    predictor and combination of predictors using semi-partial (part) R2 and
    inclusive R2. Methods are based on the R2 for GLMMs described in
    Nakagawa & Schielzeth (2013) and Nakagawa, Johnson & Schielzeth (2017).
| Version: | 
0.9.2 | 
| Depends: | 
R (≥ 3.5.0) | 
| Imports: | 
methods, stats, lme4 (≥ 1.1-21), pbapply (≥ 1.4-2), dplyr (≥ 1.0.0), purrr (≥ 0.3.3), rlang (≥ 0.4.2), tibble (≥
2.1.3), magrittr (≥ 1.5), ggplot2 (≥ 3.3.0), tidyr (≥ 1.1) | 
| Suggests: | 
testthat, future, furrr, knitr, rmarkdown, patchwork, covr | 
| Published: | 
2024-03-04 | 
| DOI: | 
10.32614/CRAN.package.partR2 | 
| Author: | 
Martin A. Stoffel [aut, cre],
  Shinichi Nakagawa [aut],
  Holger Schielzeth [aut] | 
| Maintainer: | 
Martin A. Stoffel  <martin.adam.stoffel at gmail.com> | 
| BugReports: | 
https://github.com/mastoffel/partR2/issues | 
| License: | 
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | 
https://github.com/mastoffel/partR2 | 
| NeedsCompilation: | 
no | 
| Citation: | 
partR2 citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
MixedModels | 
| CRAN checks: | 
partR2 results |