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pointinpolygon Test Whether a Point Lies Inside a Polygon

Description

Test whether each point lies inside a specified polygon.

Usage

pointinpolygon(P, A, eps, x0, y0)

Arguments

P Spatial coordinates of the points to be tested. A list of two vectors named x and
y.

A A single polygon, specified as a list of two vectors named x and y.

eps Spatial resolution for coordinates.

x0,y0 Spatial origin for coordinates.

Details

This is part of an interface to the polygon-clipping library Clipper written by Angus Johnson.

The argument A represents a closed polygon. It should be a list containing two components x and y
giving the coordinates of the vertices. The last vertex should not repeat the first vertex.

Calculations are performed in integer arithmetic after subtracting x0,y0 from the coordinates,
dividing by eps, and rounding to the nearest integer. Thus, eps is the effective spatial resolution.
The default values ensure reasonable accuracy.

Value

An integer vector with one entry for each point in P. The result is 0 if the point lies outside A, 1 if
the point lies inside A, and -1 if it lies on the boundary.

Author(s)

Angus Johnson. Ported to R by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
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References

Clipper Website: http://www.angusj.com

Vatti, B. (1992) A generic solution to polygon clipping. Communications of the ACM 35 (7) 56–63.
https://dl.acm.org/doi/10.1145/129902.129906

Agoston, M.K. (2005) Computer graphics and geometric modeling: implementation and algo-
rithms. Springer-Verlag. http://books.google.com/books?q=vatti+clipping+agoston

See Also

polyclip.

Examples

A <- list(x=1:10, y=c(1:5,5:1))
P <- list(x=4, y=2)
pointinpolygon(P, A)

polyclip Polygon Clipping

Description

Find intersection, union or set difference of two polygonal regions or polygonal lines.

Usage

polyclip(A, B, op=c("intersection", "union", "minus", "xor"),
...,
eps, x0, y0,
fillA=c("evenodd", "nonzero", "positive", "negative"),
fillB=c("evenodd", "nonzero", "positive", "negative"),
closed = TRUE)

Arguments

A,B Data specifying polygons. See Details.

op Set operation to be performed to combine A and B. One of the character strings
"intersection", "union", "minus" or "xor" (partially matched).

... Ignored.

eps Spatial resolution for coordinates. A single positive numeric value.

x0,y0 Spatial origin for coordinates. Numeric values.

fillA,fillB Polygon-filling rules for A and B. Each argument is one of the character strings
"evenodd", "nonzero", "positive" or "negative" (partially matched).

closed Logical value specifying whether A is a closed polygon (closed=TRUE, the de-
fault) or an open polyline (closed=FALSE).

http://www.angusj.com
https://dl.acm.org/doi/10.1145/129902.129906
http://books.google.com/books?q=vatti+clipping+agoston
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Details

This is an interface to the polygon-clipping library Clipper written by Angus Johnson.

Given two polygonal regions A and B the function polyclip performs one of the following geomet-
rical operations:

• op="intersection": set intersection of A and B.

• op="union": set union of A and B.

• op="minus": set subtraction (sometimes called set difference): the region covered by A that is
not covered by B.

• op="xor": exclusive set difference (sometimes called exclusive-or): the region covered by
exactly one of the sets A and B.

Each of the arguments A and B represents a region in the Euclidean plane bounded by closed poly-
gons. The format of these arguments is either

• a list containing two components x and y giving the coordinates of the vertices of a single
polygon. The last vertex should not repeat the first vertex.

• a list of list(x,y) structures giving the coordinates of the vertices of several polygons.

Note that calculations are performed in integer arithmetic: see below.

The interpretation of the polygons depends on the polygon-filling rule for A and B that is specified
by the arguments fillA and fillB respectively.

Even-Odd: The default rule is even-odd filling, in which every polygon edge demarcates a bound-
ary between the inside and outside of the region. It does not matter whether a polygon is
traversed in clockwise or anticlockwise order. Holes are determined simply by their locations
relative to other polygons such that outers contain holes and holes contain outers.

Non-Zero: Under the nonzero filling rule, an outer boundary must be traversed in clockwise order,
while a hole must be traversed in anticlockwise order.

Positive: Under the positive filling rule, the filled region consists of all points with positive wind-
ing number.

Negative: Under the negative filling rule, the filled region consists of all points with negative
winding number.

Calculations are performed in integer arithmetic after subtracting x0,y0 from the coordinates,
dividing by eps, and rounding to the nearest integer. Thus, eps is the effective spatial resolution.
The default values ensure reasonable accuracy.

Value

Data specifying polygons, in the same format as A and B.

Author(s)

Angus Johnson. Ported to R by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>. Addi-
tional modification by Paul Murrell.
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References

Clipper Website: http://www.angusj.com

Vatti, B. (1992) A generic solution to polygon clipping. Communications of the ACM 35 (7) 56–63.
https://dl.acm.org/doi/10.1145/129902.129906

Agoston, M.K. (2005) Computer graphics and geometric modeling: implementation and algo-
rithms. Springer-Verlag. http://books.google.com/books?q=vatti+clipping+agoston

Chen, X. and McMains, S. (2005) Polygon Offsetting by Computing Winding Numbers. Paper
no. DETC2005-85513 in Proceedings of IDETC/CIE 2005 (ASME 2005 International Design En-
gineering Technical Conferences and Computers and Information in Engineering Conference), pp.
565–575 https://mcmains.me.berkeley.edu/pubs/DAC05OffsetPolygon.pdf

See Also

polysimplify, polyoffset, polylineoffset, polyminkowski

Examples

A <- list(list(x=1:10, y=c(1:5,5:1)))
B <- list(list(x=c(2,8,8,2),y=c(0,0,10,10)))

plot(c(0,10),c(0,10), type="n", axes=FALSE,
xlab="", ylab="", main="intersection of closed polygons")

invisible(lapply(A, polygon))
invisible(lapply(B, polygon))
C <- polyclip(A, B)
polygon(C[[1]], lwd=3, col=3)

plot(c(0,10),c(0,10), type="n", axes=FALSE,
xlab="", ylab="", main="intersection of open polyline and closed polygon")

invisible(lapply(A, polygon))
invisible(lapply(B, polygon))
E <- polyclip(A, B, closed=FALSE)
invisible(lapply(E, lines, col="purple", lwd=5))

polylineoffset Polygonal Line Offset

Description

Given a list of polygonal lines, compute the offset region (guard region, buffer region, morphologi-
cal dilation) formed by shifting the boundary outwards by a specified distance.

Usage

polylineoffset(A, delta,
...,
eps, x0, y0,

http://www.angusj.com
https://dl.acm.org/doi/10.1145/129902.129906
http://books.google.com/books?q=vatti+clipping+agoston
https://mcmains.me.berkeley.edu/pubs/DAC05OffsetPolygon.pdf
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miterlim=2, arctol=abs(delta)/100,
jointype=c("square", "round", "miter"),
endtype = c("closedpolygon", "closedline",

"openbutt", "opensquare", "openround",
"closed", "butt", "square", "round"))

Arguments

A Data specifying polygons. See Details.

delta Distance over which the boundary should be shifted.

... Ignored.

eps Spatial resolution for coordinates.

x0,y0 Spatial origin for coordinates.
miterlim,arctol

Tolerance parameters: see Details.

jointype Type of join operation to be performed at each vertex. See Details.

endtype Type of geometrical operation to be performed at the start and end of each line.
See Details.

Details

This is part of an interface to the polygon-clipping library Clipper written by Angus Johnson.

Given a list of polygonal lines A, the function polylineoffset computes the offset region (also
known as the morphological dilation, guard region, buffer region, etc) obtained by shifting the
boundary of A outward by the distance delta.

The argument A represents a polygonal line (broken line) or a list of broken lines. The format is
either

• a list containing two components x and y giving the coordinates of successive vertices of the
broken line.

• a list of list(x,y) structures giving the coordinates of the vertices of several broken lines.

Lines may be self-intersecting and different lines may intersect each other. Note that calculations
are performed in integer arithmetic: see below.

The argument jointype determines what happens at the vertices of each line. See the Examples
for illustrations.

• jointype="round": a circular arc is generated.

• jointype="square": the circular arc is replaced by a single straight line.

• jointype="miter": the circular arc is omitted entirely, or replaced by a single straight line.

The argument endtype determines what happens at the beginning and end of each line. See the
Examples for illustrations.

• endtype="closedpolygon": ends are joined together (using the jointype value) and the
path filled as a polygon.
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• endtype="closedline": ends are joined together (using the jointype value) and the path is
filled as a polyline.

• endtype="openbutt": ends are squared off abruptly.

• endtype="opensquare": ends are squared off at distance delta.

• endtype="openround": ends are replaced by a semicircular arc.

The values endtype="closed", "butt", "square" and "round" are deprecated; they are equiva-
lent to endtype="closedpolygon", "openbutt", "opensquare" and "openround" respectively.

The arguments miterlim and arctol are tolerances.

• if jointype="round", then arctol is the maximum permissible distance between the true
circular arc and its discretised approximation.

• if jointype="miter", then miterlimit * delta is the maximum permissible displacement
between the original vertex and the corresponding offset vertex if the circular arc were to be
omitted entirely. The default is miterlimit=2 which is also the minimum value.

Calculations are performed in integer arithmetic after subtracting x0,y0 from the coordinates,
dividing by eps, and rounding to the nearest integer. Thus, eps is the effective spatial resolution.
The default values ensure reasonable accuracy.

Value

Data specifying polygons, in the same format as A.

Author(s)

Angus Johnson. Ported to R by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Clipper Website: http://www.angusj.com

Vatti, B. (1992) A generic solution to polygon clipping. Communications of the ACM 35 (7) 56–63.
https://dl.acm.org/doi/10.1145/129902.129906

Agoston, M.K. (2005) Computer graphics and geometric modeling: implementation and algo-
rithms. Springer-Verlag. http://books.google.com/books?q=vatti+clipping+agoston

Chen, X. and McMains, S. (2005) Polygon Offsetting by Computing Winding Numbers. Paper
no. DETC2005-85513 in Proceedings of IDETC/CIE 2005 (ASME 2005 International Design En-
gineering Technical Conferences and Computers and Information in Engineering Conference), pp.
565–575 https://mcmains.me.berkeley.edu/pubs/DAC05OffsetPolygon.pdf

See Also

polyoffset, polysimplify, polyclip, polyminkowski

http://www.angusj.com
https://dl.acm.org/doi/10.1145/129902.129906
http://books.google.com/books?q=vatti+clipping+agoston
https://mcmains.me.berkeley.edu/pubs/DAC05OffsetPolygon.pdf
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Examples

A <- list(list(x=c(4,8,8,2,6), y=c(3,3,8,8,6)))

plot(c(0,10),c(0,10), type="n",
main="jointype=square, endtype=opensquare",
axes=FALSE, xlab="", ylab="")

lines(A[[1]], col="grey", lwd=3)
C <- polylineoffset(A, 0.5, jointype="square", endtype="opensquare")
polygon(C[[1]], lwd=3, border="blue")

plot(c(0,10),c(0,10), type="n",
main="jointype=round, endtype=openround",
axes=FALSE, xlab="", ylab="")

lines(A[[1]], col="grey", lwd=3)
C <- polylineoffset(A, 0.5, jointype="round", endtype="openround")
polygon(C[[1]], lwd=3, border="blue")

polyminkowski Minkowski Sum of Polygon with Path

Description

Compute the Minkowski Sum of a polygon with a path or paths.

Usage

polyminkowski(A, B, ..., eps, x0, y0,
closed=TRUE)

Arguments

A Data specifying a polygon or polygons. See Details.
B Data specifying a path or paths. See Details.
... Ignored.
eps Spatial resolution for coordinates.
x0,y0 Spatial origin for coordinates.
closed Logical value indicating whether the resulting path should be interpreted as

closed (last vertex joined to first vertex and interior filled in).

Details

This is an interface to the function MinkowskiSum in Angus Johnson’s C++ library Clipper.

It computes the Minkowski Sum of the polygon A (including its interior) with the path or paths B
(excluding their interior).

The argument A should be a list containing two components x and y giving the coordinates of the
vertices of a single polygon. The last vertex should not repeat the first vertex.

The argument B should be either
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• a list containing two components x and y giving the coordinates of the vertices of a single
polygon or path. The last vertex should not repeat the first vertex.

• a list of list(x,y) structures giving the coordinates of the vertices of several polygons or
paths.

Calculations are performed in integer arithmetic after subtracting x0,y0 from the coordinates,
dividing by eps, and rounding to the nearest integer. Thus, eps is the effective spatial resolution.
The default values ensure reasonable accuracy.

Value

Data specifying polygons, in the same format as A.

Author(s)

Angus Johnson. Ported to R by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Clipper Website: http://www.angusj.com

See Also

polyclip, polyoffset, polylineoffset, polysimplify

Examples

A <- list(list(x=c(-3,3,3,-3),y=c(-3,-3,3,3)))
B <- list(list(x=c(-1,1,1,-1),y=c(-1,-1,1,1)))
C <- polyminkowski(A, B)
opa <- par(mfrow=c(1,3))
rr <- c(-4, 4)
plot(rr, rr, type="n", axes=FALSE, xlab="", ylab="", main="A")
polygon(A[[1]], col="blue")
plot(rr,rr, type="n", axes=FALSE, xlab="", ylab="", main="B")
polygon(B[[1]], border="red", lwd=4)
plot(rr,rr, type="n", axes=FALSE, xlab="", ylab="", main="A+B")
polygon(C[[1]], col="green")
polygon(C[[2]], col="white")
par(opa)

polyoffset Polygon Offset

Description

Given a polygonal region, compute the offset region (aka: guard region, buffer region, morpholog-
ical dilation) formed by shifting the boundary outwards by a specified distance.

http://www.angusj.com
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Usage

polyoffset(A, delta,
...,
eps, x0, y0,
miterlim=2, arctol=abs(delta)/100,
jointype=c("square", "round", "miter"))

Arguments

A Data specifying polygons. See Details.

delta Distance over which the boundary should be shifted.

... Ignored.

eps Spatial resolution for coordinates.

x0,y0 Spatial origin for coordinates.
miterlim,arctol

Tolerance parameters: see Details.

jointype Type of join operation to be performed at each vertex. See Details.

Details

This is part of an interface to the polygon-clipping library Clipper written by Angus Johnson.

Given a polygonal region A, the function polyoffset computes the offset region (also known as
the morphological dilation, guard region, buffer region, etc) obtained by shifting the boundary of A
outward by the distance delta.

The argument A represents a region in the Euclidean plane bounded by closed polygons. The format
is either

• a list containing two components x and y giving the coordinates of the vertices of a single
polygon. The last vertex should not repeat the first vertex.

• a list of list(x,y) structures giving the coordinates of the vertices of several polygons.

Note that calculations are performed in integer arithmetic: see below.

The argument jointype determines what happens at the convex vertices of A. See the Examples for
illustrations.

• jointype="round": a circular arc is generated.

• jointype="square": the circular arc is replaced by a single straight line.

• jointype="miter": the circular arc is omitted entirely, or replaced by a single straight line.

The arguments miterlim and arctol are tolerances.

• if jointype="round", then arctol is the maximum permissible distance between the true
circular arc and its discretised approximation.

• if jointype="miter", then miterlimit * delta is the maximum permissible displacement
between the original vertex and the corresponding offset vertex if the circular arc were to be
omitted entirely. The default is miterlimit=2 which is also the minimum value.
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Calculations are performed in integer arithmetic after subtracting x0,y0 from the coordinates,
dividing by eps, and rounding to the nearest 64-bit integer. Thus, eps is the effective spatial reso-
lution. The default values ensure reasonable accuracy.

Value

Data specifying polygons, in the same format as A.

Author(s)

Angus Johnson. Ported to R by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Clipper Website: http://www.angusj.com

Vatti, B. (1992) A generic solution to polygon clipping. Communications of the ACM 35 (7) 56–63.
https://dl.acm.org/doi/10.1145/129902.129906

Agoston, M.K. (2005) Computer graphics and geometric modeling: implementation and algo-
rithms. Springer-Verlag. http://books.google.com/books?q=vatti+clipping+agoston

Chen, X. and McMains, S. (2005) Polygon Offsetting by Computing Winding Numbers. Paper
no. DETC2005-85513 in Proceedings of IDETC/CIE 2005 (ASME 2005 International Design En-
gineering Technical Conferences and Computers and Information in Engineering Conference), pp.
565–575 https://mcmains.me.berkeley.edu/pubs/DAC05OffsetPolygon.pdf

See Also

polylineoffset, polyclip, polysimplify, polyminkowski

Examples

A <- list(list(x=c(4,8,8,2,6), y=c(3,3,8,8,6)))
plot(c(0,10),c(0,10), type="n", main="jointype=square", axes=FALSE, xlab="", ylab="")
polygon(A[[1]], col="grey")
C <- polyoffset(A, 1, jointype="square")
polygon(C[[1]], lwd=3, border="blue")
plot(c(0,10),c(0,10), type="n", main="jointype=round", axes=FALSE, xlab="", ylab="")
polygon(A[[1]], col="grey")
C <- polyoffset(A, 1, jointype="round")
polygon(C[[1]], lwd=3, border="blue")
plot(c(0,10),c(0,10), type="n", main="jointype=miter", axes=FALSE, xlab="", ylab="")
polygon(A[[1]], col="grey")
C <- polyoffset(A, 1, jointype="miter")
polygon(C[[1]], lwd=3, border="blue")

http://www.angusj.com
https://dl.acm.org/doi/10.1145/129902.129906
http://books.google.com/books?q=vatti+clipping+agoston
https://mcmains.me.berkeley.edu/pubs/DAC05OffsetPolygon.pdf
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polysimplify Remove Self-Intersections from a Polygon

Description

This function attempts to remove self-intersections and duplicated vertices from the given polygon.

Usage

polysimplify(A, ..., eps, x0, y0,
filltype = c("evenodd", "nonzero", "positive", "negative"))

Arguments

A Data specifying a polygon or polygons. See Details.

... Ignored.

eps Spatial resolution for coordinates.

x0,y0 Spatial origin for coordinates.

filltype Polygon-filling rule. See Details.

Details

This is an interface to the function SimplifyPolygons in Angus Johnson’s C++ library Clipper.
It tries to remove self-intersections from the supplied polygon, by performing a boolean union
operation using the nominated filltype. The result may be one or several polygons.

The argument A should be either

• a list containing two components x and y giving the coordinates of the vertices of a single
polygon. The last vertex should not repeat the first vertex.

• a list of list(x,y) structures giving the coordinates of the vertices of several polygons.

The argument filltype determines the polygon fill type.

Even-Odd: The default rule is even-odd filling, in which every polygon edge demarcates a bound-
ary between the inside and outside of the region. It does not matter whether a polygon is
traversed in clockwise or anticlockwise order. Holes are determined simply by their locations
relative to other polygons such that outers contain holes and holes contain outers.

Non-Zero: Under the nonzero filling rule, an outer boundary must be traversed in clockwise order,
while a hole must be traversed in anticlockwise order.

Positive: Under the positive filling rule, the filled region consists of all points with positive wind-
ing number.

Negative: Under the negative filling rule, the filled region consists of all points with negative
winding number.

Calculations are performed in integer arithmetic after subtracting x0,y0 from the coordinates,
dividing by eps, and rounding to the nearest integer. Thus, eps is the effective spatial resolution.
The default values ensure reasonable accuracy.
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Value

Data specifying polygons, in the same format as A.

Author(s)

Angus Johnson. Ported to R by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Clipper Website: http://www.angusj.com

See Also

polyclip, polyoffset, polylineoffset, polyminkowski

Examples

theta <- 2 * pi * (0:5) * 2/5

A <- list(list(x=sin(theta), y=cos(theta)))
B <- polysimplify(A, filltype="nonzero")

opa <- par(mfrow=c(1,2))
plot(c(-1,1),c(-1,1), type="n", axes=FALSE, xlab="", ylab="")
with(A[[1]], segments(x[-6], y[-6], x[-1], y[-1], col="red"))
points(A[[1]], col="red")

with(A[[1]], text(x[1:5], y[1:5], labels=1:5, cex=2))
plot(c(-1,1),c(-1,1), type="n", axes=FALSE, xlab="", ylab="")
polygon(B[[1]], lwd=3, col="green")
with(B[[1]], text(x,y,labels=seq_along(x), cex=2))
par(opa)

http://www.angusj.com
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