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Abstract

Latent class is a method for classifying subjects, originally based on binary outcome
data but now extended to other data types. A major difficulty with the use of latent class
models is the presence of heterogeneity of the outcome probabilities within the true classes,
which violates the assumption of conditional independence, and will require a large number
of classes to model the association in the data resulting in difficulties in interpretation.
A solution is to include a normally distributed subject level random effect in the model
so that the outcomes are now conditionally independent given both the class and random
effect. A further extension is to incorporate an additional period level random effect when
subjects are observed over time. The use of the randomLCA R package is demonstrated
on three latent class examples: classification of subjects based on myocardial infarction
symptoms, a diagnostic testing approach to comparing dentists in the diagnosis of dental
caries and classification of infants based on respiratory and allergy symptoms over time.
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1. Introduction

Latent class models (Lazarsfeld and Henry 1968) are a method originally developed for soci-
ology where they are used to identify clusters or sub-groups of subjects, based on multivariate
binary observations, and as such are a form of finite mixture model. Their application has
been further expanded into many areas, such as psychology, market research and medicine.
Diagnostic classification using latent class methods has been applied in a number of areas, with
early applications by Golden (1982) to dementia, Young (1982) to develop diagnostic criteria
for schizophrenia and Rindskopf and Rindskopf (1986) for myocardial infarction. An advan-
tage of using latent class analysis over other classification methods is that the classification
is model based, allowing use of model selection techniques to determine which classification
scheme is most appropriate. This compares with classifications developed from simple ob-
servation, that may give undue weight to one or more symptoms or outcomes. An example
of the problems with this type of analysis is demonstrated by Nyholt et al. (2004) who used
latent class analysis of headache symptoms to show that classification of migraine with and
without aura as separate diagnoses is not supported. While latent class methods have been
extended to any outcomes with a variety of distributions, binary is the most commonly used.

The assumption of latent class models is conditional or local independence, where the out-
comes are independent conditional on the latent class. This assumes that subjects within a
class are homogeneous. Where this does not apply, that is the true classes are heterogeneous,
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a consequence of this will be to increase the number of latent classes required in attempting to
explain the heterogeneity, with possible consequent difficulty in interpretation. A solution is
to incorporate random effects so that the outcomes are independent conditional on the latent
class and random effect or effects.

There are a number of packages capable of fitting latent class models in R (R Core Team 2016).
Two of these solely for fitting of latent class models are poLCA (Linzer and Lewis 2011) and
BayesLCA (White and Murphy 2014). BayesLCA is particularly designed to perform Bayesian
analyses, but also offers the choice of the EM algorithm and Variational Bayes, but has
limited facilities for producing plots and summaries. poLCA is a more fully featured package
which allows for polytomous outcomes and latent class regression, which are not available in
randomLCA. The advantage of randomLCA over the other packages is that it will fit both
standard latent class models and those incorporating random effects. This is important for
use with diagnostic tests, as it allows for the variation of the test response between subjects,
but may be also used to model heterogeneity in other applications, for example see Muthén
(2006). Commercial software packages that also allow latent class with random effects are
Mplus (Muthén and Muthén 2015) and Latent GOLD Syntax Module (Vermunt and Magidson
2013), both of which require the model to be defined using a symbolic language.

The purpose of this paper is to describe the randomLCA package. The remainder of the paper
is organised as follows. Section 2 describes the models, starting with standard latent class and
then continuing with the random effect extensions, including references allowing for further
investigation. Section 3 describes three examples with explanation of how the features of the
package may be used. Section 4 summarises the capabilities of the package and describes
some areas in which the package could be extended.

2. Models

2.1. Latent class model

The basis of latent class analysis is that each subject is assumed to belong to one of a
finite number of classes, with each class described by a set of parameters that define the
distribution of outcomes or manifest variables for a subject, and is a form of finite mixture
model (McLachlan and Peel 2000). Generally, the number of classes is unknown and must be
determined from the data. For binary outcomes, the model is

P (yi1, yi2, ..., yik| ci = c) =

k∏
j=1

π
yij
cj (1− πcj)1−yij

where yij is the jth binary outcome for subject i, πcj is the probability of the jth outcome
equal to 1 for a subject in class c, k is the number of outcomes and ci is the class corresponding
to the ith subject. The marginal probability, obtained by summing over the classes, for each
subject is

P (yi1, yi2, ..., yik) =
C∑
c=1

ηc

k∏
j=1

π
yij
cj (1− πcj)1−yij
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where ηc is the probability of a subject being in class c with
∑C

c=1 ηc = 1 and C is the number
of classes. From this can be obtained the marginal likelihood.

A requirement for the estimates of the probabilities πcj is that they be restricted to the interval
zero to one, and that the ηc sum to one, something that did not always occur with the original
methods used for analysis. A solution developed by Formann (1978, 1982) is to use a logistic
(or alternatively probit) transformation, allowing unconstrained estimation of parameters but
correctly restricting the probabilities to between zero and one. This can be obtained for the
logistic using the following relations πcj = eacj/ (1 + eacj ) and ηc = eθc/

∑C
`=1 e

θ` . Hence
we estimate the acj and θc, rather than πcj and ηc. Similar equations apply for the probit
transformation.

When used as a classification algorithm the model does not simply return the most likely
class for each subject but returns a probability of class membership, based on the observed
outcomes. The posterior probability for a set of given observed outcomes can be obtained
from Bayes theorem. Given the observed outcomes yi1, yi2, · · · , yik then the probability that
the subject is in class d is:

P (d|yi1, yi2, ..., yik) =
ηdP (yi1, yi2, ..., yik| d)∑C
c=1 ηcP (yi1, yi2, ..., yik| c)

=
ηd

∏k
j=1 π

yij
dj (1− πdj)1−yij∑C

c=1 ηc
∏k
j=1 π

yij
cj (1− πcj)1−yij

.

2.2. Latent class with random effect model

A major difficulty with latent class models is the requirement for local independence or equiv-
alently homogeneity of the outcome probabilities within each class. When the classes are het-
erogeneous the assumption that the manifest outcomes are independent, conditional on the
latent class, does not apply. Uebersax (1999) describes the problems associated with condi-
tional dependence as “to add spurious latent classes that are not truly present at the taxonic
level” and Vacek (1985) showed that ignoring the conditional dependence produced biased
estimates in the context of diagnostic testing. Pickles and Angold (2003, p. 530) discuss the
classification of diseases in psychology as categories or by severity, arguing that “most forms
of psychopathology (indeed, most forms of pathology of any sort) manifest both continuous
and discontinuous relationships with other phenomena”, and provide examples of where this
may occur.

A solution to the problem of heterogeneity was developed by Qu et al. (1996) combining a
latent class model with a random effect to explain the heterogeneity. The probabilities are
transformed to the probit scale and a normally distributed random effect added for each
subject, before transforming back to probabilities. An alternative to the probit scale is the
logit scale. A model for latent class incorporating a random effect λ ∼ N (0, 1) is:

P (yi1, yi2, ..., yik|ci = c, λi = λ) =
k∏
j=1

π
yij
icj (1− πicj)1−yij

where, either, if a probit scaling of the random effect

πicj = Φ−1 (acj + bcjλi)
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or, if a logistic scaling

πicj =
exp (acj + bcjλi)

1 + exp (acj + bcjλi)
.

and acj determines the conditional class probability for a value of zero for the random ef-
fect, and bcj scales the random effect, and is usually known as the loading or discriminant.
The loadings will generally be constrained to be equal between classes, and either the same
loading for each outcome (bcj = b) or independent loading for each outcome (bcj = bj). The
marginal likelihood is obtained by integrating over the random effect and summing over the
latent classes, which is then maximised to obtain the parameter estimates. Posterior class
probabilities can be obtained as for the standard latent class using Bayes theorem.

2.3. Two level latent class with random effect model

The previously described models for latent class can be considered to be for a single time
point. Where the outcomes are observed at multiple time points then consideration must
be made for the correlation between time points. A method described for this is the mixed
latent Markov model (Langeheine and van de Pol 1990). This assumes that the population is
a mixture of latent Markov models which consists of a Markov chain which is a latent class
at each time point. An alternative model is that of Beath and Heller (2009) which extends
the model to two levels with an additional random effect modelling the correlation between
outcomes at each time point. This has some similarities to the model by Muthén and Shedden
(1999) for longitudinal normally distributed data.

We now define yijt as the jth binary outcome for subject i at time t, πcjt is the probability
of the jth outcome equal to 1 for a subject in class c at time t, k is the number of outcomes,
T is the number of time points and c is the class corresponding to the ith subject. An
additional random effect τt ∼ N (0, 1) is incorporated to model the additional correlation
between outcomes at a time point, and `c scales this to the appropriate variance.

P (yi11, . . . , yikT |ci = c, λi = λ, τi1 = τ1, . . . , τiT = τT ) =

T∏
t=1

k∏
j=1

π
yijt
icjt (1− πicjt)1−yijt

where
πicjt = Φ−1 (acjt + bcj (λi + `cτit))

or

πicjt =
exp (acjt + bcj (λi + `cτit))

1 + exp (acjt + bcj (λi + `cτit))
.

Again, we usually constrain bcj = bj and `c = `.

2.4. Model selection

An important aspect of using latent class and latent class with random effect models is
the choice of the number of classes, and whether inclusion of a random effect is required.
This presents two difficulties. The first involves a test for a parameter on the boundary of
the parameter space. For the number of classes, this is the proportion in a class that is
zero, and for the random effect, that the random effect variance is zero. As a consequence
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asymptotic likelihood theory does not hold so other methods must be used. One method is
the bootstrapped likelihood ratio test as described by McLachlan (1987). However, a second
difficulty is that when models may include a random effect then comparisons must be made
between non-nested models. As an example we may wish to compare a latent class model
with two or more classes to a latent class with random effect model with a single class. This is
equivalent to an item response theory (IRT) model, either the Rasch model when the loadings
are constant and a two parameter logistic otherwise (Bartholomew et al. 2002). This is an
important choice as it determines if the underlying latent variable is categorical or continuous
(Muthén 2006).

The usual method used is an information criterion (Lin and Dayton 1997) with the two main
ones that are used being the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). Nylund and Muthén (2007) showed using simulation that BIC is superior to
AIC for selection in latent class models, and this is the method most often used in applied
publications. With BIC the penalty is greater than for AIC and dependent on the number of
observations, so will select models with a smaller number of classes. An alternative version
of AIC, AIC3 with a penalty of 3 was shown to have better performance with latent class
models by Dias (2006). This will select models with a complexity between BIC and AIC,
and this was found with the examples. No evaluation of the criteria has been performed for
latent class with random effects models, and it has seen little use in applied publications.
An important point is that with any model selection it is desirable to make use of existing
information. So for example, if it is already known there is at least 2 classes then the model
choice should be restricted to these. In the paper I have used BIC for model selection, but as
no research has been performed on model selection for random effect latent class models the
other information criteria are provided.

2.5. Identifiability

A difficulty that is sometimes encountered in fitting latent class models is lack of identifiability,
which occurs when the value of the maximum likelihood occurs for more than one unique set
of parameter estimates, that is there is not a single global maximum. A minimum condition
is that the number of parameters is less than the number of patterns, but this is not always
sufficient (McHugh 1956). This prevents the fitting of even a 2 class latent class model with
only two outcomes, as this requires 5 parameters with only 4 patterns. A 2 class model is
just identifiable when fitted to data on 3 outcomes, as there are 7 parameters and 8 possible
patterns, however if a random effect is included then 4 outcomes are required for identifiability.
A check is made by randomLCA to determine if the model is identifiable based on the number
of parameters. As this is not always sufficient, special cases, for example the requirement of
at least 5 outcomes to fit a 3 class latent class model, are also flagged as non-identified. A
further check is provided by determining that the rank of the Hessian is not less than the
number of estimated parameters (Skrondal and Rabe-Hesketh 2004, p. 150-1), however this
may also occur if a parameter is on the boundary of the parameter space.

2.6. Computational methods

The standard latent class methods are fitted using an EM algorithm, with multiple starting
values, switching to a quasi-Newton method when near convergence. The multiple starting
values increase the probability that the algorithm converges to the global maximum rather
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than a local maximum, with only the EM algorithm run to completion when selecting start-
ing values to reduce execution time. For the latent class with random effects models it is
necessary to integrate over the random effects for each subject, for which it is necessary to
use an approximation. One of the methods that has been used for this is Gauss-Hermite
quadrature, where the integral is approximated by a weighted sum of the function evaluated
at defined points, which works well when the function is approximately standard normal.
However, for random effects models the likelihood is not, but the standardised likelihood
is. Therefore, Gauss-Hermite quadrature is applied to the standardised likelihood, known
as adaptive Gauss-Hermite quadrature (Liu and Pierce 1994). This has the advantage over
standard Gauss-Hermite quadrature that integration is only performed in the region of the
mode, reducing the number of quadrature points required. For the two level random effects
model, adaptive Gauss-Hermite quadrature is again used. An orthogonal transform is applied
to reduce the integration to two one-dimensional integrations and the method of moments is
used to determine the location of the modes, as described in Rabe-Hesketh et al. (2005).

The random effects latent class models are fitted using a generalized EM algorithm (GEM)
(Little and Rubin 2002, p. 173) with maximisation using a quasi-Newton method. At each
expectation step the location of the modes for the adaptive quadrature are recalculated, and
the maximisation step performed based on these locations. The maximisation is not run
to convergence at each step, but terminated after a number of quasi-Newton steps. For all
models, the EM or GEM algorithm switches to a quasi-Newton for all parameters when close
to convergence. For the random effects models starting values are obtained from the model
without random effects, and a search performed over possible starting values for the random
effect variance.

A difficulty with latent class models is the calculation of standard errors when the parameter
estimates are near the boundary of the parameter space. There are several options, one
of which is to use Bayesian maximum a posteriori (MAP) estimation (Galindo Garre and
Vermunt 2006). This is a form of Bayesian estimation in that a prior probability is placed
on the parameters, however the posterior distribution is then maximised similar to maximum
likelihood estimation. This is equivalent to the penalised likelihood described by Firth (1993)
in which a penalty is placed on extreme values of the logit or probit scale outcome probabilities.
The posterior distribution will consequently have a mode, whereas the likelihood may not.
In randomLCA the prior distribution used is the Dirichlet as in Galindo Garre and Vermunt
(2006) but with a much smaller default penalty, where the penalty argument is equal to the
number of extra observations that are effectively added to each cell. A penalty of 0.01 is
used, which reduces the risk of numerical problems, without greatly affecting the estimated
probabilities. A sensible upper limit for the penalty is 0.5, which has been found to perform
well by a number of authors, for example Rubin and Schenker (1987) in application to binary
proportions, and may be used when necessary. This will also produce results similar to the
Latent GOLD software default settings (Vermunt and Magidson 2013). Setting the penalty
to zero will produce results identical to maximum likelihood.
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3. Examples

3.1. Myocardial infarction example

This example demonstrates the fitting of data from Rindskopf and Rindskopf (1986), where
latent class analysis is used to determine diagnostic classifications based on medical tests.
Although this example is for medical data, the model is simply standard latent class so the
methods can be applied to data from other areas, for example psychology and sociology. The
maximum number of classes that can be fitted is limited to 2 due to identifiability, so we fit
models for 1 and 2 classes, assuming that the outcome probabilities are homogenous in each
class.

The fitting function for randomLCA is the randomLCA function which fits both the standard
and random effects models. The command, where only the patterns parameter is required,
is:

randomLCA(patterns, freq = NULL, nclass = 2, calcSE = TRUE, notrials = 20,

random = FALSE, byclass = FALSE, quadpoints = 21, constload = TRUE,

blocksize = dim(patterns)[2], level2 = FALSE, probit = FALSE,

level2size = blocksize, qniterations = 5, penalty = 0.01, EMtol = 1.0e-9,

verbose = FALSE, seed = as.integer(runif(1, 0, .Machine$integer.max)))}

For a standard latent class model the parameters of interest are

patterns Data frame or matrix of 0 and 1 defining the outcome patterns. This may be either
raw data or summarised data with a frequency vector giving the corresponding frequency
for each pattern. The patterns may also include missing values, with randomLCA using
maximum likelihood to fit the models using all available data.

freq Vector containing frequencies for each outcome pattern. Where this is missing it is
created within the randomLCA function and used in the fitting algorithm, substantially
reducing execution time.

nclass Number of classes to be fitted.

notrials The number of random starting values used. It is necessary to use different starting
values to reduce the risk that the global maximum of the likelihood is not found. This
should be increased in increments of ten until there is no decrease in the maximum
log-likelihood. While this does not guarantee a maximum likelihood, the parameter
estimates found will usually be close to those at the true global maximum.

penalty Penalty applied to likelihood for outcome probabilities. See Section 2.6 for details.

The remaining arguments will be considered when discussing the relevant models or may be
obtained from the package documentation. Fitting the standard latent class models for one
and two classes (note that a three class model is not identifiable) requires only the basic
arguments:
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R> myocardial.lca1 <- randomLCA(myocardial[, 1:4], freq = myocardial$freq,

+ nclass = 1)

R> myocardial.lca2 <- randomLCA(myocardial[, 1:4], freq = myocardial$freq,

+ nclass = 2)

The BIC values may be extracted from the fitted objects, and formed into a data frame:

R> myocardial.bic <- data.frame(classes = 1:2, bic = c(BIC(myocardial.lca1),

+ BIC(myocardial.lca2)))

R> print(myocardial.bic, row.names = FALSE)

classes bic

1 524.7441

2 402.2951

Using BIC as a selection method, this selects the 2 class model, indicating a breakdown into
diseased and non-diseased, which it is assumed represent those with and without myocardial
infarction, although the true nature of classes is always debatable. A characteristic of this
data is that a single class random effect model has a lower BIC than the 2 class standard
latent class, so we need to assume that there are at least two classes, or that the underlying
latent variable is categorical rather than continuous.

An alternative is to use the parametric bootstrap (McLachlan 1987) to determine the number
of classes, and this is easily performed using the simulate function to generate the samples
under the null hypothesis and then refit to refit both models. The simulate function returns
a list of data frames simulated from the specified model, and each of these can then be refitted
using the specified null and alternative model, as shown in the following code.

R> nsims <- 999

R> obslrt <- 2 * (logLik(myocardial.lca2) - logLik(myocardial.lca1))

R> thesims <- simulate(myocardial.lca1, nsim = nsims)

R> simlrt <- as.vector(lapply(thesims, function(x) {

+ submodel <- refit(myocardial.lca1, newpatterns = x)

+ fullmodel <- refit(myocardial.lca2, newpatterns = x)

+ return(2 * (logLik(fullmodel) - logLik(submodel)))

+ }))

A p value is obtained by comparing the observed likelihood ratio test statistic to the simulated.
This can be performed in a number of ways, of which the most commonly used is described
by Davison and Hinkley (1997, p. 148).

R> print((sum(simlrt >= obslrt) + 1)/(nsims + 1))

[1] 0.001

Showing again the clear evidence in favour of the 2 class model.

Summary may be used to display the fitted results:
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Figure 1: Outcome probabilities for 2 class latent class model for myocardial infarction data.

R> summary(myocardial.lca2)

Classes AIC BIC AIC3 logLik penlogLik

2 379.4054 402.2951 388.4054 -180.7027 -180.7829

Class probabilities

Class 1 Class 2

0.5422 0.4578

Outcome probabilities

Q.wave History LDH CPK

Class 1 0.0001 0.1951 0.0270 0.1956

Class 2 0.7668 0.7914 0.8279 0.9999

From this it is clear that Class 2 is the diseased class and Class 1 the non-diseased, where
the disease is myocardial infarction, based on the higher outcome probabilities. Outcome
probabilities are plotted using the plot function, and shown in Figure 1. Note that plot

is based on xyplot so the additional graphical arguments must be the appropriate lattice

ones.

R> plot(myocardial.lca2, type = "b", pch = 1:2, xlab = "Test",

+ ylab = "Outcome Probability",

+ scales = list(x = list(at = 1:4, labels = names(myocardial)[1:4])),

+ key = list(corner = c(0.05, .95), border = TRUE, cex = 1.2,

+ text = list(c("Class 1", "Class 2")),

+ col = trellis.par.get()$superpose.symbol$col[1:2],

+ points = list(pch = 1:2)))

Individual results may be obtained from summary, for example the outcome probabilities
but may also be obtained using the outcomeProbs function, which will also give the 95%
confidence intervals.

R> outcomeProbs(myocardial.lca2)

Class 1

Outcome p 2.5 % 97.5 %

Q.wave 6.882403e-05 6.405693e-22 1.0000000

History 1.951160e-01 1.017700e-01 0.3415270

LDH 2.697733e-02 3.831663e-03 0.1665603

CPK 1.956168e-01 9.784188e-02 0.3528810

Class 2

Outcome p 2.5 % 97.5 %

Q.wave 0.7668265 5.919047e-01 0.8817503

History 0.7914044 6.388626e-01 0.8905520

LDH 0.8278971 6.552016e-01 0.9241144

CPK 0.9999367 1.464943e-13 1.0000000
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For Q.wave in Class 1 there appears to be a problem with the standard errors, as assumptions
about the normal approximation to the likelihood do not apply close to the boundary. Using
the parametric bootstrap with boot = TRUE will produce improved results or alternatively,
the value of the penalty argument could be increased.

R> outcomeProbs(myocardial.lca2, boot = TRUE)

Class 1

Outcome p 2.5 % 97.5 %

Q.wave 6.882911e-05 4.536679e-05 0.0001030624

History 1.951155e-01 8.906579e-02 0.3251787439

LDH 2.697838e-02 5.058981e-05 0.0819476932

CPK 1.956159e-01 7.545154e-02 0.3073844760

Class 2

Outcome p 2.5 % 97.5 %

Q.wave 0.7668257 0.6231282 0.8993317

History 0.7914045 0.6464285 0.9147254

LDH 0.8278977 0.7009407 0.9434813

CPK 0.9999367 0.9985498 0.9999503

The outcome probabilities give some interesting information. For example, in Class 1, those
without myocardial infarction, will have absence of Q.wave but in those with myocardial
infarction it will only be present in 76.7%. The class probabilities can be obtained as
classProbs(myocardial.lca2) of 0.54 and 0.46 for Class 1 and 2 respectively.

One aspect of latent class is that no subject is uniquely allocated to a given class, although in
some cases a subject may have an extremely high probability of being in a given class. The
posterior class probabilities can be obtained as

R> print(postClassProbs(myocardial.lca2), row.names = FALSE)

Q.wave History LDH CPK Freq Class 1 Class 2

1 1 1 1 24 1.670737e-07 9.999998e-01

0 1 1 1 5 7.919596e-03 9.920804e-01

1 0 1 1 4 2.614813e-06 9.999974e-01

0 0 1 1 3 1.110610e-01 8.889390e-01

1 1 0 1 3 2.898730e-05 9.999710e-01

0 1 0 1 5 5.807231e-01 4.192769e-01

1 0 0 1 2 4.534787e-04 9.995465e-01

0 0 0 1 7 9.559027e-01 4.409729e-02

0 0 1 0 1 9.998768e-01 1.232175e-04

0 1 0 0 7 9.999889e-01 1.111584e-05

0 0 0 0 33 9.999993e-01 7.102536e-07

This shows subjects with 3 or 4 positive tests to be strongly classified as having myocardial
infarction, and even some with 2 positive tests are well classified. Having only one positive
test makes it unlikely that it is myocardial infarction.
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3.2. Dentistry example

An important area of application of latent class and random effects latent class is the devel-
opment or comparison of diagnostic testing methods where there is no gold standard test. A
gold standard test is one that is the best available and can usually be assumed to be close
to perfect, but usually being more expensive or difficult to perform (Kraemer 1992). Given a
gold standard it is easy to construct new tests or compare existing tests, as we know the true
disease status of each subject. Latent class methods allow the construction of tests based on
the assumption that subjects fall in either two or more classes, with diseased or non-diseased
as a minimum, except that the classes can only be inferred from the observed test results.
This has the consequence that the status of the subjects is not known exactly, which reduces
the accuracy and relies upon the assumptions made about the test result distribution.

There are other methods that have been proposed, the major of which are discrepant res-
olution and composite reference (Pepe 2003, Chapter 7), both of which have disadvantages
and advantages compared to latent class methods. The advantage of the latent class method
is its statistical basis, however it has a disadvantage of dependency on assumptions about
the diagnostic tests, especially the assumption of either conditional independence or normally
distributed heterogeneity.

The further arguments to the randomLCA function required for a random effects model are:

random Specifies whether a random effect should be included.

byclass Allow loadings for the random effect to vary by class.

quadpoints Number of quadrature points for the adaptive quadrature. These specify how
accurate the numerical approximation to the marginal likelihood is, and should be in-
creased until there is negligible improvement in model fit.

constload The same loading is used for all outcomes when using a random effects model.

blocksize If the outcome loadings are broken into blocks what is the block size? This allows
the number of bcj parameters associated with the λi to be reduced when fitting models
with a large number of outcomes and a structure to the outcomes by placing constraints
on the bcj . This will be demonstrated in the symptoms example.

probit Fit probit model rather than logistic for relationship between parameters and outcome
probabilities. This is the relationship typically used in some disciplines.

This example shows the fitting of the dentistry data from Qu et al. (1996). The data consists of
the results of five dentists evaluating x-rays for presence or absence of caries. For consistency
with the original paper I have also set probit = TRUE to give the probit link. Fitting first
the three possible models for one class:

R> dentistry.lca1 <- randomLCA(dentistry[, 1:5],

+ freq = dentistry$freq, nclass = 1)

R> dentistry.lca1random <- randomLCA(dentistry[, 1:5], freq = dentistry$freq,

+ nclass = 1, random = TRUE, probit = TRUE)

R> dentistry.lca1random2 <- randomLCA(dentistry[, 1:5],

+ freq = dentistry$freq, nclass = 1, random = TRUE, probit = TRUE,

+ constload = FALSE)
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This can then be repeated for 2 to 4 classes, and using BIC the BIC extracted for each model,
and then formed into a data frame to summarise. Note that we cannot use a parametric
bootstrap based likelihood ratio test to compare the standard to random effects latent class
as the models are not nested. Here the number of quadrature points will need to be increased
for some models to allow convergence.

We can display the BIC values in a table, with the first column for standard latent class,
second for random effects with a constant loading for each dentist, and the third with loading
varying by dentist. Note that it is not possible to fit a 4 class random effects model with
individual loadings for each dentist due to non-identifiability. As for the previous example
we can form the BIC values into a table, where bic, bicrandom and bicrandom2 are the
BIC values from the standard, random effects with constant loading and random effects with
non-constant loading latent class models.

R> print(bic.data,row.names=FALSE)

classes bic bicrandom bicrandom2

1 17531.13 14974.79 14938.27

2 15021.64 14944.69 14949.37

3 14962.89 14963.54 14992.33

4 15000.03 15007.19 NA

For the standard latent class models the minimum BIC of 14962.9 is obtained for the 3 class
model. With addition of the random effect with constant loading, minimum BIC is obtained
with a 2 class model with a decrease from the latent class model to 14944.7. Allowing the
loadings to vary by dentist (2LCR model obtained by Qu et al. (1996)) minimum BIC of
14938.3 was obtained using a single class model, equivalent to a single factor Item Response
Theory (IRT) model (Bartholomew et al. 2002, Chapter 7). This assumes that rather than
subjects being grouped into classes they simply have different levels of an underlying latent
variable, possibly severity. In the absence of any assumptions about the appropriate model
this would be the model to be used, and we could conclude that severity of caries was on a
continuous scales with each dentist having different thresholds for determining the presence
or absence. In the paper by Qu et al. (1996)) the assumption is made that the underlying
latent variable is categorical, that is that there are two distinct types of subjects, and so the
2 class with random effect with constant loading will be used.

Summary may be used to display the fitted results:

R> summary(dentistry.lca2random)

Classes AIC BIC AIC3 logLik penlogLik Link

2 14869.56 14944.69 14881.56 -7422.782 -7422.848 Probit

Class probabilities

Class 1 Class 2

0.821 0.179

Conditional outcome probabilities

V1 V2 V3 V4 V5

Class 1 0.0057 0.0836 0.0059 0.0258 0.2964
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Figure 2: Marginal outcome probabilities for 2 class latent class with random effect (2LCR)
model for dentistry data.

Class 2 0.3804 0.6770 0.6508 0.3999 0.9033

Marginal Outcome Probabilities

V1 V2 V3 V4 V5

Class 1 0.0192 0.1294 0.0199 0.0558 0.3310

Class 2 0.4017 0.6464 0.6243 0.4179 0.8561

Loadings

0.704419

Clearly, based on the lower outcome probabilities, Class 1 is the non-diseased and Class 2 the
diseased.

For latent class models with random effects there are two additional arguments to plot

graphtype Type of graph, either ”marginal” or ”conditional”. For marginal the outcome
probabilities integrated over the random effect are plotted, and for conditional they are
plotted conditional on the random effect, with zero the default.

conditionalp For a conditional graph the percentile corresponding to the random effect
at which the outcome probability is to be calculated. Fifty percent is the default,
corresponding to a random effect value of zero.

The marginal outcome probabilities, obtained by integrating over the random effect can be
plotted, as in Figure 2. The marginal outcome probabilities reflect the average probability for
any subject in the class having a positive outcome. This differs from the conditional outcome
probabilities which are for a subject with zero random effect, and thus represent a typical
subject.

R> plot(dentistry.lca2random, graphtype = "marginal", type = "b", pch = 1:2,

+ xlab = "Dentist", ylab = "Marginal Outcome Probability",

+ key = list(corner = c(0.05, .95), border = TRUE, cex = 1.2,

+ text = list(c("Class 1", "Class 2")),

+ col = trellis.par.get()$superpose.symbol$col[1:2],

+ points = list(pch = 1:2)))

Adding the boot = TRUE parameter to the outcomeProbs function will obtain bootstrap
confidence intervals. Differences from the Qu et al paper result from their use of an individual
loading for each dentist when calculating Table 6.

We can demonstrate the effect of the random effect by plotting the outcome probabilities
by varying percentiles of the random effect, using the following code, which will place each
percentile in a different panel.

R> plot(dentistry.lca2random, graphtype = "conditional", type = "b",

+ pch = 1:2, conditionalp = c(0.025, 0.5, 0.975),



14 randomLCA for Latent Class with Random Effects Analysis

Figure 3: Conditional outcome probabilities for 2 class latent class with random effect (2LCR)
model for dentistry data.

+ scales = list(alternating = FALSE, x = list(cex = 0.8)),

+ xlab = "Dentist", ylab = "Conditional Outcome Probability",

+ key = list(corner = c(0.05, .95), border = TRUE, cex = 1.2,

+ text = list(c("Class 1", "Class 2")),

+ col = trellis.par.get()$superpose.symbol$col[1:2],

+ points = TRUE))

If it is desired to have the plots on a single graph, it requires using the calcCondProb function
which returns a data.frame containing the conditional probabilities conditional on the ran-
dom effect for each class and outcome. We use the 2.5th and 97.5th percentiles, and superpose
the plots on the same graph, as shown in Figure 3. As an alternative each class could be
placed in a separate panel.

R> probs <- calcCondProb(dentistry.lca2random, conditionalp =

+ c(0.025, 0.5, 0.975))

R> my.lty <- c(2, 1, 3)

R> with(probs, xyplot(outcomep~outcome, group = class, type = "b", pch = 1:2,

+ panel = function(x, y, groups = groups, ..., type = type,

+ subscripts = subscripts) {

+ panel.superpose(x, y, subscripts, groups, type, ...,

+ panel.groups = function(x, y, col, col.symbol, col.line, pch, ...,

+ subscripts) {

+ thedata <- data.frame(x, y, groups = groups[subscripts],

+ perc = perc[subscripts])

+ by(thedata, thedata$perc, function(x) {

+ lty <- my.lty[x$perc]

+ panel.xyplot(x$x, x$y, col = col, col.symbol = col.symbol,

+ col.line = col.line, lty = lty, pch = pch, type = type)

+ })

+ })

+ },

+ xlab = "Dentist", ylab = "Conditional Outcome Probability",

+ key = list(space = "bottom", adj = 1,

+ text = list(c("Class 1", "Class 2"),

+ col = trellis.par.get()$superpose.symbol$col[1:2]),

+ points = list(pch = 1:2,

+ col = trellis.par.get()$superpose.symbol$col[1:2]),

+ text = list(levels(perc), col = "black"),

+ lines = list(lty = my.lty, col = "black"), rep = FALSE)))

Two important concepts in diagnostic testing are sensitivity and specificity. Sensitivity is the
probability of obtaining a positive result given that the true state is positive, and specificity
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is the probability of a negative result given that the true state is negative. Calculation of
sensitivity and specificity is shown in the following code, where the number of quadrature
points have been increased to ensure convergence for all simulated datasets but may also
be obtained by increasing the penalty. The default for evaluation of outcome probabilities
for random effect models is marginal, and this is appropriate for obtaining sensitivity and
specificity.

R> dentistry.lca2random <- randomLCA(dentistry[, 1:5], freq = dentistry$freq,

+ nclass = 2, random = TRUE, quadpoints = 71, probit = TRUE)

R> probs <- outcomeProbs(dentistry.lca2random, boot = TRUE)

It is necessary to determine which is the class with higher outcome probabilities, as it is the dis-
eased class. The variable diseased gives the number of the diseased class, and notdiseased

for the non-diseased, and is based on the outcome probabilities being lower for the non-
diseased class.

R> diseased <- ifelse(probs[[1]]$Outcome[1] < probs[[2]]$Outcome[1], 2, 1)

R> notdiseased <- 3 - diseased

R> sens <- apply(probs[[diseased]], 1, function(x)

+ sprintf("%3.2f (%3.2f, %3.2f)", x[1], x[2], x[3]))

R> spec <- apply(probs[[notdiseased]], 1, function(x)

+ sprintf("%3.2f (%3.2f, %3.2f)", 1 - x[1], 1 - x[3], 1 - x[2]))

R> stable <- data.frame(sens, spec)

R> names(stable) <- c("Sensitivity", "Specificity")

R> print(stable, row.names = TRUE)

Sensitivity Specificity

V1 0.40 (0.34, 0.48) 0.98 (0.97, 0.99)

V2 0.65 (0.57, 0.73) 0.87 (0.85, 0.89)

V3 0.62 (0.54, 0.81) 0.98 (0.96, 1.00)

V4 0.42 (0.35, 0.49) 0.94 (0.93, 0.96)

V5 0.86 (0.80, 0.92) 0.67 (0.64, 0.69)

The true and false positive rates can be calculated from the outcome probabilities, similar to
sensitivity and sensitivity, and plotted for each dentist, and are shown in Figure 4.

R> rates <- data.frame(tpr=probs[[diseased]][, 1],

+ fpr=probs[[notdiseased]][, 1])

R> plot(tpr~fpr, type= "p",

+ xlab= "False Positive Rate\n(1-Specificity)",

+ ylab= "True Positive Rate (Sensitivity)",

+ xlim=c(0.0, 0.35), ylim=c(0.35, 0.9), data=rates)

R> text(rates$fpr, rates$tpr, labels=1:length(rates$fpr), pos=4)

This gives a better explanation. It appears that the difference between dentists is mainly
related to the threshold for what they classify as diseased. Dentist 5 is more likely to correctly
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Figure 4: True and false positive rates by dentist.

identify teeth as diseased but at the expense of being more likely to identify non-diseased teeth
as diseased. Note that this is different from an ROC curve where the same data is used but
the test threshold is adjusted. Here the dentists may choose different thresholds but may also
have different levels of performance.

Posterior class probabilities may again be obtained with postClassProbs

R> print(postClassProbs(dentistry.lca2random), row.names = FALSE)

V1 V2 V3 V4 V5 Freq Class 1 Class 2

0 0 0 0 0 1880 0.01510017 0.98489983

0 0 0 0 1 789 0.06917810 0.93082190

0 0 0 1 0 43 0.06932836 0.93067164

0 0 0 1 1 75 0.20226873 0.79773127

0 0 1 0 0 23 0.45787551 0.54212449

0 0 1 0 1 63 0.70501579 0.29498421

0 0 1 1 0 8 0.65707868 0.34292132

0 0 1 1 1 22 0.84127364 0.15872636

0 1 0 0 0 188 0.07570088 0.92429912

0 1 0 0 1 191 0.22845916 0.77154084

0 1 0 1 0 17 0.19730868 0.80269132

0 1 0 1 1 67 0.44250841 0.55749159

0 1 1 0 0 15 0.69765230 0.30234770

0 1 1 0 1 85 0.86945162 0.13054838

0 1 1 1 0 8 0.82628389 0.17371611

0 1 1 1 1 56 0.93698427 0.06301573

1 0 0 0 0 22 0.20830084 0.79169916

1 0 0 0 1 26 0.43828271 0.56171729

1 0 0 1 0 6 0.38511890 0.61488110

1 0 0 1 1 14 0.63614574 0.36385426

1 0 1 0 0 1 0.84992024 0.15007976

1 0 1 0 1 20 0.93487338 0.06512662

1 0 1 1 0 2 0.91123325 0.08876675

1 0 1 1 1 17 0.96597655 0.03402345

1 1 0 0 0 2 0.42926570 0.57073430

1 1 0 0 1 20 0.68678159 0.31321841

1 1 0 1 0 6 0.61133968 0.38866032

1 1 0 1 1 27 0.82621036 0.17378964

1 1 1 0 0 3 0.92818906 0.07181094

1 1 1 0 1 72 0.97420230 0.02579770

1 1 1 1 0 1 0.95985005 0.04014995

1 1 1 1 1 100 0.98854609 0.01145391

Clearly, as the number of dentists identifying the subject as diseased increases, the posterior
probability of being diseased increases, until it is almost one when all dentists identify the
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subject as diseased. The observed and fitted values may be obtained using the fitted method
which returns a data frame containing them. Again, differences from the Qu et al paper result
from a model with different loading for each dentist. We can obtain the fitted values for the
two models as follows:

R> dentistry.lca2.fitted <- fitted(dentistry.lca2)

R> dentistry.lca2random.fitted <- fitted(dentistry.lca2random)

R> dentistry.fitted <- merge(dentistry.lca2.fitted,

+ dentistry.lca2random.fitted,

+ by = names(dentistry.lca2.fitted)[1:6])

R> names(dentistry.fitted)[6:8] <- c("Obs", "Exp 2LC", "Exp 2LCR")

R> print(dentistry.fitted, row.names = FALSE)

V1 V2 V3 V4 V5 Obs Exp 2LC Exp 2LCR

0 0 0 0 0 1880 1836.269688 1882.192230

0 0 0 0 1 789 830.355777 779.798031

0 0 0 1 0 43 61.935623 56.084225

0 0 0 1 1 75 49.638860 72.333917

0 0 1 0 0 23 28.629710 25.843393

0 0 1 0 1 63 47.476969 60.365764

0 0 1 1 0 8 4.035498 4.693957

0 0 1 1 1 22 35.146115 25.089532

0 1 0 0 0 188 213.894055 176.134439

0 1 0 0 1 191 152.205557 209.645043

0 1 0 1 0 17 12.147014 17.583716

0 1 0 1 1 67 61.010673 53.823622

0 1 1 0 0 15 11.208720 14.481075

0 1 1 0 1 85 91.569231 78.991510

0 1 1 1 0 8 8.068136 5.582299

0 1 1 1 1 56 86.406595 67.144825

1 0 0 0 0 22 21.210572 16.998043

1 0 0 0 1 26 25.170809 30.581733

1 0 0 1 0 6 2.100455 2.526790

1 0 0 1 1 14 16.081306 10.598155

1 0 1 0 0 1 2.541639 3.323288

1 0 1 0 1 20 24.707746 20.750490

1 0 1 1 0 2 2.180116 1.437973

1 0 1 1 1 17 23.518986 17.796233

1 1 0 0 0 2 6.023167 7.401451

1 1 0 0 1 20 42.001350 31.873360

1 1 0 1 0 6 3.695018 2.415691

1 1 0 1 1 27 39.260207 23.634112

1 1 1 0 0 3 5.667957 4.566131

1 1 1 0 1 72 61.064379 59.378191

1 1 1 1 0 1 5.392057 3.466837

1 1 1 1 1 100 58.386012 102.463942
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It can be seen how the random effects model more accurately models the data, with fitted
values closer to the observed data.

3.3. Symptoms example

This comprises data on the presence or absence of respiratory and allergy symptoms in the
Childhood Asthma Prevention Study (CAPS) (Mihrshahi et al. 2001) and was used as the
example in Beath and Heller (2009). The symptoms of night cough, wheeze, itchy rash and
flexural dermatitis since the previous visit were recorded at one month, then quarterly for the
first year and then twice yearly until age two years. For analysis these are aggregated for each
six month period to avoid numerical problems associated with very small probabilities. The
aim of the analysis is to identify the number of classes of subjects based on their respiratory
and allergy symptoms combined. As well as allowing for the classes to be defined by different
levels of the symptoms it will also allow for changes over time.

For randomLCA the data is required in wide format with the four outcomes repeated in order
for the number of periods. While it is not necessary, each outcome is suffixed with a period
and the corresponding time identifier. This makes interpretation of the results easier and also
will be used in labelling of the graphs. The structure of the data is:

R> names(symptoms)

[1] "Nightcough.13" "Wheeze.13" "Itchyrash.13" "FlexDerma.13"

[5] "Nightcough.45" "Wheeze.45" "Itchyrash.45" "FlexDerma.45"

[9] "Nightcough.6" "Wheeze.6" "Itchyrash.6" "FlexDerma.6"

[13] "Nightcough.7" "Wheeze.7" "Itchyrash.7" "FlexDerma.7"

[17] "Freq"

The following two additional arguments to randomLCA are used to define the two level random
effects model.

level2 Fit 2 level random effects model.

level2size Size of level 2 blocks for fitting 2 level models.

The first model fitted is a standard latent class, to allow for no subject or period effect.

R> symptoms.lca2 <- randomLCA(symptoms[,1:16], freq=symptoms$Freq, nclass=2)

A variation of the random effects latent class model can be fitted allowing the loadings (bcj
parameters) for the outcomes to be repeated, that is wheeze at the different time points,
for example, will always have the same loading, using the blocksize argument. This is
equivalent to the 2 level model with the time-dependent random variable having a variance
of zero, that is no time-dependent effect. The outcomes have been set to have non-constant
loading, although in practice models for constant loading would also be fitted.

R> symptoms.lca2random <- randomLCA(symptoms[,1:16], freq=symptoms$Freq,

+ random=TRUE, nclass=2, blocksize=4, constload=FALSE)
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The two level models are specified through the level2 argument and the number of outcomes
at each time through the level2size argument. For these models the penalty is increased
to 0.1 to reduce the execution time, but for a two class model will be about an hour and for
a three class model about two hours.

R> symptoms.lca2random2 <- randomLCA(symptoms[,1:16], freq=symptoms$Freq,

+ random=TRUE, level2=TRUE, nclass=2, level2size=4, constload=FALSE,

+ penalty=0.1)

Repeating for up to five classes or when the BIC increases gives the following results. It
should be noted that the two level models can take considerable time to fit. This is due to
the relatively large number of quadrature points required for this data, as a consequence of
a large number of patterns consisting entirely of zeroes. As for the previous examples we
can form the BIC values into a table, where bic, bic.random and bic.random2 are the BIC
values from the standard, random effects and 2 level random effects latent class models.

class bic bic.random bic.random2

1 10844.187 9987.510 9595.689

2 10123.811 9769.743 9363.976

3 9960.839 9700.262 9399.352

4 9910.742 9726.760 NA

5 9916.665 9731.190 NA

This shows the optimal model is the 2 Class model with random effects for both subject and
period.

R> summary(symptoms.lca2random2)

Classes AIC BIC AIC3 logLik penlogLik Link

2 9198.443 9363.976 9236.443 -4561.222 -4563.492 Logit

Class probabilities

Class 1 Class 2

0.5704 0.4296

Conditional outcome probabilities

Nightcough.13 Wheeze.13 Itchyrash.13 FlexDerma.13

Class 1 0.3675 0.2319 0.0904 0.0926

Class 2 0.8031 0.6243 0.1336 0.0605

Nightcough.45 Wheeze.45 Itchyrash.45 FlexDerma.45

Class 1 0.4408 0.1581 0.0333 0.0626

Class 2 0.8731 0.6723 0.1672 0.0536

Nightcough.6 Wheeze.6 Itchyrash.6 FlexDerma.6 Nightcough.7

Class 1 0.3089 0.0853 0.0028 0.0166 0.2276

Class 2 0.6525 0.4577 0.0055 0.0097 0.6216

Wheeze.7 Itchyrash.7 FlexDerma.7

Class 1 0.0476 0.0020 0.0044

Class 2 0.3772 0.0036 0.0154

Marginal Outcome Probabilities
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Figure 5: Marginal outcome probabilities for 2 class latent class for symptoms data.

Nightcough.13 Wheeze.13 Itchyrash.13 FlexDerma.13

Class 1 0.3680 0.2356 0.4002 0.3112

Class 2 0.8022 0.6221 0.4190 0.2769

Nightcough.45 Wheeze.45 Itchyrash.45 FlexDerma.45

Class 1 0.4410 0.1617 0.3552 0.2796

Class 2 0.8723 0.6694 0.4302 0.2678

Nightcough.6 Wheeze.6 Itchyrash.6 FlexDerma.6 Nightcough.7

Class 1 0.3097 0.0879 0.2596 0.1894 0.2286

Class 2 0.6519 0.4585 0.2841 0.1595 0.6211

Wheeze.7 Itchyrash.7 FlexDerma.7

Class 1 0.0493 0.2478 0.1213

Class 2 0.3794 0.2685 0.1850

Loadings

Nightcough Wheeze Itchyrash FlexDerma

0.1009 0.2043 6.4622 3.0987

Tau

0.9519

The marginal outcome probabilities are plotted in Figure 5 as follows.

R> plot(symptoms.lca2random2, type="b",

+ scales=list(x=list(at=1:4, labels=c(6, 12, 18, 24))), pch = 1:4,

+ xlab="Period",

+ key = list(corner = c(0.05, .90),

+ text = list(c("Night Cough", "Wheeze", "Itch Rash", "Flex. Derma.")),

+ points = list(pch= 1:4),

+ col = trellis.par.get()$superpose.symbol$col[1:4], border = TRUE))

It can be seen that in Class 2 the outcome probabilities are greater than for Class 1, with
the difference greatest for the two respiratory symptoms night cough and wheeze. Also over
time the outcome probabilities decrease. Similarly to the dentistry example the conditional
probabilities can be obtained using calcCond2Prob and plotted.

4. Summary

It has been shown how the randomLCA package may be used to determine classes of sub-
jects based on observed binary data, and how this may be used to determine sensitivity and
specificity for diagnostic tests. In the dentistry and symptoms examples an assumption of
heterogeneous classes, where the outcome probabilities are allowed to vary within a class was
shown to be an improvement over traditional latent class analysis. The randomLCA package
also produces a range of plots for describing the classes, allows for bootstrapped standard
errors, calculation of marginal outcome probabilities when using random effects models and
the use of penalised likelihood. A further extension to randomLCA would be extension to



Ken J. Beath 21

latent class regression models (Dayton and Macready 1988), where the class probabilities are
determined by the covariates. Another extension is to allow for ordinal data using a Graded
Response model (Samejima 1970). A possible extension to the package is to allow for other
data types. However for the random effects models it is difficult to extend the models except
for ordinal data.
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