| Version: | 1.0-2 | 
| Date: | 2022-01-25 | 
| Title: | Panel Data Econometrics with R | 
| Depends: | R (≥ 3.5.0), plm | 
| Suggests: | car, dplyr, ggplot2, lmtest, msm, pglm, splm, survival, texreg | 
| Description: | Data sets for the Panel Data Econometrics with R <doi:10.1002/9781119504641> book. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://cran.r-project.org/package=pder | 
| Encoding: | UTF-8 | 
| NeedsCompilation: | no | 
| Packaged: | 2022-01-25 12:13:45 UTC; yves | 
| Author: | Yves Croissant  | 
| Maintainer: | Yves Croissant <yves.croissant@univ-reunion.fr> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-01-26 20:02:25 UTC | 
Callbacks to Job Applications
Description
a pseudo-panel of 1518 resumes from 2014
number of observations : 6072
number of individual observations : 4
country : United States
package : binomial
JEL codes: E24, E32, J14, J22, J23, J64
Chapter : 08
Usage
data(CallBacks)
Format
A dataframe containing:
- jobid
 the job index
- unempdur
 unemployment duration in month
- interim
 a dummy for interim experience
- callback
 a dummy for call backs
- old
 a dummy for age 57-58
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Farber, Henry S.; Silverman, Dan and Till von Wachter (2016) “Determinants of Callbacks to Job Applications: An Audit Study”, American Economic Review, 106(5), 314-318, doi: 10.1257/aer.p20161010 .
How to Overcome Organization Failure in Organization
Description
a pseudo-panel of 240 individuals
number of observations : 7168
number of individual observations : 30
country : United States and Spain
package : ordinalpanelexpe
JEL codes: C92, D23
Chapter : 08
Usage
data(CoordFailure)
Format
A dataframe containing:
- firm
 the firm index
- id
 the individual index
- period
 the period
- place
 either Cleveland or Barcelona
- bonus1
 the bonus for the first block of 10 rounds
- bonus2
 the bonus for the second block of 10 rounds
- bonus3
 the bonus for the third block of 10 rounds
- effort
 the level of effort of the employee
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Brandts, Jordi and David J. Cooper (2006) “A Change Would Do You Good... An Experimental Study on How to Overcome Coordination Failure in Organizations”, American Economic Review, 96(3), 669-693, doi: 10.1257/aer.96.3.669 .
The Relation Between Democraty and Income
Description
5-yearly observations of 211 countries from 1950 to 2000
number of observations : 2321
number of time-series : 11
country : world
package : panel
JEL codes: D72, O47
Chapter : 02, 07
Usage
data(DemocracyIncome)
Format
A dataframe containing:
- country
 country
- year
 the starting year of the 5-years period
- democracy
 democracy index
- income
 the log of the gdp per capita
- sample
 a dummy variable to select the subset used in the original article
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Daron Acemoglu, Simon Johnson, James A. Robinson and Pierre Yared (2008) “Income and Democracy”, American Economic Review, 98(3), 808-842, doi: 10.1257/aer.98.3.808 .
Examples
#### Example 7-1
## ------------------------------------------------------------------------
## Not run: 
data("DemocracyIncome", package = "pder")
## ------------------------------------------------------------------------
data("DemocracyIncome", package="pder")
set.seed(1)
di2000 <- subset(DemocracyIncome, year == 2000,
                 select = c("democracy", "income", "country"))
di2000 <- na.omit(di2000)
di2000$country <- as.character(di2000$country)
di2000$country[- c(2,5, 23, 16, 17, 22, 71,  125, 37, 43, 44,
                   79, 98, 105, 50, 120,  81, 129, 57, 58,99)] <- NA
if(requireNamespace("ggplot2")){
    library("ggplot2")
    ggplot(di2000, aes(income, democracy, label = country)) + 
        geom_point(size = 0.4) + 
        geom_text(aes(y= democracy + sample(0.03 * c(-1, 1), 
                                            nrow(di2000), replace = TRUE)),
                  size = 2) +
        theme(legend.text = element_text(size = 6), 
              legend.title= element_text(size = 8),
              axis.title = element_text(size = 8),
              axis.text = element_text(size = 6))
}
## ------------------------------------------------------------------------
library("plm")
pdim(DemocracyIncome)
head(DemocracyIncome, 4)
#### Example 7-2
## ------------------------------------------------------------------------
mco <- plm(democracy ~ lag(democracy) + lag(income) + year - 1, 
           DemocracyIncome, index = c("country", "year"), 
           model = "pooling", subset = sample == 1)
## ------------------------------------------------------------------------
mco <- plm(democracy ~ lag(democracy) + lag(income), 
           DemocracyIncome, index = c("country", "year"), 
           model = "within", effect = "time",
           subset = sample == 1)
coef(summary(mco))
#### Example 7-3
## ------------------------------------------------------------------------
within <- update(mco, effect = "twoways")
coef(summary(within))
#### Example 7-4
## ------------------------------------------------------------------------
ahsiao <- plm(diff(democracy) ~ lag(diff(democracy)) + 
              lag(diff(income)) + year - 1  | 
              lag(democracy, 2) + lag(income, 2) + year - 1, 
              DemocracyIncome, index = c("country", "year"),
              model = "pooling", subset = sample == 1)
coef(summary(ahsiao))[1:2, ]
#### Example 7-5
## ------------------------------------------------------------------------
diff1 <- pgmm(democracy ~ lag(democracy) + lag(income) | 
              lag(democracy, 2:99)| lag(income, 2),
              DemocracyIncome, index=c("country", "year"), 
              model="onestep", effect="twoways", subset = sample == 1)
coef(summary(diff1))
## ------------------------------------------------------------------------
diff2 <- update(diff1, model = "twosteps")
coef(summary(diff2))
#### Example 7-7
## ------------------------------------------------------------------------
sys2 <- pgmm(democracy ~ lag(democracy) + lag(income) | 
             lag(democracy, 2:99)| lag(income, 2),
             DemocracyIncome, index = c("country", "year"), 
             model = "twosteps", effect = "twoways",
             transformation = "ld")
coef(summary(sys2))
#### Example 7-8
## ------------------------------------------------------------------------
sqrt(diag(vcov(diff2)))[1:2]
sqrt(diag(vcovHC(diff2)))[1:2]
#### Example 7-10
## ------------------------------------------------------------------------
mtest(diff2, order = 2)
#### Example 7-9
## ------------------------------------------------------------------------
sargan(diff2)
sargan(sys2)
## End(Not run)
The Relation Between Democraty and Income
Description
25-yearly observations of 25 countries from 1850 to 2000
number of observations : 175
number of time-series : 7
country : world
package : panel
JEL codes: D72, O47
Chapter : 02, 07
Usage
data(DemocracyIncome25)
Format
A dataframe containing:
- country
 country
- year
 the starting year of the 5-years period
- democracy
 democracy index
- income
 the log of the gdp per capita
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Daron Acemoglu, Simon Johnson, James A. Robinson and Pierre Yared (2008) “Income and Democracy”, American Economic Review, 98(3), 808-842, doi: 10.1257/aer.98.3.808 .
Examples
#### Example 2-7
## ------------------------------------------------------------------------
library("plm")
data("DemocracyIncome25", package = "pder")
DI <- pdata.frame(DemocracyIncome25)
summary(lag(DI$income))
ercomp(democracy ~ lag(income), DI)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x)
       coef(plm(democracy ~ lag(income), DI, model = x))["lag(income)"])
#### Example 7-6
## ------------------------------------------------------------------------
data("DemocracyIncome25", package = "pder")
pdim(DemocracyIncome25)
## ------------------------------------------------------------------------
diff25 <- pgmm(democracy ~ lag(democracy) + lag(income) |
               lag(democracy, 2:99) + lag(income, 2:99),
               DemocracyIncome25, model = "twosteps")
## ------------------------------------------------------------------------
diff25lim <- pgmm(democracy ~ lag(democracy) + lag(income) | 
                  lag(democracy, 2:4)+ lag(income, 2:4),
                  DemocracyIncome25, index=c("country", "year"), 
                  model="twosteps", effect="twoways", subset = sample == 1)
diff25coll <- pgmm(democracy ~ lag(democracy) + lag(income) | 
                   lag(democracy, 2:99)+ lag(income, 2:99),
                   DemocracyIncome25, index=c("country", "year"), 
                   model="twosteps", effect="twoways", subset = sample == 1,
                   collapse = TRUE)
sapply(list(diff25, diff25lim, diff25coll), function(x) coef(x)[1:2])
#### Example 7-9
## ------------------------------------------------------------------------
sapply(list(diff25, diff25lim, diff25coll), 
       function(x) sargan(x)[["p.value"]])
Diffusion of Haemodialysis Technology
Description
yearly observations of 50 states from 1977 to 1990
number of observations : 700
number of time-series : 14
country : United States
package : panel
JEL codes: I18, O31
Chapter : 09
Usage
data(Dialysis)
Format
A dataframe containing:
- state
 the state id
- time
 the year of observation
- diffusion
 the number of equipment divided by the number of the equipment in the given state for the most recent period
- trend
 a linear trend
- regulation
 a dummy variable for the presence of a certificate of need regulation for the given state and the given period
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Steven B. Caudill, Jon M. Ford and David L. Kaserman (1995) “Certificate of Need Regulation and the Diffusion of Innovations : a Random Coefficient Model”, Journal of Applied Econometrics, 10, 73–78., doi: 10.1002/jae.3950100107 .
Examples
#### Example 9-1
## ------------------------------------------------------------------------
library("plm")
## ------------------------------------------------------------------------
data("Dialysis", package = "pder")
rndcoef <- pvcm(log(diffusion / (1 - diffusion)) ~ trend + trend:regulation, 
                 Dialysis, model="random")
summary(rndcoef)
## ------------------------------------------------------------------------
cbind(coef(rndcoef), stdev = sqrt(diag(rndcoef$Delta)))
Dynamics of Charitable Giving
Description
a pseudo-panel of 32 individuals from 2006
number of observations : 1039
number of individual observations : 4-80
country : United States
package : limdeppanel
JEL codes: C93, D64, D82, H41, L31, Z12
Chapter : 08
Usage
data(Donors)
Format
A dataframe containing:
- id
 the id of the sollicitor
- solsex
 the sex of the sollicitor
- solmin
 does the sollicitor belongs to a minority ?
- beauty
 beauty rating for the sollicitor
- assertive
 assertive rating for the sollicitor
- social
 social rating for the sollicitor
- efficacy
 efficacy rating for the sollicitor
- performance
 performance rating for the sollicitor
- confidence
 confidence rating for the sollicitor
- age
 age of the individual
- sex
 sex of the individual
- min
 does the individual belongs to a minority
- treatment
 the treatment, one of "vcm", "sgift" and "lgift"
- refgift
 has the individual refused the gift ?
- donation
 the amount of the donation
- prior
 has the individual been visited during the previous campaign ?
- prtreat
 the treatment during the previous campaign, one of "none", "vcm", and "lottery"
- prcontr
 has the individual made a donation during the previous campaign ?
- prdonation
 the amount of the donation during the previous campaign
- prsolsex
 the sex of the sollicitor during the previous campaign
- prsolmin
 did the sollicitor of the previous campaign belong to a minority ?
- prbeauty
 beauty rating for the sollicitor of the previous campaign
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Landry, Craig E.; Lange, Andreas; List, John A.; Price, Michael K. and Nicholas G. Rupp (2010) “Is a Donor in Hand Better Than Two in the Bush ? Evidence From a Natural Field Experiment”, American Economic Review, 100(3), 958–983, doi: 10.1257/aer.100.3.958 .
Examples
#### Example 8-5
## ------------------------------------------------------------------------
## Not run: 
data("Donors", package = "pder")
library("plm")
T3.1 <- plm(donation ~ treatment +  prcontr, Donors, index = "id")
T3.2 <- plm(donation ~ treatment * prcontr - prcontr, Donors, index = "id")
T5.A <- pldv(donation ~ treatment +  prcontr, Donors, index = "id", 
             model = "random", method = "bfgs")
T5.B <- pldv(donation ~ treatment * prcontr - prcontr, Donors, index = "id", 
             model = "random", method = "bfgs")
## End(Not run)
Evapotranspiration
Description
a pseudo-panel of 86 areas from 2008
number of observations : 430
number of individual observations : 5
country : France
package : panel
Chapter : 10
Usage
data(EvapoTransp)
Format
A dataframe containing:
- id
 observation site
- period
 measuring period
- et
 evapotranspiration
- prec
 precipitation
- meansmd
 mean soil moisture deficit
- potet
 potential evapotranspiration
- infil
 infiltration rate
- biomass
 biomass
- biomassp1
 biomass in early growing season
- biomassp2
 biomass in main growth period
- biomassp3
 peak biomass
- biomassp4
 peak biomass after clipping
- biomassp5
 biomass in autumn
- plantcover
 plant cover
- softforbs
 soft-leaved forbs
- tallgrass
 tall grass
- diversity
 species diversity
- matgram
 mat-forming graminoids
- dwarfshrubs
 dwarf shrubs
- legumes
 abundance of legumes
Source
kindly provided by the authors
References
Obojes, N.; Bahn, M.; Tasser, E.; Walde, J.; Inauen, N.; Hiltbrunner, E.; Saccone, P.; Lochet, J.; ClĂ©ment, J. and S. Lavorel (2015) “Vegetation Effects on the Water Balance of Mountain Grasslands Depend on Climatic Conditions”, Ecohydrology, 8(4), 552-569, doi: 10.1002/eco.1524 .
Examples
#### Example 10-14
## ------------------------------------------------------------------------
## Not run: 
data("EvapoTransp", package = "pder")
data("etw", package = "pder")
if (requireNamespace("splm")){
    library("splm")
    evapo <- et ~ prec + meansmd + potet + infil + biomass + plantcover +
        softforbs + tallgrass + diversity + matgram + dwarfshrubs + legumes
    semsr.evapo <- spreml(evapo, data=EvapoTransp, w=etw,
                          lag=FALSE, errors="semsr")
    summary(semsr.evapo)
}
## ------------------------------------------------------------------------
library("plm")
if (requireNamespace("lmtest")){
    coeftest(plm(evapo, EvapoTransp, model="pooling"))
}
## ------------------------------------------------------------------------
if (requireNamespace("lmtest") & requireNamespace("splm")){
    coeftest(spreml(evapo, EvapoTransp, w=etw, errors="sem"))
}
#### Example 10-17
## ------------------------------------------------------------------------
if (requireNamespace("lmtest")){
    saremsrre.evapo <- spreml(evapo, data = EvapoTransp,
                              w = etw, lag = TRUE, errors = "semsr")
    summary(saremsrre.evapo)$ARCoefTable
    round(summary(saremsrre.evapo)$ErrCompTable, 6)
}
## End(Not run)
Financial Institutions and Growth
Description
5-yearly observations of 78 countries from 1960 to 1995
number of observations : 546
number of time-series : 7
country : world
package : panel
JEL codes: G20, O16, O47, C23, C33, O15
Chapter : 07
Usage
data(FinanceGrowth)
Format
A dataframe containing:
- country
 country name
- period
 period
- growth
 growth rate * 100
- privo
 log private credit / GDP
- lly
 log liquid liabilities / GDP
- btot
 log bank credit/total credit
- lgdp
 log initial gdp per capita (PPP)
- sec
 mean years of secondary schooling
- gov
 log government spending / GDP
- lbmp
 log(1 black market premium)
- lpi
 log(1 + inflation rate)
- trade
 log (imports + exports)/GDP
Source
http://www.cgdev.org/content/publications/detail/14256
References
Levine, Ross; Loayza, Norman and Thorsten Beck (2000) “Financial Intermediation and Growth: Causality and Causes”, Journal of Monetary Economics, 46, 31-77, doi: 10.1016/S0304-3932(00)00017-9 .
Roodman, David (2009) “A Note on the Theme of Two Many Instruments”, Oxford Bulletin of Economics An Statistics, 71(1), 135–158, doi: 10.1111/j.1468-0084.2008.00542.x .
Foreign Trade of Developing Countries
Description
yearly observations of 31 countries from 1963 to 1986
number of observations : 744
number of time-series : 24
country : developing countries
package : panelivreg
JEL codes: O19, C51, F17
Chapter : 02, 06
Usage
data(ForeignTrade)
Format
A dataframe containing:
- country
 country name
- year
 year
- exports
 nominal exports deflated by the unit value of exports per capita
- imports
 nominal imports deflated by the unit value of exports per capita
- resimp
 official foreing reserves (in US dollars) divided by nominal imports (in US dollars)
- gnp
 real GNP per capita
- pgnp
 trend real GNP per capita calculated by fitting linear trend yit*=y0iexp(gi t), where y0i is the initial value of real gnp per capita for country i and gi is the ith country's average growth rate over 1964-1986
- gnpw
 real genp for USA per capita
- pm
 unit value of imports (in US dollars), 1980 = 100
- px
 unit value of exports (in US dollars), 1980 = 100
- cpi
 domestic CPI, 1980 = 100
- pw
 US producer's price index, 1980 = 100
- exrate
 exchange rate (price of US dollars in local currency), 1980 = 1
- consump
 domestic consumption per capita,
- invest
 domestic fixed gross investment per capita
- income
 domestic disposable income per capita
- pop
 population
- reserves
 official foreing reserves (in US dollars)
- money
 domestic money supply per capita
- trend
 trend dummy, 1964 = 1
- pwcpi
 log of us producer price index divided by domestic cpi
- importspmpx
 log of nominal imports divided by export prices
- pmcpi
 log of imports price divided by domestic cpi
- pxpw
 log of exports price divided by domestic cpi
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Kinal, T. and K. Lahiri (1993) “On the Estimation of Simultaneous-equations Error-components Models with An Application to a Model of Developing Country Foreign Trade”, Journal of Applied Economics, 8, 81-92, doi: 10.1002/jae.3950080107 .
Examples
#### Example 2-4
## ------------------------------------------------------------------------
library("plm")
data("ForeignTrade", package = "pder")
FT <- pdata.frame(ForeignTrade)
summary(FT$gnp)
ercomp(imports ~ gnp, FT)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x) coef(plm(imports ~ gnp, FT, model = x))["gnp"])
#### Example 6-2
## ------------------------------------------------------------------------
data("ForeignTrade", package = "pder")
w1 <- plm(imports~pmcpi + gnp + lag(imports) + lag(resimp)  |
          lag(consump) + lag(cpi) + lag(income) + lag(gnp) + pm +
          lag(invest) + lag(money) + gnpw + pw + lag(reserves) +
          lag(exports) + trend + pgnp + lag(px),
          ForeignTrade, model = "within")
r1 <- update(w1, model = "random", random.method = "nerlove", 
             random.dfcor = c(1, 1), inst.method = "baltagi")
## ------------------------------------------------------------------------
phtest(r1, w1)
## ------------------------------------------------------------------------
r1b <- plm(imports ~ pmcpi + gnp + lag(imports) + lag(resimp) |
            lag(consump) + lag(cpi) + lag(income) + lag(px) + 
            lag(reserves) + lag(exports) | lag(gnp) + pm + 
            lag(invest) + lag(money) + gnpw + pw  + trend + pgnp,
            ForeignTrade, model = "random", inst.method = "baltagi", 
            random.method = "nerlove", random.dfcor = c(1, 1))
phtest(w1, r1b)
## ------------------------------------------------------------------------
rbind(within = coef(w1), ec2sls = coef(r1b)[-1])
## ------------------------------------------------------------------------
elast <- sapply(list(w1, r1, r1b), 
                function(x) c(coef(x)["pmcpi"], 
                              coef(x)["pmcpi"] / (1 - coef(x)["lag(imports)"])))
dimnames(elast) <- list(c("ST", "LT"), c("w1", "r1", "r1b"))
elast
## ------------------------------------------------------------------------
rbind(within = coef(summary(w1))[, 2], 
      ec2sls = coef(summary(r1b))[-1, 2])
#### Example 6-4
## ------------------------------------------------------------------------
eqimp <- imports ~ pmcpi + gnp + lag(imports) + 
                lag(resimp) | lag(consump) + lag(cpi) + lag(income) + 
                lag(px) + lag(reserves) + lag(exports) | lag(gnp) + pm + 
                lag(invest) + lag(money) + gnpw + pw  + trend + pgnp
eqexp <- exports ~ pxpw + gnpw + lag(exports) |
                lag(gnp) + pw + lag(consump) + pm + lag(px) + lag(cpi) | 
                lag(money) + gnpw +  pgnp + pop + lag(invest) + 
                lag(income) + lag(reserves) + exrate
r12 <- plm(list(import.demand = eqimp,
                export.demand = eqexp),
           data = ForeignTrade, index = 31, model = "random", 
           inst.method = "baltagi", random.method = "nerlove",
           random.dfcor = c(1, 1))
summary(r12)
## ------------------------------------------------------------------------
rbind(ec2sls = coef(summary(r1b))[-1, 2],
      ec3sls = coef(summary(r12), "import.demand")[-1, 2])
Impact of Institutions on Cumulative Research
Description
yearly observations of 216 articles from 1970 to 2001
number of observations : 4880
number of time-series : 32
country : United States
package : countpanel
JEL codes: D02, D83, I23, O30
Chapter : 08
Usage
data(GiantsShoulders)
Format
A dataframe containing:
- pair
 the pair article index
- article
 the article index
- brc
 material of the article is deposit on a Biological Ressource Center
- pubyear
 publication year of the article
- brcyear
 year of the deposit in brc of the material related to the article
- year
 the year index
- citations
 the number of citations
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Furman, Jeffrey L. and Scott Stern (2011) “Climbing Atop the Shoulders of Giants: the Impact of Institutions on Cumulative Research”, American Economic Review, 101(5), 1933-1963, doi: 10.1257/aer.101.5.1933 .
Examples
#### Example 8-6
## ------------------------------------------------------------------------
## Not run: 
data("GiantsShoulders", package = "pder")
head(GiantsShoulders)
## ------------------------------------------------------------------------
if (requireNamespace("dplyr")){
    library("dplyr")
    GiantsShoulders <- mutate(GiantsShoulders, age = year - pubyear)
    cityear <- summarise(group_by(GiantsShoulders, brc, age), 
                         cit = mean(citations, na.rm = TRUE))
    GiantsShoulders <- mutate(GiantsShoulders,
                              window = as.numeric( (brc == "yes") & 
                                                   abs(brcyear - year) <= 1),
                              post_brc = as.numeric( (brc == "yes") & 
                                                     year - brcyear > 1),
                              age = year - pubyear)
    GiantsShoulders$age[GiantsShoulders$age == 31] <- 0
    #GiantsShoulders$year[GiantsShoulders$year 
    #GiantsShoulders$year[GiantsShoulders$year 
    GiantsShoulders$year[GiantsShoulders$year < 1975] <- 1970
    GiantsShoulders$year[GiantsShoulders$year >= 1975 & GiantsShoulders$year < 1980] <- 1975
    if (requireNamespace("pglm")){
        library("pglm")
        t3c1 <- lm(log(1 + citations) ~ brc + window + post_brc + factor(age), 
                   data = GiantsShoulders)
        t3c2 <- update(t3c1, . ~ .+  factor(pair) + factor(year))
        t3c3 <- pglm(citations ~ brc + window + post_brc + factor(age) + factor(year),
                     data = GiantsShoulders, index = "pair", 
                     effect = "individual", model = "within", family = negbin)
        t3c4 <- pglm(citations ~ window + post_brc + factor(age) + factor(year),
                     data = GiantsShoulders, index = "article", 
                     effect = "individual", model = "within", family = negbin)
        ## screenreg(list(t3c2, t3c3, t3c4),
        ##           custom.model.names = c("ols: age/year/pair-FE", 
        ##                                  "NB:age/year/pair-FE", "NB: age/year/article-FE"),
        ##           omit.coef="(factor)|(Intercept)", digits = 3)
    }
}
## End(Not run)
House Prices Data
Description
yearly observations of 49 regions from 1976 to 2003
number of observations : 1421
number of time-series : 29
country : United States
package : hedprice
JEL codes: C51, R31
Chapter : 09, 10
Usage
data(HousePricesUS)
Format
A dataframe containing:
- state
 state index
- year
 year
- names
 state name
- plate
 state number plate index
- region
 region index
- region.name
 region name
- price
 real house price index, 1980=100
- income
 real per-capita income
- pop
 total population
- intrate
 real interest rate on borrowing
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Holly, S.; Pesaran, M.G. and T. Yamagata (2010) “A Spatio-temporal Model of House Prices in the USA”, Journal of Econometrics, 158(1), 160–173, doi: 10.1016/j.jeconom.2010.03.040 .
Millo, Giovanni (2015) “Narrow Replication of 'spatio-temporal Model of House Prices in the Usa', Using R”, Journal of Applied Econometrics, 30(4), 703–704, doi: 10.1002/jae.2424 .
Examples
#### Example 4-11
## ------------------------------------------------------------------------
## Not run: 
data("HousePricesUS", package = "pder")
library("plm")
php <- pdata.frame(HousePricesUS)
## ------------------------------------------------------------------------
cbind("rho"   = pcdtest(diff(log(php$price)), test = "rho")$statistic,
      "|rho|" = pcdtest(diff(log(php$price)), test = "absrho")$statistic)
## ------------------------------------------------------------------------
regions.names <- c("New Engl", "Mideast", "Southeast", "Great Lks",
                   "Plains", "Southwest", "Rocky Mnt", "Far West")
corr.table.hp <- cortab(diff(log(php$price)), grouping = php$region,
                        groupnames = regions.names)
colnames(corr.table.hp) <- substr(rownames(corr.table.hp), 1, 5)
round(corr.table.hp, 2)
## ------------------------------------------------------------------------
pcdtest(diff(log(price)) ~ diff(lag(log(price))) + diff(lag(log(price), 2)),
        data = php)
#### Example 9-2
## ------------------------------------------------------------------------
data("HousePricesUS", package = "pder")
swmod <- pvcm(log(price) ~ log(income), data = HousePricesUS, model= "random")
mgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "mg")
coefs <- cbind(coef(swmod), coef(mgmod))
dimnames(coefs)[[2]] <- c("Swamy", "MG")
coefs
#### Example 9-3
## ------------------------------------------------------------------------
if (requireNamespace("texreg")){
    library("texreg")
    data("RDSpillovers", package = "pder")
    fm.rds <- lny ~ lnl + lnk + lnrd
    mg.rds <- pmg(fm.rds, RDSpillovers, trend = TRUE)
    dmg.rds <- update(mg.rds, . ~ lag(lny) + .)
    screenreg(list('Static MG' = mg.rds, 'Dynamic MG'= dmg.rds), digits = 3)
    if (requireNamespace("msm")){
        library("msm")
        b.lr <- coef(dmg.rds)["lnrd"]/(1 - coef(dmg.rds)["lag(lny)"])
        SEb.lr <- deltamethod(~ x5 / (1 - x2),
                              mean = coef(dmg.rds), cov = vcov(dmg.rds))
        z.lr <- b.lr / SEb.lr
        pval.lr <- 2 * pnorm(abs(z.lr), lower.tail = FALSE)
        lr.lnrd <- matrix(c(b.lr, SEb.lr, z.lr, pval.lr), nrow=1)
        dimnames(lr.lnrd) <- list("lnrd (long run)", c("Est.", "SE", "z", "p.val"))
        round(lr.lnrd, 3)
    }
}
#### Example 9-4
## ------------------------------------------------------------------------
housep.np <- pvcm(log(price) ~ log(income), data = HousePricesUS, model = "within")
housep.pool <- plm(log(price) ~ log(income), data = HousePricesUS, model = "pooling")
housep.within <- plm(log(price) ~ log(income), data = HousePricesUS, model = "within")
d <- data.frame(x = c(coef(housep.np)[[1]], coef(housep.np)[[2]]), 
                coef = rep(c("intercept", "log(income)"), 
                           each = nrow(coef(housep.np))))
if (requireNamespace("ggplot2")){
    library("ggplot2")
    ggplot(d, aes(x)) + geom_histogram(col = "black", fill = "white", bins = 8) +
        facet_wrap(~ coef, scales = "free") + xlab("") + ylab("")
}
## ------------------------------------------------------------------------
summary(housep.np)
## ------------------------------------------------------------------------
pooltest(housep.pool, housep.np)
pooltest(housep.within, housep.np)
#### Example 9-5
## ------------------------------------------------------------------------
library("texreg")
cmgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "cmg")
screenreg(list(mg = mgmod, ccemg = cmgmod), digits = 3)
#### Example 9-6
## ------------------------------------------------------------------------
ccemgmod <- pcce(log(price) ~ log(income), data=HousePricesUS, model="mg")
summary(ccemgmod)
## ------------------------------------------------------------------------
ccepmod <- pcce(log(price) ~ log(income), data=HousePricesUS, model="p")
summary(ccepmod)
#### Example 9-8
## ------------------------------------------------------------------------
data("HousePricesUS", package = "pder")
price <- pdata.frame(HousePricesUS)$price
purtest(log(price), test = "levinlin", lags = 2, exo = "trend")
purtest(log(price), test = "madwu", lags = 2, exo = "trend")
purtest(log(price), test = "ips", lags = 2, exo = "trend")
#### Example 9-9
## ------------------------------------------------------------------------
tab5a <- matrix(NA, ncol = 4, nrow = 2)
tab5b <- matrix(NA, ncol = 4, nrow = 2)
for(i in 1:4) {
    mymod <- pmg(diff(log(income)) ~ lag(log(income)) + 
                 lag(diff(log(income)), 1:i),
                 data = HousePricesUS,
                 model = "mg", trend = TRUE)
    tab5a[1, i] <- pcdtest(mymod, test = "rho")$statistic
    tab5b[1, i] <- pcdtest(mymod, test =  "cd")$statistic
}
for(i in 1:4) {
    mymod <- pmg(diff(log(price)) ~ lag(log(price)) +
                 lag(diff(log(price)), 1:i),
                 data=HousePricesUS,
                 model="mg", trend = TRUE)
    tab5a[2, i] <- pcdtest(mymod, test = "rho")$statistic
    tab5b[2, i] <- pcdtest(mymod, test =  "cd")$statistic
}
tab5a <- round(tab5a, 3)
tab5b <- round(tab5b, 2)
dimnames(tab5a) <- list(c("income", "price"),
                        paste("ADF(", 1:4, ")", sep=""))
dimnames(tab5b) <- dimnames(tab5a)
tab5a
tab5b
## ------------------------------------------------------------------------
php <- pdata.frame(HousePricesUS)
cipstest(log(php$price), type = "drift")
cipstest(diff(log(php$price)), type = "none")
## ------------------------------------------------------------------------
cipstest(resid(ccemgmod), type="none")
cipstest(resid(ccepmod), type="none")
#### Example 10-2
## ------------------------------------------------------------------------
data("usaw49", package="pder")
library("plm")
php <- pdata.frame(HousePricesUS)
pcdtest(php$price, w = usaw49)
## ------------------------------------------------------------------------
if (requireNamespace("splm")){
    library("splm")
    rwtest(php$price, w = usaw49, replications = 999)
}
## ------------------------------------------------------------------------
mgmod <- pmg(log(price) ~ log(income), data = HousePricesUS)
ccemgmod <- pmg(log(price) ~ log(income), data = HousePricesUS, model = "cmg")
pcdtest(resid(ccemgmod), w = usaw49)
rwtest(resid(mgmod), w = usaw49, replications = 999)
## End(Not run)
Income and Migration, Household Data
Description
yearly observations of 317 households from 2000 to 2006
number of observations : 2219
number of time-series : 7
country : Indonesia
package : limdeppanel
JEL codes: F22, J43, O13, O15, Q11, Q12, R23
Chapter : 08
Usage
data(IncomeMigrationH)
Format
A dataframe containing:
- household
 household index
- year
 the year
- migration
 a dummy indicating whether a household has any migrant departing in year t+1
- price
 rice price shock
- rain
 rain shock
- land
 landholdings (ha)
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Bazzi, Samuel (2017) “Wealth Heterogeneity and the Income Elasticity of Migration”, American Economic Journal, Applied Economics, 9(2), 219–255, doi: 10.1257/app.20150548 .
Income and Migration, Village Data
Description
3-yearly observations of 44674 villages from 2005 to 2008
number of observations : 89348
number of time-series : 2
country : Indonesia
package : panellimdep
JEL codes: F22, J43, O13, O15, Q11, Q12, R23
Chapter : 08
Usage
data(IncomeMigrationV)
Format
A dataframe containing:
- village
 village index
- year
 the year
- emigration
 share of the emigrants in the total population
- district
 the district of the village
- price
 rice price shock
- rain
 rain shock
- pareto
 Pareto parameter of the landholdings distribution
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Bazzi, Samuel (2017) “Wealth Heterogeneity and the Income Elasticity of Migration”, American Economic Journal, Applied Economics, 9(2), 219–255, doi: 10.1257/app.20150548 .
JEL codes
Description
-  
C13 : Estimation: General
-  
TexasElectr: Production of electricity in Texas -  
Tileries: Production of tileries in Egypt 
 -  
 -  
C23 : Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
-  
FinanceGrowth: Financial institutions and growth -  
IneqGrowth: Inequality and growth -  
TexasElectr: Production of electricity in Texas -  
Tileries: Production of tileries in Egypt 
 -  
 -  
C33 : Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
-  
FinanceGrowth: Financial institutions and growth -  
IneqGrowth: Inequality and growth 
 -  
 -  
C51 : Model Construction and Estimation
-  
ForeignTrade: Foreign Trade of Developing countries -  
HousePricesUS: House Prices data -  
RDPerfComp: R and D performing companies -  
RDSpillovers: Research and development spillovers data -  
TexasElectr: Production of electricity in Texas -  
Tileries: Production of tileries in Egypt -  
TradeEU: Trade in the European Union 
 -  
 -  
C78 : Bargaining Theory; Matching Theory
-  
LateBudgets: Late Budgets 
 -  
 -  
C90 : Design of Experiments: General
-  
Seniors: Intergenerationals experiments 
 -  
 -  
C92 : Design of Experiments: Laboratory, Group Behavior
-  
CoordFailure: How to overcome organization failure in organization 
 -  
 -  
C93 : Field Experiments
-  
Donors: Dynamics of charitable giving 
 -  
 -  
D02 : Institutions: Design, Formation, Operations, and Impact
-  
GiantsShoulders: Impact of institutions on cumulative research 
 -  
 -  
D23 : Organizational Behavior; Transaction Costs; Property Rights
-  
CoordFailure: How to overcome organization failure in organization 
 -  
 -  
D24 : Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
-  
RDPerfComp: R and D performing companies -  
RDSpillovers: Research and development spillovers data -  
TexasElectr: Production of electricity in Texas -  
Tileries: Production of tileries in Egypt -  
TurkishBanks: Turkish Banks 
 -  
 -  
D64 : Altruism; Philanthropy; Intergenerational Transfers
-  
Donors: Dynamics of charitable giving 
 -  
 -  
D72 : Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
-  
DemocracyIncome: The relation between democraty and income -  
DemocracyIncome25: The relation between democraty and income -  
LandReform: Politics and land reforms in India -  
LateBudgets: Late Budgets -  
Mafia: Mafia and Public Spending -  
Reelection: Deficits and reelection -  
RegIneq: Interregional redistribution and inequalities -  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 -  
D74 : Conflict; Conflict Resolution; Alliances; Revolutions
-  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 -  
D82 : Asymmetric and Private Information; Mechanism Design
-  
Donors: Dynamics of charitable giving 
 -  
 -  
D83 : Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
-  
GiantsShoulders: Impact of institutions on cumulative research 
 -  
 -  
E24 : Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
-  
CallBacks: Callbacks to job applications 
 -  
 -  
E32 : Business Fluctuations; Cycles
-  
CallBacks: Callbacks to job applications 
 -  
 -  
E62 : Fiscal Policy
-  
Mafia: Mafia and Public Spending -  
Reelection: Deficits and reelection 
 -  
 -  
F12 : Models of Trade with Imperfect Competition and Scale Economies; Fragmentation
-  
TradeFDI: Trade and Foreign Direct Investment in Germany and the United States 
 -  
 -  
F14 : Empirical Studies of Trade
 -  
F17 : Trade: Forecasting and Simulation
-  
ForeignTrade: Foreign Trade of Developing countries 
 -  
 -  
F21 : International Investment; Long-term Capital Movements
-  
TradeFDI: Trade and Foreign Direct Investment in Germany and the United States 
 -  
 -  
F22 : International Migration
-  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data 
 -  
 -  
F23 : Multinational Firms; International Business
-  
TradeFDI: Trade and Foreign Direct Investment in Germany and the United States 
 -  
 -  
F32 : Current Account Adjustment; Short-term Capital Movements
-  
TwinCrises: Costs of currency and banking crises 
 -  
 -  
F51 : International Conflicts; Negotiations; Sanctions
-  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 -  
G15 : International Financial Markets
-  
TwinCrises: Costs of currency and banking crises 
 -  
 -  
G20 : Financial Institutions and Services: General
-  
FinanceGrowth: Financial institutions and growth 
 -  
 -  
G21 : Banks; Depository Institutions; Micro Finance Institutions; Mortgages
-  
TurkishBanks: Turkish Banks -  
TwinCrises: Costs of currency and banking crises 
 -  
 -  
H23 : Taxation and Subsidies: Externalities; Redistributive Effects; Environmental Taxes and Subsidies
-  
RegIneq: Interregional redistribution and inequalities 
 -  
 -  
H41 : Public Goods
-  
Donors: Dynamics of charitable giving 
 -  
 -  
H61 : National Budget; Budget Systems
-  
LateBudgets: Late Budgets 
 -  
 -  
H62 : National Deficit; Surplus
-  
Reelection: Deficits and reelection 
 -  
 -  
H71 : State and Local Taxation, Subsidies, and Revenue
 -  
H72 : State and Local Budget and Expenditures
-  
LateBudgets: Late Budgets 
 -  
 -  
H73 : State and Local Government; Intergovernmental Relations: Interjurisdictional Differentials and Their Effects
-  
RegIneq: Interregional redistribution and inequalities 
 -  
 -  
H77 : Intergovernmental Relations; Federalism; Secession
-  
RegIneq: Interregional redistribution and inequalities 
 -  
 -  
I18 : Health: Government Policy; Regulation; Public Health
-  
Dialysis: Diffusion of haemodialysis technology 
 -  
 -  
I23 : Higher Education; Research Institutions
-  
GiantsShoulders: Impact of institutions on cumulative research 
 -  
 -  
J14 : Economics of the Elderly; Economics of the Handicapped; Non-labor Market Discrimination
 -  
J15 : Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination
-  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 -  
J22 : Time Allocation and Labor Supply
-  
CallBacks: Callbacks to job applications 
 -  
 -  
J23 : Labor Demand
-  
CallBacks: Callbacks to job applications 
 -  
 -  
J26 : Retirement; Retirement Policies
-  
Seniors: Intergenerationals experiments 
 -  
 -  
J31 : Wage Level and Structure; Wage Differentials
-  
TexasElectr: Production of electricity in Texas -  
Tileries: Production of tileries in Egypt 
 -  
 -  
J43 : Agricultural Labor Markets
-  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data 
 -  
 -  
J64 : Unemployment: Models, Duration, Incidence, and Job Search
-  
CallBacks: Callbacks to job applications 
 -  
 -  
K42 : Illegal Behavior and the Enforcement of Law
 -  
L31 : Nonprofit Institutions; NGOs; Social Entrepreneurship
-  
Donors: Dynamics of charitable giving 
 -  
 -  
L33 : Comparison of Public and Private Enterprises and Nonprofit Institutions; Privatization; Contracting Out
-  
TurkishBanks: Turkish Banks 
 -  
 -  
L82 : Entertainment; Media
-  
MagazinePrices: Magazine prices 
 -  
 -  
M12 : Personnel Management; Executives; Executive Compensation
-  
Seniors: Intergenerationals experiments 
 -  
 -  
M51 : Personnel Economics: Firm Employment Decisions; Promotions
-  
Seniors: Intergenerationals experiments 
 -  
 -  
O13 : Economic Development: Agriculture; Natural Resources; Energy; Environment; Other Primary Products
-  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data -  
LandReform: Politics and land reforms in India 
 -  
 -  
O15 : Economic Development: Human Resources; Human Development; Income Distribution; Migration
-  
FinanceGrowth: Financial institutions and growth -  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data -  
IneqGrowth: Inequality and growth -  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 -  
O16 : Economic Development: Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
-  
FinanceGrowth: Financial institutions and growth -  
IneqGrowth: Inequality and growth -  
TwinCrises: Costs of currency and banking crises 
 -  
 -  
O17 : Formal and Informal Sectors; Shadow Economy; Institutional Arrangements
-  
LandReform: Politics and land reforms in India -  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 -  
O19 : International Linkages to Development; Role of International Organizations
-  
ForeignTrade: Foreign Trade of Developing countries -  
TwinCrises: Costs of currency and banking crises 
 -  
 -  
O30 : Innovation; Research and Development; Technological Change; Intellectual Property Rights: General
-  
GiantsShoulders: Impact of institutions on cumulative research 
 -  
 -  
O31 : Innovation and Invention: Processes and Incentives
-  
Dialysis: Diffusion of haemodialysis technology 
 -  
 -  
O32 : Management of Technological Innovation and R&D
-  
RDSpillovers: Research and development spillovers data 
 -  
 -  
O33 : Technological Change: Choices and Consequences; Diffusion Processes
-  
RDSpillovers: Research and development spillovers data 
 -  
 -  
O41 : One, Two, and Multisector Growth Models
-  
Solow: Growth model 
 -  
 -  
O47 : Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
-  
DemocracyIncome: The relation between democraty and income -  
DemocracyIncome25: The relation between democraty and income -  
FinanceGrowth: Financial institutions and growth -  
IneqGrowth: Inequality and growth -  
Reelection: Deficits and reelection -  
Solow: Growth model -  
TwinCrises: Costs of currency and banking crises 
 -  
 -  
Q11 : Agriculture: Aggregate Supply and Demand Analysis; Prices
-  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data 
 -  
 -  
Q12 : Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
-  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data 
 -  
 -  
Q15 : Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
-  
LandReform: Politics and land reforms in India 
 -  
 -  
R12 : Size and Spatial Distributions of Regional Economic Activity
-  
RegIneq: Interregional redistribution and inequalities 
 -  
 -  
R23 : Urban, Rural, Regional, Real Estate, and Transportation Economics: Regional Migration; Regional Labor Markets; Population; Neighborhood Characteristics
-  
IncomeMigrationH: Income and Migration, household data -  
IncomeMigrationV: Income and Migration, village data -  
RegIneq: Interregional redistribution and inequalities 
 -  
 -  
R31 : Housing Supply and Markets
-  
HousePricesUS: House Prices data 
 -  
 -  
R41 : Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
-  
SeatBelt: Seat belt usage and traffic fatalities 
 -  
 -  
Z12 : Cultural Economics: Religion
-  
Donors: Dynamics of charitable giving 
 -  
 -  
Z13 : Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification
-  
ScrambleAfrica: The long-run effects of the scramble for Africa 
 -  
 
Inequality and Growth
Description
5-yearly observations of 266 world from 1961 to 1995
number of observations : 1862
number of time-series : 7
country : country
package : panel
JEL codes: O47, O15, C23, C33, O16
Chapter : 07
Usage
data(IneqGrowth)
Format
A dataframe containing:
- country
 country name
- period
 the period
- growth
 growth rate
- yssw
 years of secondary schooling among women, lagged
- yssm
 years of secondary schooling among men, lagged
- pinv
 price level of investment, lagged
- lgdp
 log initial gdp per capita
- gini
 gini index
Source
http://www.cgdev.org/content/publications/detail/14256
References
Forbes, Kristin J. (2000) “A Reassessment of the Relationship Between Inequality and Growth”, American Economic Review, 90(4), 869-887, doi: 10.1257/aer.90.4.869 .
Roodman, David (2009) “A Note on the Theme of Two Many Instruments”, Oxford Bulletin of Economics An Statistics, 71(1), 135–158, doi: 10.1111/j.1468-0084.2008.00542.x .
Politics and Land Reforms in India
Description
yearly observations of 89 villages from 1974 to 2003
number of observations : 2670
number of time-series : 30
country : India
package : panellimdep
JEL codes: D72, O13, O17, Q15
Chapter : 08
Usage
data(LandReform)
Format
A dataframe containing:
- mouza
 village id number
- year
 Year
- district
 District
- rplacul
 ratio of patta land registered to operational land
- rpdrhh
 ratio of pattadar households to total households (hh)
- rblacul
 ratio of barga land registered to operational land
- rbgdrrghh
 ratio of bargadar registered hh to total hh
- election
 election year dummy
- preelect
 preelection year dummy
- edwalfco
 to complete
- erlesscu
 interpolated landless hh, gi
- ermgcu
 interpolated mg hh, gi
- ersmcu
 interpolated sm hh, gi
- ermdcu
 interpolated md hh, gi
- ercusmol
 ratio of land below 5 acres cultivable NOT extrapolated
- ercubgol
 ratio of land above 12.5 acres cultivable
- erillnb
 interpolated ratio of illiterate non big hh
- erlow
 interpolated ratio of low caste hh
- ratleft0
 Left Front share in GP, == 0 for 1974
- dwalfco
 Assembly average vote difference LF-INC, district
- inflat
 Inflation in last 5 years in CPI for Agricultural Labourers
- smfempyv
 Year variation in Employment in Small Scale Industrial Units registered with Dir
- incseats
 INC seats / Total seats in Lok Sabha
- lfseats
 Ratio of LF seats in parliament
- inflflag
 Interaction between Inflation and ratleft lagged
- inclflag
 Interaction between INC seats and ratleft lagged
- lflflag
 Interaction between LF seats and ratleft lagged
- ratleft
 Left Front share in GP, ==share of assembly seats for 1974
- infiw
 to complete
- infumme
 to complete
- infal
 to complete
- gp
 Gran Panchayat
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Bardhan, Pranab and Dilip Mookherjee (2010) “Determinants of Redistributive Politics: An Empirical Analysis of Land Reform in West Bengal, India”, American Economic Review, 100(4), 1572–1600, doi: 10.1257/aer.100.4.1572 .
Late Budgets
Description
yearly observations of 48 States from 1978 to 2007
number of observations : 1440
number of time-series : 30
country : United States
package : limdeppanel
JEL codes: C78, D72, H61, H72
Chapter : 08
Usage
data(LateBudgets)
Format
A dataframe containing:
- state
 the state
- year
 the year
- late
 late budget ?
- dayslate
 number of days late for the budget
- unempdiff
 unemployment variation
- splitbranch
 split branch
- splitleg
 split legislature
- elecyear
 election year
- endbalance
 end of year balances in the general fund and stabilization fund
- demgov
 democrat governor ?
- lameduck
 lameduck
- govexp
 number of years since the incumbent governor took office
- newgov
 new governor ?
- pop
 the polulation
- kids
 percentage of population aged 5-17
- elderly
 percentage of population aged 65 or older
- nocarry
 does the state law does not allow a budget deficit to be carried over to the next fiscal year ?
- supmaj
 is a super majority required to pass each budget ?
- fulltimeleg
 full time legislature ?
- shutdown
 shutdown provision ?
- black
 percentage of blacks
- graduate
 percentage of graduates
- censusresp
 census response rate
- fiveyear
 five year dummies, one of '93-97', '98-02', '03-07'
- deadline
 is there a deadline ? one of 'none', 'soft' and 'hard'
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Andersen, Asger Lau; Lassen, David Dreyer and Lasse Holboll Westh Nielsen (2012) “Late Budgets”, American Economic Journal, Economic Policy, 4(4), 1-40, doi: 10.1257/pol.4.4.1 .
Examples
#### Example 8-4
## ------------------------------------------------------------------------
data("LateBudgets", package = "pder")
library("plm")
LateBudgets$dayslatepos <- pmax(LateBudgets$dayslate, 0)
LateBudgets$divgov <- with(LateBudgets, 
                           factor(splitbranch == "yes" | 
                                  splitleg == "yes", 
                                  labels = c("no", "yes")))
LateBudgets$unemprise <- pmax(LateBudgets$unempdiff, 0)
LateBudgets$unempfall <- - pmin(LateBudgets$unempdiff, 0)
form <- dayslatepos ~ unemprise + unempfall + divgov + elecyear + 
    pop + fulltimeleg + shutdown + censusresp + endbalance + kids + 
    elderly + demgov + lameduck + newgov + govexp + nocarry + 
    supmaj + black + graduate
## ------------------------------------------------------------------------
FEtobit <- pldv(form, LateBudgets)
summary(FEtobit)
Mafia and Public Spending
Description
yearly observations of 95 provinces from 1986 to 1999
number of observations : 1330
number of time-series : 14
country : Italy
package : panelivreg
JEL codes: D72, E62, H71, K42
Chapter : 06
Usage
data(Mafia)
Format
A dataframe containing:
- province
 the province (95)
- region
 the region (19)
- year
 the year
- pop
 the population
- y
 percentage growth of real per-capita value added
- g
 annual variation of the per-capita public investment in infrastructure divided by lagged real per-capita value added
- cd
 number of municipalities placed under the administration of external commissioners
- cds1
 same as cd, provided that the official deccree is publisehd in the first semester of the year
- cds2
 same as cd, provided that the average number of days betwen the dismissal of the city concil and the year end is less than 180
- u1
 change in the log of per-capita employment
- u2
 change in the log of per-capita hours of wage supplement provided by the unemployment insurance scheme
- mafiosi
 first difference of the number of people reported by the police forces to the judicial authority because of mafia-type association
- extortion
 first difference of the number of people reported by the police forces to the judicial authority because of extorsion
- corruption1
 first difference of the number of people reported by the police forces to the judicial authority because of corruption
- corruption2
 first difference of the number of crimes reported by the police forces to the judicial authority because of corruption
- murder
 first difference of the number of people reported by the police forces to the judicial authority because of murder related to mafia activity
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Acconcia, Antonio; Corsetti, Giancarlo and Saviero Simonelli (2014) “Mafia and Public Spending: Evidence on the Fiscal Multimplier Form a Quasi-experiment”, American Economic Review, 104(7), 2189-2209, doi: 10.1257/aer.104.7.2185 .
Magazine Prices
Description
yearly observations of 38 magazines from 1940 to 1980
number of observations : 1262
number of time-series : 41
country : United States
package : binomialpanel
JEL codes: L82
Chapter : 08
Usage
data(MagazinePrices)
Format
A dataframe containing:
- year
 the year
- magazine
 the magazine name
- price
 the price of the magazine in january
- change
 has the price changed between january of the current year and january of the following year ?
- length
 number of years since the previous price change
- cpi
 gdp deflator index
- cuminf
 cummulative change in inflation since the previous price change
- sales
 single copy sales of magazines for magazine industry
- cumsales
 cumulative change in magazine industry sales since previous price change
- included
 is the observation included in the econometric analysis ?
- id
 group index numbers used for the conditional logit estimation
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Willis, Jonathan L. (2006) “Magazine Prices Revisited”, Journal of Applied Econometrics, 21(3), 337-344, doi: 10.1002/jae.836 .
Cecchetti, Stephen G. (1986) “The Frequency of Price Adjustment, a Study of Newsstand Prices of Magazines”, Journal of Econometrics, 31, 255-274, doi: 10.1016/0304-4076(86)90061-8 .
Examples
#### Example 8-3
## ------------------------------------------------------------------------
data("MagazinePrices", package = "pder")
logitS <- glm(change ~ length + cuminf + cumsales, data = MagazinePrices, 
              subset = included == 1, family = binomial(link = 'logit'))
logitD <- glm(change ~ length + cuminf + cumsales + magazine, 
              data = MagazinePrices, 
              subset = included == 1, family = binomial(link = 'logit'))
if (requireNamespace("survival")){
    library("survival")
    logitC <- clogit(change ~ length + cuminf + cumsales + strata(id), 
                     data = MagazinePrices,
                     subset = included == 1)
    if (requireNamespace("texreg")){
        library("texreg")
        screenreg(list(logit = logitS, "FE logit" = logitD,
                       "cond. logit" = logitC), omit.coef = "magazine")
    }
}
R and D Performing Companies
Description
yearly observations of 509 firms from 1982 to 1989
number of observations : 4072
number of time-series : 8
country : United States
package : panel
JEL codes: C51, D24
Chapter : 07
Usage
data(RDPerfComp)
Format
A dataframe containing:
- id
 firm identifier
- year
 year
- y
 production in logs
- n
 labor in logs
- k
 capital in logs
Source
author's website https://www.nuffield.ox.ac.uk/users/bond/index.html
References
Blundell, Richard and Stephen Bond (2000) “GMM Estimation with Persistent Panel Data: An Application to Production Functions”, Econometric Reviews, 19(3), 321-340, doi: 10.1080/07474930008800475 .
Research and Development Spillovers Data
Description
a cross-section of 119 industries from 1980 to 2005
country : world
package : panel
JEL codes: C51, D24, O32, O33
Chapter : 04, 05, 09
Usage
data(RDSpillovers)
Format
A dataframe containing:
- id
 country-industry index
- year
 year
- country
 country
- sector
 manufacturing sector as SIC 15-37, excluding SIC 23
- lny
 log output
- lnl
 log of labour input
- lnk
 log of physical capital stock
- lnrd
 log of RD capital stock
Source
author's web site https://sites.google.com/site/medevecon/home
References
Eberhardt, M.; Helmers, C. and H. Strauss (2013) “Do Spillovers Matter in Estimating Private Returns to R and D?”, The Review of Economics and Statistics, 95(2), 436–448, doi: 10.1162/REST_a_00272 .
Examples
#### Example 4-10
## ------------------------------------------------------------------------
## Not run: 
data("RDSpillovers", package = "pder")
library("plm")
fm.rds <- lny ~ lnl + lnk + lnrd
## ------------------------------------------------------------------------
pcdtest(fm.rds, RDSpillovers)
## ------------------------------------------------------------------------
rds.2fe <- plm(fm.rds, RDSpillovers, model = "within", effect = "twoways")
pcdtest(rds.2fe)
## ------------------------------------------------------------------------
cbind("rho"  = pcdtest(rds.2fe, test = "rho")$statistic,
      "|rho|"= pcdtest(rds.2fe, test = "absrho")$statistic)
#### Example 5-10
## ------------------------------------------------------------------------
data("RDSpillovers", package = "pder")
pehs <- pdata.frame(RDSpillovers, index = c("id", "year"))
ehsfm <- lny ~ lnl + lnk + lnrd
phtest(ehsfm, pehs, method = "aux")
## ------------------------------------------------------------------------
phtest(ehsfm, pehs, method = "aux", vcov = vcovHC)
#### Example 5-15
## ------------------------------------------------------------------------
fm <- lny ~ lnl + lnk + lnrd
## ------------------------------------------------------------------------
if (requireNamespace("lmtest")){
    library("lmtest")
    gglsmodehs <- pggls(fm, RDSpillovers, model = "pooling")
    coeftest(gglsmodehs)
    feglsmodehs <- pggls(fm, RDSpillovers, model = "within")
    coeftest(feglsmodehs)
    
    phtest(gglsmodehs, feglsmodehs)
    
    fdglsmodehs <- pggls(fm, RDSpillovers, model = "fd")
    
    fee <- resid(feglsmodehs)
    dbfee <- data.frame(fee=fee, id=attr(fee, "index")[[1]])
    coeftest(plm(fee~lag(fee)+lag(fee,2), dbfee, model = "p", index="id"))
    
    fde <- resid(fdglsmodehs)
    dbfde <- data.frame(fde=fde, id=attr(fde, "index")[[1]])
    coeftest(plm(fde~lag(fde)+lag(fde,2), dbfde, model = "p", index="id"))
    
    coeftest(fdglsmodehs)
}
#### Example 9-7
## ------------------------------------------------------------------------
ccep.rds <- pcce(fm.rds, RDSpillovers, model="p")
if (requireNamespace("lmtest")){
    library("lmtest")
    ccep.tab <- cbind(coeftest(ccep.rds)[, 1:2],
                      coeftest(ccep.rds, vcov = vcovNW)[, 2],
                      coeftest(ccep.rds, vcov = vcovHC)[, 2])
    dimnames(ccep.tab)[[2]][2:4] <- c("Nonparam.", "vcovNW", "vcovHC")
    round(ccep.tab, 3)
}
## ------------------------------------------------------------------------
autoreg <- function(rho = 0.1, T = 100){
  e <- rnorm(T+1)
  for (t in 2:(T+1)) e[t] <- e[t]+rho*e[t-1]
  e
}
set.seed(20)
f <- data.frame(time = rep(0:40, 2), 
                rho = rep(c(0.2, 1), each = 41),
                y = c(autoreg(rho = 0.2, T = 40), 
                      autoreg(rho = 1, T = 40)))
if (requireNamespace("ggplot2")){
    library("ggplot2")
    ggplot(f, aes(time, y)) + geom_line() + facet_wrap(~ rho) + xlab("") + ylab("")
    autoreg <- function(rho = 0.1, T = 100){
        e <- rnorm(T)
        for (t in 2:(T)) e[t] <- e[t] + rho *e[t-1]
        e
    }
    tstat <- function(rho = 0.1, T = 100){
        y <- autoreg(rho, T)
        x <- autoreg(rho, T)
        z <- lm(y ~ x)
        coef(z)[2] / sqrt(diag(vcov(z))[2])
    }
    result <- c()
    R <- 1000
    for (i in 1:R) result <- c(result, tstat(rho = 0.2, T = 40))
    quantile(result, c(0.025, 0.975))
    prop.table(table(abs(result) > 2))
    result <- c()
    R <- 1000
    for (i in 1:R) result <- c(result, tstat(rho = 1, T = 40))
    quantile(result, c(0.025, 0.975))
    prop.table(table(abs(result) > 2))
    
    R <- 1000
    T <- 100
    result <- c()
    for (i in 1:R){
        y <- autoreg(rho=1, T=100)
        Dy <- y[2:T] - y[1:(T-1)]
        Ly <- y[1:(T-1)]
        z <- lm(Dy ~ Ly)
        result <- c(result, coef(z)[2] / sqrt(diag(vcov(z))[2]))
    }
    ggplot(data.frame(x = result), aes(x = x)) + 
        geom_histogram(fill = "white", col = "black", 
                       bins = 20, aes(y = ..density..)) +
        stat_function(fun = dnorm) + xlab("") + ylab("")
    prop.table(table(result < -1.64))
}
## End(Not run)
Deficits and Reelection
Description
yearly observations of 75 countries from 1960 to 2003
number of observations : 439
number of time-series : 16
country : world
package : panelbinomial
JEL codes: D72, E62, H62, O47
Chapter : 08
Usage
data(Reelection)
Format
A dataframe containing:
- country
 the country
- year
 the year
- narrow
 TRUEif the observation belongs to the narrow data set- reelect
 one if the incumbent was reelected and zero otherwise
- ddefterm
 the change in the ratio of the government surplus to gdp in the two years preeceding the election year, relative to the two previous years
- ddefey
 the change in the government surplus ratio to gdpin the election year, compared to the previous year
- gdppc
 the average growth rate of real per capita gdp during the leader's current term
- dev
 one for developped countries, 0 otherwise
- nd
 one for a new democratic country, 0 otherwise
- maj
 one for majoritarian electoral system, 0 otherwise
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Adi Brender and Allan Drazen (2008) “How Do Budget Deficits and Economic Growth Affect Reelection Prospects? Evidence From a Large Panel of Countries”, American Economic Review, 98(5), 2203-2220, doi: 10.1257/aer.98.5.2203 .
Examples
#### Example 8-1
## ------------------------------------------------------------------------
## Not run: 
library("plm")
data("Reelection", package = "pder")
## ------------------------------------------------------------------------
elect.l <- glm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj, 
          data = Reelection, family = "binomial", subset = narrow)
l2 <- update(elect.l, family = binomial)
l3 <- update(elect.l, family = binomial())
l4 <- update(elect.l, family = binomial(link = 'logit'))
## ------------------------------------------------------------------------
elect.p <- update(elect.l, family = binomial(link = 'probit'))
## ------------------------------------------------------------------------
if (requireNamespace("pglm")){
    library("pglm")
    elect.pl <- pglm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj, 
                 Reelection, family = binomial(link = 'logit'), 
                subset = narrow)
    elect.pp <- pglm(reelect ~ ddefterm + ddefey + gdppc + dev + nd + maj, 
                 Reelection, family = binomial(link = 'probit'), 
                subset = narrow)
}
## End(Not run)
Interregional Redistribution and Inequalities
Description
yearly observations of 17 countries from 1982 to 1999
number of observations : 102
number of time-series : 6
country : oecd
package : panel
JEL codes: D72, H23, H71, H73, H77, R12, R23
Chapter : 07
Usage
data(RegIneq)
Format
A dataframe containing:
- country
 the country
- period
 the period
- regineq
 coefficient of variatio of regional gdp per capita
- gdppc
 real gross domestic product per capita
- pop
 total population
- popgini
 gini coefficient of regional population size
- urban
 share of urban living population
- social
 total government social expenditures as share of gdp
- unempl
 unemployment rate
- dec
 sub-national expenditures as share of total government expenditures
- transrev
 grants received by national and sub-national governments from other levels of government as share of total government revenues
- transaut
 sub-national non autonomous revenues as share of total government revenues
Source
Review of Economic Studies' web site https://academic.oup.com/restud
References
Anke S. Kessler and Nico A. Hansen and Christian Lessmann (2011) “Interregional Redistribution and Mobility in Federations: a Positive Approach”, Review of Economic Studies, 78(4), 1345-1378, doi: 10.1093/restud/rdr003 .
The Long-run Effects of the Scramble for Africa
Description
a pseudo-panel of 49 countries
number of observations : 1212
number of individual observations : 2-112
country : Africa
package : countpanel
JEL codes: D72, D74, F51, J15, O15, O17, Z13
Chapter : 08
Usage
data(ScrambleAfrica)
Format
A dataframe containing:
- country
 country code
- group
 ethnic group name
- conflicts
 number of conflicts
- split
 dummy for partitioned ethnic area
- spillover
 spillover index, the fraction of adjacent groups in the same country that are partitioned
- region
 the region
- pop
 population according to the first post-independance census
- area
 land area
- lake
 lakes dummy
- river
 rivers dummy
- capital
 dummy if a capital city falls in the homeland of an ethnic group
- borderdist
 distance of the centroid of the area from the national border
- capdist
 distance of the centroid of the area from the capital
- seadist
 distance of the centroid of the area from the sea coast
- coastal
 dummy for areas that are by the sea coast
- meanelev
 mean elevation
- agriculture
 index of land suitability for agriculture
- diamond
 diamond mine indicator
- malaria
 malaria stability index
- petroleum
 oil field indicator
- island
 island dummy
- city1400
 dummy for areas with major city in 1400
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Michalopoulos, Stelios and Elias Papaioannou (2016) “The Long-run Effects of the Scramble for Africa”, American Economic Review, 106(7), 1802–1848, doi: 10.1257/aer.20131311 .
Seat Belt Usage and Traffic Fatalities
Description
yearly observations of 51 states from 1983 to 1997
number of observations : 765
number of time-series : 15
country : United States
package : panel
JEL codes: R41, K42
Chapter : 06
Usage
data(SeatBelt)
Format
A dataframe containing:
- state
 the state code
- year
 the year
- farsocc
 the number of traffic fatalities of drivers and passengers (of any seating position) of a motor vehicule in transport
- farsnocc
 the number of traffic fatalities of pedestrians and bicyclists
- usage
 rate of seat belt usage
- percapin
 median income in current US dollars
- unemp
 unemployment rate
- meanage
 mean age
- precentb
 the percentage of african-americans in the state population
- precenth
 the percentage of people of hispanic origin in the state population
- densurb
 traffic density urban ; registered vehicules per unit length of urban roads in miles
- densrur
 traffic density rural ; registered vehicules per unit length of urban roads in miles
- viopcap
 number of violent crimes (homicide, rape and robbery) per capita
- proppcap
 number of preperty rimes (burglary, larceny and auto theft) per capita
- vmtrural
 vehicule miles traveled on rural roads
- vmturban
 vehicule miles traveled on urban roads
- fueltax
 fuel tax (in curent cents)
- lim65
 65 miles per hour speed limit (55 mph is the base category)
- lim70p
 70 miles per hour or above speed limit (55 mph is the base caegory)
- mlda21
 a dummy variable that is equal to 1 for a minimum for a minimum legal drinking age of 21 years (18 years is the base category)
- bac08
 a dummy variable that is equal to 1 foe a maximum of 0.08 blood alcohol content (0.1 is the base category)
- ds
 a dummy equal to 1 for the periods in which the state had a secondary-enforcement mandatory seat belt law, or a primary-enforcement law that preceded by a secondary-enforcement law (no seat belt law is the base category)
- dp
 a dummy variable eqal to 1 for the periods in which the state had a primary-enforcement mandatory seat belt law that was not preceded by a secondary-enforcement law (no seat belt is the base category)
- dsp
 a dummy variable equal to 1 for the periods in which the state had a primary-enforcement mandatory seat belt law that was preceded by a secondary enforcement law (no seat belt law is the base category
Source
author's website https://leinav.people.stanford.edu
References
Cohen, Alma and Liran Einav (2003) “The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities”, The Review of Economics and Statistics, 85(4), 828-843, doi: 10.2139/ssrn.293582 .
Examples
#### Example 6-1
## ------------------------------------------------------------------------
## Not run: 
library("plm")
## ------------------------------------------------------------------------
y ~ x1 + x2 + x3 | x1 + x3 + z
y ~ x1 + x2 + x3 | . - x2 + z
## ------------------------------------------------------------------------
data("SeatBelt", package = "pder")
SeatBelt$occfat <- with(SeatBelt, log(farsocc / (vmtrural + vmturban)))
ols <- plm(occfat ~ log(usage) + log(percapin) + log(unemp) + log(meanage) + 
           log(precentb) + log(precenth)+ log(densrur) + 
           log(densurb) + log(viopcap) + log(proppcap) +
           log(vmtrural) + log(vmturban) + log(fueltax) +
           lim65 + lim70p + mlda21 + bac08, SeatBelt, 
           effect = "time")
fe <- update(ols, effect = "twoways")
ivfe <- update(fe, . ~ . |  . - log(usage) + ds + dp +dsp)
rbind(ols = coef(summary(ols))[1,],
      fe = coef(summary(fe))[1, ],
      w2sls = coef(summary(ivfe))[1, ])
## ------------------------------------------------------------------------
SeatBelt$noccfat <- with(SeatBelt, log(farsnocc / (vmtrural + vmturban)))
nivfe <- update(ivfe, noccfat ~ . | .)
coef(summary(nivfe))[1, ]
## End(Not run)
Intergenerationals Experiments
Description
a pseudo-panel of 159 Individuals
number of observations : 2703
number of individual observations : 17
country : France
package : panellimdep
JEL codes: C90, J14, J26, M12, M51
Chapter : 08
Usage
data(Seniors)
Format
A dataframe containing:
- id
 individual number of each subject
- period
 from 1 to 17
- session
 from 1 to 12
- firm
 1 if working subject, 0 otherwise
- firmx
 1 if the firm is X, 0 if the firm is Y
- order
 1 if the treatment with no information on the generation of the group is played first in the Public Good game, 0 otherwise
- gender
 1 if male subject, 0 if female subject
- manager
 1 if the subject is a manager, 0 otherwise
- student
 1 if the subject is a student, 0 otherwise
- retir
 1 if retiree, 0 otherwise
- senior
 1 if the subject is a senior, 0 otherwise
- seniord
 1 if the subject reports s/he is a senior, 0 if junior
- workingsenior
 1 if the subject is a working senior, 0 otherwise
- workingjunior
 1 if the subject is a working junior, 0 otherwise
- information
 1 if information is given on the generation composition of the group, 0 otherwise
- nbseniors
 number of seniors in the group, excluding the subject
- homogend
 1 if the group is homogenous in terms of declared generation, 0 otherwise
- homodgenck
 1 if the group is homogenous in terms of declared generation and this is common information, 0 otherwise
- contribution
 amount of the contribution to the public good (from 0 to 20)
- pot
 amount of the public good (from 0 to 60)
- potlag
 amount of the public good in the previous period (from 0 to 60)
- potimean
 amount of the public good, excluding the subject's contribution (from 0 to 40)
- potimeanlag
 amount of the public good in the previous period, excluding the subject's contribution (from 0 to 40)
- payoffpggame
 payoff in the public good game
- desirnbseniors
 desired number of seniors co-participants in the Selection treatment (from 0 to 2)
- invest
 amount invested in the risky lotery
- payoffriskgame
 payoff in the investment game
- letters
 1 if letters are A M F U R I P , 0 if they are OATFNED
- idicompet
 individual number of the co-participant in the Task game
- seniordopponent
 1 if the co-participant in the Task game reports s/he is a senior, 0 otherwise
- seniori
 1 if the co-participant in the Task game is a senior
- option
 1 if the subject has chosen the tournament, 0 otherwise
- option0
 1 if the co-participant has chosen the tournament, 0 otherwise
- twoperstour
 1 if both participants have chosen the tournament, 0 otherwise
- beliefself
 number of words the subject believes s/he will create
- beliefseniors
 number of words the subject believes the seniors will create on average
- beliefjuniors
 number of words the subject believes the juniors will create on average
- beliefsmatchs
 number of words the subject believes the seniors will create on average when matched with a senior
- beliefjmatchj
 number of words the subject believes the juniors will create on average when matched with a junior
- relatabil
 1 if the subject believes s/he can create more words than the generation of his/her co-participant, 0 otherwise
- performance
 number of words actually created
- perfi
 number of words actually created by the co-participant
- payoffcompetitiongame
 payoff in the Task game
- expesenck
 1 if the subject has been informed that s/he was interacting with seniors in the Public Good game, 0 otherwise
- potlagsenior
 Amount of the pot in the previous period * the subject is a senior
- heterogend
 1 if the group mixes the two generations, 0 otherwise
Source
American Economic Association Data Archive : https://www.aeaweb.org/aer/
References
Charness, Gary and Marie-Claire Villeval (2009) “Cooperation and Competition in Intergenerational Experiments in the Field and the Laboratory”, American Economic Review, 99(3), 956–978, doi: 10.1257/aer.99.3.956 .
Growth Model
Description
yearly observations of 97 countries from 1960 to 1985
number of observations : 576
number of time-series : 6
country : world
package : panel
JEL codes: O47, O41
Chapter : 07
Usage
data(Solow)
Format
A dataframe containing:
- id
 country id
- year
 year
- lgdp
 log of gdp per capita
- lsrate
 log of the saving rate, approximated by the investement rate
- lpopg
 log of population growth + 0.05 (which is an approximation of the sum of the rate of labor-augmenting technological progress and of the rate of depreciation of physical capital)
Source
author's website https://www.nuffield.ox.ac.uk/users/bond/index.html
References
Caselli, Francesco; Esquivel, Gerardo and Fernando Lefort (1996) “Reopening the Convergence Debate: a New Look at Cross-country Growth Empirics”, Journal of Economic Growth, 1, 363-389, doi: 10.1007/BF00141044 .
Bond, Stephen; Hoeffler, Anke and Johnatan Temple (2001) “GMM Estimation of Empirical Growth Model”, CEPR Discussion Paper, 3048, 1-33.
Production of Electricity in Texas
Description
yearly observations of 10 firms from 1966 to 1983
number of observations : 180
number of time-series : 18
country : Texas
package : productionpanel
JEL codes: D24, C13, C51, C23, J31
Chapter : 02, 03
Usage
data(TexasElectr)
Format
A dataframe containing:
- id
 the firm identifier
- year
 the year, from 1966 to 1983
- output
 output
- pfuel
 price of fuel
- plab
 price of labor
- pcap
 price of capital
- expfuel
 expense in fuel
- explab
 expense in labor
- expcap
 expense in capital
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Kumbhakar SC (1996) “Estimation of Cost Efficiency with Heteroscedasticity: An Application to Electric Utilities”, Journal of the Royal Statistical Society, Series D, 45, 319–335.
Horrace and Schmidt (1996) “Confidence Statements for Efficiency Estimates From Stochastic Frontier Models”, Journal of Productity Analysis, 7, 257–282, doi: 10.1007/BF00157044 .
Horrace and Schmidt (2012) “Multiple Comparisons with the Best, with Economic Applications”, Journal of Applied Econometrics, 15(1), 1–26, doi: 10.1002/(SICI)1099-1255(200001/02)15:1<1::AID-JAE551>3.0.CO;2-Y .
Examples
#### Example 2-6
## ------------------------------------------------------------------------
data("TexasElectr", package = "pder")
library("plm")
TexasElectr$cost <- with(TexasElectr, explab + expfuel + expcap)
TE <- pdata.frame(TexasElectr)
summary(log(TE$output))
ercomp(log(cost) ~ log(output), TE)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x)
       coef(plm(log(cost) ~ log(output), TE, model = x))["log(output)"])
#### Example 3-2
## ------------------------------------------------------------------------
data("TexasElectr", package = "pder")
if (requireNamespace("dplyr")){
    library("dplyr")
    TexasElectr <- mutate(TexasElectr,
                          pf = log(pfuel / mean(pfuel)),
                          pl = log(plab / mean(plab)) - pf,
                          pk = log(pcap / mean(pcap)) - pf)
## ------------------------------------------------------------------------
    TexasElectr <- mutate(TexasElectr, q = log(output / mean(output)))
## ------------------------------------------------------------------------
    TexasElectr <- mutate(TexasElectr,
                          C = expfuel + explab + expcap,
                          sl = explab / C,
                          sk = expcap / C,
                          C = log(C / mean(C)) - pf)
    
## ------------------------------------------------------------------------
    TexasElectr <- mutate(TexasElectr,
                          pll = 1/2 * pl ^ 2,
                          plk = pl * pk,
                          pkk = 1/2 * pk ^ 2,
                          qq = 1/2 * q ^ 2)
## ------------------------------------------------------------------------
    cost <- C ~ pl + pk + q + pll + plk + pkk + qq
    shlab <- sl ~ pl + pk
    shcap <- sk ~ pl + pk
## ------------------------------------------------------------------------
    R <- matrix(0, nrow = 6, ncol = 14)
    R[1, 2] <- R[2, 3] <- R[3, 5] <- R[4, 6] <- R[5, 6] <- R[6, 7] <- 1
    R[1, 9] <- R[2, 12] <- R[3, 10] <- R[4, 11] <- R[5, 13] <- R[6, 14] <- -1
## ------------------------------------------------------------------------
    z <- plm(list(cost = C ~ pl + pk + q + pll + plk + pkk + qq,
                  shlab = sl ~ pl + pk,
                  shcap = sk ~ pl + pk),
             TexasElectr, model = "random",
             restrict.matrix = R)
    summary(z)
}
Production of Tileries in Egypt
Description
weeklyly observations of 25 firms from 1982 to 1983
number of observations : 483
number of time-series : 22
country : Egypt
package : panelproduction
JEL codes: D24, C13, C51, C23, J31
Chapter : 01, 03
Usage
data(Tileries)
Format
A dataframe containing:
- id
 firm id
- week
 week (3 weeks aggregated)
- area
 one of
"fayoum"and"kalyubiya"- output
 output
- labor
 labor hours
- machine
 machine hours
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Horrace and Schmidt (1996) “Confidence Statements for Efficiency Estimates From Stochastic Frontier Models”, Journal of Productity Analysis, 7, 257–282, doi: 10.1007/BF00157044 .
Horrace and Schmidt (2012) “Multiple Comparisons with the Best, with Economic Applications”, Journal of Applied Econometrics, 15(1), 1–26, doi: 10.1002/(SICI)1099-1255(200001/02)15:1<1::AID-JAE551>3.0.CO;2-Y .
Seale J.L. (1990) “Estimating Stochastic Frontier Systems with Unbalanced Panel Data: the Case of Floor Tile Manufactories in Egypt”, Journal of Applied Econometrics, 5, 59–79, doi: 10.1002/jae.3950050105 .
Examples
#### Example 1-2
## ------------------------------------------------------------------------
data("Tileries", package = "pder")
library("plm")
coef(summary(plm(log(output) ~ log(labor) + machine, data = Tileries,
             subset = area == "fayoum")))
## ------------------------------------------------------------------------
coef(summary(plm(log(output) ~ log(labor) + machine, data = Tileries,
             model = "pooling", subset = area == "fayoum")))
#### Example 1-5
## ------------------------------------------------------------------------
data("Tileries", package = "pder")
til.fm <- log(output) ~ log(labor) + log(machine)
lm.mod <- lm(til.fm, data = Tileries, subset = area == "fayoum")
## ------------------------------------------------------------------------
if (requireNamespace("car")){
    library("car")
    lht(lm.mod, "log(labor) + log(machine) = 1")
## ------------------------------------------------------------------------
    library("car")
    lht(lm.mod, "log(labor) + log(machine) = 1", vcov=vcovHC)
}
#### Example 1-6
## ------------------------------------------------------------------------
plm.mod <- plm(til.fm, data = Tileries, subset = area == "fayoum")
## ------------------------------------------------------------------------
if (requireNamespace("car")){
    library("car")
    lht(plm.mod, "log(labor) + log(machine) = 1", vcov = vcovHC)
}
#### Example 3-1
## ------------------------------------------------------------------------
library(plm)
data("Tileries", package = "pder")
head(Tileries, 3)
pdim(Tileries)
## ------------------------------------------------------------------------
Tileries <- pdata.frame(Tileries)
plm.within <- plm(log(output) ~ log(labor) + log(machine), Tileries)
y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)
lm.within <- lm(I(y - Between(y)) ~ I(x1 - Between(x1)) + I(x2 - Between(x2)) - 1)
lm.lsdv <- lm(log(output) ~ log(labor) + log(machine) + factor(id), Tileries)
coef(lm.lsdv)[2:3]
coef(lm.within)
coef(plm.within)
## ------------------------------------------------------------------------
tile.r <- plm(log(output) ~ log(labor) + log(machine), Tileries, model = "random")
summary(tile.r)
## ------------------------------------------------------------------------
plm.within <- plm(log(output) ~ log(labor) + log(machine),
                  Tileries, effect = "twoways")
lm.lsdv <- lm(log(output) ~ log(labor) + log(machine) +
                  factor(id) + factor(week), Tileries)
y <- log(Tileries$output)
x1 <- log(Tileries$labor)
x2 <- log(Tileries$machine)
y <- y - Between(y, "individual") - Between(y, "time") + mean(y)
x1 <- x1 - Between(x1, "individual") - Between(x1, "time") + mean(x1)
x2 <- x2 - Between(x2, "individual") - Between(x2, "time") + mean(x2)
lm.within <- lm(y ~ x1 + x2 - 1)
coef(plm.within)
coef(lm.within)
coef(lm.lsdv)[2:3]
## ------------------------------------------------------------------------
wh <- plm(log(output) ~ log(labor) + log(machine), Tileries,
          model = "random", random.method = "walhus",
          effect = "twoways")
am <- update(wh, random.method = "amemiya")
sa <- update(wh, random.method = "swar")
ercomp(sa)
## ------------------------------------------------------------------------
re.models <- list(walhus = wh, amemiya = am, swar = sa)
sapply(re.models, function(x) sqrt(ercomp(x)$sigma2))
sapply(re.models, coef)
The Q Theory of Investment
Description
yearly observations of 188 firms from 1951 to 1985
number of observations : 6580
number of time-series : 35
country : United States
package : panel
Chapter : 02
Usage
data(TobinQ)
Format
A dataframe containing:
- cusip
 compustat's identifying number
- year
 year
- isic
 sic industry classification
- ikb
 investment divided by capital : broad definition
- ikn
 investment divided by capital : narrow definition
- qb
 Tobin's Q : broad definition
- qn
 Tobin's Q : narrow definition
- kstock
 capital stock
- ikicb
 investment divided by capital with imperfect competition : broad definition
- ikicn
 investment divided by capital with imperfect competition : narrow definition
- omphi
 one minus phi (see the article p. 320)
- qicb
 Tobin's Q with imperfect competition : broad definition
- qicn
 Tobin's Q with imperfect competition : narrow definition
- sb
 S (see equation 10 p. 320) : broad definition
- sn
 S (see equation 10 p. 320) : narrow definition
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Schaller, Huntley (1990) “A Re-examination of the Q Theory of Investment Using U.S. Firm Data”, Journal of Applied Econometrics, 5(4), 309–325, doi: 10.1002/jae.3950050402 .
Examples
#### Example 2-1
## ------------------------------------------------------------------------
## Not run: 
library("plm")
data("TobinQ", package = "pder")
## ------------------------------------------------------------------------
pTobinQ <- pdata.frame(TobinQ)
pTobinQa <- pdata.frame(TobinQ, index = 188)
pTobinQb <- pdata.frame(TobinQ, index = c('cusip'))
pTobinQc <- pdata.frame(TobinQ, index = c('cusip', 'year'))
## ------------------------------------------------------------------------
pdim(pTobinQ)
## ----results = 'hide'----------------------------------------------------
pdim(TobinQ, index = 'cusip')
pdim(TobinQ)
## ------------------------------------------------------------------------
head(index(pTobinQ))
## ------------------------------------------------------------------------
Qeq <- ikn ~ qn
Q.pooling <- plm(Qeq, pTobinQ, model = "pooling")
Q.within <- update(Q.pooling, model = "within")
Q.between <- update(Q.pooling, model = "between")
## ------------------------------------------------------------------------
Q.within
summary(Q.within)
## ------------------------------------------------------------------------
head(fixef(Q.within))
head(fixef(Q.within, type = "dfirst"))
head(fixef(Q.within, type = "dmean"))
## ------------------------------------------------------------------------
head(coef(lm(ikn ~ qn + factor(cusip), pTobinQ)))
#### Example 2-2
## ------------------------------------------------------------------------
Q.swar <- plm(Qeq, pTobinQ, model = "random", random.method = "swar")
Q.swar2 <- plm(Qeq, pTobinQ, model = "random",
               random.models = c("within", "between"),
               random.dfcor = c(2, 2))
summary(Q.swar)
## ------------------------------------------------------------------------
ercomp(Qeq, pTobinQ)
ercomp(Q.swar)
## ------------------------------------------------------------------------
Q.walhus <- update(Q.swar, random.method = "swar")
Q.amemiya <- update(Q.swar, random.method = "amemiya")
Q.nerlove <- update(Q.swar, random.method = "nerlove")
Q.models <- list(swar = Q.swar, walhus = Q.walhus,
                 amemiya = Q.amemiya, nerlove = Q.nerlove)
sapply(Q.models, function(x) ercomp(x)$theta)
sapply(Q.models, coef)
#### Example 2-3
## ------------------------------------------------------------------------
sapply(list(pooling = Q.pooling, within = Q.within,
            between = Q.between, swar = Q.swar),
       function(x) coef(summary(x))["qn", c("Estimate", "Std. Error")])
## ------------------------------------------------------------------------
summary(pTobinQ$qn)
## ------------------------------------------------------------------------
SxxW <- sum(Within(pTobinQ$qn) ^ 2)
SxxB <- sum((Between(pTobinQ$qn) - mean(pTobinQ$qn)) ^ 2)
SxxTot <- sum( (pTobinQ$qn - mean(pTobinQ$qn)) ^ 2)
pondW <- SxxW / SxxTot
pondW
pondW * coef(Q.within)[["qn"]] +
  (1 - pondW) * coef(Q.between)[["qn"]]
## ------------------------------------------------------------------------
T <- 35
N <- 188
smxt2 <- deviance(Q.between) * T / (N - 2)
sidios2 <- deviance(Q.within) / (N * (T - 1) - 1)
phi <- sqrt(sidios2 / smxt2)
## ------------------------------------------------------------------------
pondW <- SxxW / (SxxW + phi^2 * SxxB)
pondW
pondW * coef(Q.within)[["qn"]] +
  (1 - pondW) * coef(Q.between)[["qn"]]
#### Example 2-8
## ------------------------------------------------------------------------
Q.models2 <- lapply(Q.models, function(x) update(x, effect = "twoways"))
sapply(Q.models2, function(x) sqrt(ercomp(x)$sigma2))
sapply(Q.models2, function(x) ercomp(x)$theta)
## End(Not run)
Trade in the European Union
Description
yearly observations of 91 pairs of countries from 1960 to 2001
number of observations : 3822
number of time-series : 42
country : Europe
package : gravity
JEL codes: C51, F14
Chapter : 06
Usage
data(TradeEU)
Format
A dataframe containing:
- year
 the year
- pair
 a pair of countries
- trade
 the sum of logged exports and imports, bilateral trade flow
- gdp
 the sum of the logged real GDPs
- sim
 a measure of similarity between two trading countries;
- rlf
 a measure of relative factor endowments;
- rer
 the logged bilateral real exchange rate;
- cee
 a dummy equal to 1 when both belong to European Community;
- emu
 a dummy equal to 1 when both adopt the common currency;
- dist
 the geographical distance between capital cities;
- bor
 a dummy equal to 1 when the trading partners share a border;
- lan
 a dummy equal to 1 when both speak the same language;
- rert
 the logarithm of real exchange rates between the European currencies and the U.S. dollar;
- ftrade
 the time specific common factors (individual means) of the variables trade
- fgdp
 the time specific common factors (individual means) of the variables gdp
- fsim
 the time specific common factors (individual means) of the variables sim
- frlf
 the time specific common factors (individual means) of the variables rlf
- frer
 the time specific common factors (individual means) of the variables rer
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Serlenga, Laura and Yongcheol Shin (2007) “Gravity Models of Intra-eu Trade: Application of the Ccep-ht Estimation in Heterogenous Panels with Unobserved Common Time-specific Factors”, Journal of Applied Econometrics, 22, 361–381, doi: 10.1002/jae.944 .
Examples
#### Example 6-3
## ------------------------------------------------------------------------
## Not run: 
data("TradeEU", package = "pder")
library("plm")
## ------------------------------------------------------------------------
ols <- plm(trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan, TradeEU, 
          model = "pooling", index = c("pair", "year"))
fe <- update(ols, model = "within")
fe
## ------------------------------------------------------------------------
re <- update(fe, model = "random")
re
## ------------------------------------------------------------------------
phtest(re, fe)
## ----results='hide'------------------------------------------------------
ht1 <- plm(trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan | 
           rer + dist + bor | gdp + rlf + sim + cee + emu + lan , 
           data = TradeEU, model = "random", index = c("pair", "year"), 
           inst.method = "baltagi", random.method = "ht")
ht2 <- update(ht1, trade ~ gdp + dist + rer + rlf + sim + cee + emu + bor + lan | 
              rer + gdp + rlf + dist + bor| sim + cee + emu + lan)
## ------------------------------------------------------------------------
phtest(ht1, fe)
phtest(ht2, fe)
## ------------------------------------------------------------------------
ht2am <- update(ht2, inst.method = "am")
## ------------------------------------------------------------------------
phtest(ht2am, fe)
## End(Not run)
Trade and Foreign Direct Investment in Germany and the United States
Description
yearly observations of 490 combinations of countries / industries from 1989 to 1999
number of observations : 3860
number of time-series : 11
country : Germany and United States
package : gravity
JEL codes: F12, F14, F21, F23
Chapter : 06
Usage
data(TradeFDI)
Format
A dataframe containing:
- id
 id
- year
 time period
- country
 country name
- indusid
 industry code
- importid
 importer code
- lrex
 log real bilateral exports
- lrfdi
 log real bilateral outward stocks of FDI
- lgdt
 log sum of bilateral real GDP
- lsimi
 log (1-[exporter GDP/(exporter+importer GDP)]^2- [exporter GDP/(exporter+importer GDP)]^2)
- lrk
 log (real capital stock of exporter/real capital stock of importer)
- lrh
 log (secondary school enrolment of exporter/secondary school enrolment of importer)
- lrl
 log (labor force of exporter/labor force of importer)
- ldist
 log bilateral distance between exporter and importer
- lkldist
 (lrk-lrl) * ldist
- lkgdt
 abs(lrk)*lgdt
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Peter Egger and Michael Pfaffermayr (2004) “Distance, Trade, and Fdi: A Hausman-taylor Sur Approach”, Journal of Applied Econometrics, 19(2), 227–246, doi: 10.1002/jae.721 .
Turkish Banks
Description
yearly observations of 53 banks from 1990 to 2000
number of observations : 583
number of time-series : 11
country : Turkey
package : productionpanel
JEL codes: D24, G21, L33
Chapter : 02
Usage
data(TurkishBanks)
Format
A dataframe containing:
- id
 bank id
- year
 the years
- type
 one of
"conventional"and"islamic"- pl
 price of labor
- pf
 price of borrowed funds
- pk
 price of physical capital
- output
 output, total loans
- cost
 total cost
- empexp
 employee expenses
- nbemp
 number of employees
- faexp
 assets expenses
- fa
 fixed assets
- intexp
 total interest expenses (interest on deposits and non-deposit funds + other interest expenses),
- bfunds
 borrowed funds (deposits + non-deposit funds)
- dep
 deposits
- nondep
 non-deposits
- npl
 non performing loans
- ec
 equity capital
- quality
 quality index
- rindex
 risk index
- ta
 total assets
- ts
 total securities (only for conventional banks)
Source
Journal of Applied Econometrics Data Archive : http://qed.econ.queensu.ca/jae/
References
Mahmoud A. El-Gamal and Hulusi Inanoglu (2005) “Inefficiency and Heterogeneity in Turkish Banking: 1990-2000”, Journal of Applied Econometrics, 20(5), 641–664, doi: 10.1002/jae.835 .
Examples
#### Example 2-5
## ------------------------------------------------------------------------
data("TurkishBanks", package = "pder")
library("plm")
TurkishBanks <- na.omit(TurkishBanks)
TB <- pdata.frame(TurkishBanks)
summary(log(TB$output))
ercomp(log(cost) ~ log(output), TB)
models <- c("within", "random", "pooling", "between")
sapply(models, function(x)
       coef(plm(log(cost) ~ log(output), TB, model = x))["log(output)"])
Costs of Currency and Banking Crises
Description
yearly observations of 22 countries from 1970 to 1997
number of observations : 616
number of time-series : 28
country : world
package : panel
JEL codes: F32, G15, G21, O16, O19, O47
Chapter : 06
Usage
data(TwinCrises)
Format
A dataframe containing:
- country
 the country name
- year
 the year
- gdp
 real gdp growth
- pubsurp
 change in budget surplus to real gdp ratio
- credit
 credit growth
- extgdp
 external growth rates (weight average)
- exr
 real exchange rate overvaluation
- open
 openess
- curcrises
 currency crises
- bkcrises
 banking crises
- twin
 twin crises
- area
 a factor with levels 'other', 'asia' and 'latam' (for latin America)
Source
Journal of Money, Credit and Banking : https://jmcb.osu.edu/archive
References
Hutchison, Michael M. and Ilan Noy (2005) “How Bad Are Twins ? Output Costs of Currency and Banking Crises”, Journal of Money, Credit and Banking, 37(4), 725–752.
Spatial weights matrix for EvapoTransp
Description
Spatial weights matrix for the EvapoTransp data frame
Usage
data(etw)
Format
A 86x86 matrix with elements different from zero if area i and j are neighbours. Weights are row standardized.
Author(s)
Giovanni Millo
Spatial weights matrix - 49 US states
Description
Spatial weights matrix of the 48 continental US States plus District of Columbia based on the queen contiguity criterium.
Usage
data(usaw49)
data(usaw46)
Format
A matrix with elements different from zero if state i and j are neighbors. Weights are row standardized. According to the queen contiguity criterium, Arizona and Colorado are considered neighbours. Two versions are provided, one for 49 States, the other one for 46 States.
Author(s)
Giovanni Millo