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Abstract

Random Uniform Forests are a variant of Breiman’s Random Forests (tm) (Breiman,
2001) and Extremely randomized trees (Geurts et al., 2006). Random Uniform
Forests are designed for classification, regression and unsupervised learning. They
are an ensemble model that builds many unpruned and randomized binary decision
trees. Unlike Random Forests, they use random cut-points to grow each tree. Unlike
Extremely randomized trees, they use bootstrap and subsampling, since Out-of-bag
(OOB) modeling plays a key role. Unlike both algorithms, for each node, sampling
with replacement is done to select features. The main purposes of the algorithm are
to get low correlated trees, to allow a deep analysis of variable importance and to be
natively incremental. Random uniform decision trees are the core of the model. We
provide an R package (randomUniformForest) that implements almost all functions
of the algorithm, including Breiman’s bounds and, in this overview, we present an
overview of theoretical arguments and fully comprehensive examples with R code.
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1 Introduction

Random Uniform Forests belong to the family of ensemble models that build many base
learners then combine them to achieve tasks like classification or regression. They are
first designed to be less computationally expensive than Breiman’s Random Forests while
keeping all properties of the latter. They also follow the idea of Extremely Randomized
Trees (Extra-Trees) but, here, we do not want to loose the OOB (Out-of-bag) evaluation.
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Implementations of ensemble learning are widespread, using different manners; however
we will be focused on Random Forests and Extra-Trees since they provide efficient algo-
rithms that can be used in R (R core Team, 2014) for real life problems and are close to
Random Uniform Forests for their decision rule. Based learners are decision trees, like
the CART (Breiman et al., 1984) paradigm, but in Random Uniform Forests they are
unpruned and not deterministic.

In Random Uniform Forests, we seek strong randomization and some kind of global
optimization. Hence, we want to achieve low correlation between trees (or trees residu-
als) leaving average variance of trees, eventually, increase but not to much. We are not
concerned by bias, since we assume that if trees are enough randomized, ensemble model
should have low bias. If not, the algorithm provides post-processing functions designed
to reduce bias. Note that bias is here the difference, over observations, between the mean
of the forest classifier and the mean of Y . Conceptually, we build the model using the
next steps.

i) For classification, we first draw, for each tree and with replacement, n observations
among the n of the training sample (the bootstrap). For regression, we use subsampling
(drawing, without replacement, m points out-of n, m < n).

ii) Each tree is grown by sampling uniformly, with replacement, a set of variables at
each node. It means that, if the dimension of the problem is d, one can choose ⌈βd⌉
variables, β ≥ 1/d, at each node to grow the tree.

iii) Each cut-point is generated randomly, according to the continuous Uniform distribu-
tion on the support of each candidate variable or, more computationally efficient, between
two random points of each candidate variable. Hence, we do not use any local optimiza-
tion to find the best cut-point. Note that each one follows exactly the continuous Uniform
distribution and, so, is not drawn among points in the node.

iv) Optimal random node is, then, selected by maximizing Information Gain (classifi-
cation) or minimizing ’L2’ (or ’L1’) distance (regression).

Each of the four elements above has a difference with either, Random Forests or Extra-
Trees. Main arguments reside in drawing (with replacement) variables, using the contin-
uous Uniform distribution and choosing the optimization criterion. One can note that
at the algorithmic level, some others arguments are used (e.g. for categorical variables
or for removing useless variables). In both Extra-Trees and Random Forests, there is
no replacement when selecting variables. Extra-Trees use random cut-point, which is
drawn uniformly between the minimal and the maximal value of each candidate variable
for the current node. Like Random Forests, Random Uniform Forests use bootstrap for
classification, but in the case of regression, subsampling is usually preferred, giving bet-
ter results than bootstrap. All three algorithms use a different criterion to find optimal
cut-point and variable, for each node, between candidates.

In the next section we focus on theoretical arguments of random uniform decision trees,
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the base learners.
In section 3, we provide the details of Random Uniform Forests.
In section 4, we provide some useful extensions of the model.
In section 5, we give a few fully comprehensive and reproducible examples with real life
data sets.

2 Random uniform decision trees

Random uniform decision trees are unpruned and randomized binary decision trees. They
use the continuous Uniform distribution to be built (that gives them their name) and,
unlike CART, do not seek optimality. They, first, used to be the core of Random Uniform
Forests and just growing one random uniform decision tree is useless (in comparison to
CART). But understanding Random Uniform Forests needs first to know mechanisms
of the former. We suppose than the reader knows what a decision tree is; we are just
concerned on how it is grown in this specific case. When growing a (random uniform)
decision tree we need, essentially, to know three aspects :
- how to grow and modify a node (region),
- when to stop growing tree,
- how to define and build the decision rule.

To better clarify these steps, we first give a quick definition of trees we propose.

Definition. A random uniform decision tree is a binary decision tree in which nodes are
built using random cut-points. For each step of the recursive partitioning, ⌈βd⌉ variables,
β ≥ 1/d, are drawn with replacement. Then for each candidate variable, a cut-point α
is drawn using the continuous Uniform distribution on the support of each candidate or
between two random points of the latter. Optimal random node is the one that maximizes
information gain (in classification) or that minimizes a L

2 distance (or another one) in
regression. The recursive partitioning is pursued unless a stopping rule is matched. The
decision rule is then applied and exists only for terminal nodes.

2.1 Regions

Random uniform decision trees are close to other types of decision trees and a node has
always two or zero children nodes. We can now get the details of the algorithm in a few
lines. We first have to define what a region is and for that, we call P , a partition of the
data. Following Devroye et al. (1996), we propose this definition.

Definition. A is a region of the partition P if, for any B ∈ P , A ∩B = ∅ or A ⊆ B.

Hence, we suppose that we have Dn = {(Xi, Yi), 1 ≤ i ≤ n}, corresponding to the obser-
vations and responses of the training sample, where (X, Y ) is a R

d × Y-valued random
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pair. A is an optimal region of the random uniform decision tree if :

for any A ∈ P ,
{
X

(j∗)
i ≤ αj∗ |Dn

}
, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

for any AC ∈ P ,
{
X

(j∗)
i > αj∗ |Dn

}
, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

where, for classification :
αj ∼ U

(
min(X(j)|Dn), max(X

(j)|Dn)
)

and j∗ = arg max
j∈{1,...,d}

IG(j,Dn),

and for regression :
αj ∼ U

(
min(X(j)|Dn), max(X

(j)|Dn)
)

and j∗ = arg min
j∈{1,...,d}

L2(j,Dn).

2.2 Stopping rules

Once A and AC , its complementary region, are found, we repeat the recursive partitioning
for the two regions (drawing random variables and cut-points and choosing the optimal
region) until we met some conditions, which are :
- the minimal number of observations is reached,
- for one region, all the observations have the same label (or value),
- for one region, all the observations are the same,
- for one region, there is no more features to select,
- IG(j,Dn) (or, in regression, L2(j,Dn)) reached a threshold (usually 0).

2.3 Optimization criterion

Now, we just need to define the IG function, which is the information gain, and a decision
rule for the tree. For classification, let us suppose that Y ∈ {0, 1}. We have :

IG(j,Dn) = H(Y |Dn)−
[
H
((
Y |X(j) ≤ αj

)
|Dn

)
+ H

((
Y |X(j) > αj

)
|Dn

)]
,

where H is the Shannon entropy (note that we use it with the natural logarithm),
and

H(Y |Dn) = −
1∑

c=0

{
1

n

n∑

i=1

I{Yi=c} log

(
1

n

n∑

i=1

I{Yi=c}

)}
,

with 0 log 0 = 0, so that H(Y ) ≥ 0.

Let n
′

=
∑n

i=1 I
{

X
(j)
i ≤αj

}, then

H
((
Y |X(j) ≤ αj

)
|Dn

)
= −

n
′

n

1∑

c=0

{
1

n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

} log

(
1

n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

}

)}
,

and

H
((
Y |X(j) > αj

)
|Dn

)
=

−
n− n

′

n

1∑

c=0

{
1

n− n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

} log

(
1

n− n′

n∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

}

)}
.
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For regression, we have

L2(j,Dn) =
n∑

i=1

(
YiI

{

X
(j)
i ≤αj

} − ŶAI
{

X
(j)
i ≤αj

}

)2

+
n∑

i=1

(
YiI

{

X
(j)
i >αj

} − ŶACI{
X

(j)
i >αj

}

)2

,

with

ŶA =
1

n′

n∑

i=1

YiI
{

X
(j)
i ≤αj

} and ŶAC =
1

n− n′

n∑

i=1

YiI
{

X
(j)
i >αj

}.

2.4 Decision rule

Each time a stopping criterion is met, we define the decision rule, g
P
, for an optimal (and

terminal) node A. We have for classification :

g
P
(x,A,Dn) = g

P
(x) =




1, if

∑n
i=1 I{Xi∈A,Yi=1} >

∑n
i=1 I{Xi∈A,Yi=0}, x ∈ A

0, otherwise.

And for regression :

g
P
(x,A,Dn) = g

P
(x) =

1∑n
i=1 I{Xi∈A}

n∑

i=1

YiI{Xi∈A}, x ∈ A.

2.5 Algorithm

We can summarize the different tasks mentioned above by the following algorithm :

1- draw with replacement (or subsample, m out-of n, in case of regression) n obser-
vations of Dn.
a) draw with replacement ⌈βd⌉ variables,
b) for each of the ⌈βd⌉ variables, draw α using the continuous Uniform distribution on
the support of each candidate variable or between two random points,
2- for the ⌈βd⌉ variables, choose the pair (j∗, α∗) that maximizes IG(j,Dn) for classifica-
tion, and for regression the one that minimizes L2(j,Dn),
3- (j∗, α∗) is the pair that defines the regions A and AC ,
4- If a stopping rule is met, stop the partitioning and build the decision rule g

P
,

5- If not, pursue step 1 to 5 for A and AC .

In a random uniform decision tree, partitioning leads to a large and deep tree (if bal-
anced, depth is log(n)/log(2)) due to the randomness introduced. Since no pruning is
done, terminal nodes tend to have a very few values leading to a high variance of the tree.
But bias remains low and an interesting property is that more randomness does not hurt
bias. Hence, in a random uniform décision tree prediction error is not an achievement,
but high variance is. To avoid it increase too much, perturbations on the training sample
sent to the optimization criterion are the main argument. The second one is that no local
optimization is done since we want to lower the correlation between trees : following
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Breiman’s ideas, as variance for a single tree is high and hard to reduce, one can let it
get high (introducing more diversity) and let ensemble do the reduction using the Law
of Large Numbers, if trees are independent. In practice, they are not and one can use
correlation to measure level of dependence.

Comparing to CART, one single random uniform decision tree will have an higher vari-
ance, but average variance of trees will be lower, in most cases, than CART variance.
Then next step is to know how averaging will affect prediction error.

3 Random Uniform Forests

As Random Forests do, we use ensemble of random uniform decision trees to build a
Random Uniform Forest. Algorithm is straightforward but one can note that many
improvements come from the algorithmic level where a lot of randomness is essential to
get improvements over a simple averaging of trees. Another point of view is that Random
Uniform Forests use the Bayesian paradigm : the forest classifier is the result of almost
all parameters for a fixed data set.

3.1 Algorithm

Once the structure of a random uniform decision tree is known, algorithm needs a few
lines (but much more in practice) :
1- For each tree, from b = 1 to B, grow a random uniform decision tree and build its
decision rule
2- For the B trees, apply the rule ḡ(B)

P
(see section 3.3).

3.2 Key concepts

Before going further, one can note the difference of concept between Random Forests and
Random Uniform Forests :
in Random Forests, a tree is grown by choosing, at each step of the recursive partitioning,
the optimal region among a few locally optimal, but globally randomized, regions. In Ran-
dom Uniform Forests, the optimal region is chosen among many, possibly overlapping,
random regions. In Extremely Randomized Trees, the optimal region is chosen among a
few non-overlapping random regions. In all cases, guarantees are due to the Law of Large
Numbers that generates convergence and needs trees to be theoretically independent.

Why not simply use Extra-Trees which are the fastest and have similar performance
than Random Forests (and sometimes better, in case of regression)? The first reason is
that they lack of OOB evaluation, since they need all training examples for each tree
grown. OOB informations are much more important than just being an equivalent of
cross-validation. The second reason is linked with optimization criterion which is more
complex in Extra-Trees (in both classification and regression). We are looking for (very)
simple optimizations in Random Uniform Forests in order to preserve diversity. The third
one is that we think that the dimension of the problem matters as the randomization is
increased and, especially in the regression case, dimension is one key to the problem.
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The main difference with Random Forests appears in average trees correlation which is
usually higher in the latter (at least for regression) while the average variance of trees is
smaller. The motivation of pursuing low correlation appears directly in the Law of Large
Numbers and theoretical properties of Random Forests, and Random Uniform Forests,
that we want to be the closest to the practice. In other words, Random Uniform Forests
are an application of Breiman’s ideas using (strong) randomization to the point of view
of observations rather than to the dimension whose we need, here, more for optimization.

3.3 Decision rule

Let us write g
P
(X)

def
= g

P
(X, θ), where θ is the parameter that translates the randomness

introduced in the tree. For the b-th tree, 1 ≤ b ≤ B, we have g(b)
P
(X)

def
= g

P
(X, θb).

For an ensemble of trees, the decision rule, ḡ(B)
P

, is easy to write. We have for binary
classification :

ḡ(B)
P

(x) =





1, if
∑B

b=1 I{g
(b)
P

(x)=1}
>
∑B

b=1 I{g
(b)
P

(x)=0}

0, otherwise.

And for regression :

ḡ(B)
P

(x) =
1

B

B∑

b=1

g(b)
P
(x).

The decision rule is simple and one can ask how to find interesting properties and how
to explain good results of ensemble models. Trees in Random (Uniform) Forests are
designed to be weakly dependent in order to apply most of their properties. Breiman
provides main theoretical properties of Random Forests and Random Uniform Forests
simply inherit from them.

3.4 Convergence of prediction error

Let us first look classification, considering mg, the margin function that measures the
difference (in frequency) between points correctly classified and points misclassified. We
have

mg(X, Y ) =

(
1

B

B∑

b=1

I
{g

(b)
P

(X)=Y }

)
−

(
1

B

B∑

b=1

I
{g

(b)
P

(X) 6=Y }

)
.

Let us call (following Breiman’s notation), PE∗ the prediction error. We have

PE∗ = PX,Y (mg(X, Y ) < 0) ,

and by the Law of Large Numbers, when B → ∞,

PE∗ p.s.
→ PE = PX,Y{Pθ(gP

(X, θ) = Y )−Pθ(gP
(X, θ) 6= Y ) < 0}.

(Breiman, 2001, theorem 1.2).
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For regression, we get same results. We have

PE∗(forest)
def
= PE∗(ḡ(B)

P
(X)) = EX,Y

(
Y −

1

B

B∑

b=1

g(b)
P
(X, θb)

)2

,

and when B → ∞,

PE∗(ḡ(B)
P

(X))
p.s.
→ PE(ḡ(B)

P
(X)) = EX,Y (Y − EθgP

(X, θ))2 .

(Breiman, 2001, theorem 11.1).

- As a consequence, Random Uniform Forests do not overfit if trees are independent
(in practice, a little dependent). One can note that low correlation between trees is easy
to achieve in (binary) classification (usually around 0.1) but much harder in regression
(usually around 0.3 or more).
- A second consequence is that one does not need to grow a lot of trees. Convergence
toward the true prediction error of the model will quickly happen as one add trees to the
forest.
- The third one is that in classification one needs first to lower bias when in regression
one needs first to reduce correlation.

But, the main application of convergence is the ability to just focus on ways to re-
duce prediction error without the need to further work on consistency. Note that, for the
latter, first results for regression have been obtained recently (Scornet et al., 2014) and
will probably lead to interesting developments.

3.5 The OOB classifier

The Out-of-bag (OOB) informations are the observations that do not participate to the
trees building. For each tree, due to bootstrap or sub-sampling, some observations are not
chosen and are stored in order to build the OOB classifier whose decision rule is ḡ

(B)

P ,oob(X).
The OOB classifier exists only for the training sample and use B′ trees, B′ < B, with
n observations. Note that the B′ trees are not necessary the same for each observation
that needs to be evaluated. We have for an observation x and for only Dn

ḡ(B)
P ,oob

(x) =





1, if
∑B

b=1 I
{

g
(b)
P

(x)=1
}I{b∈G−

(x,B)} >
∑B

b=1 I
{

g
(b)
P

(x)=0
}I{b∈G−

(x,B)}

0, otherwise.

And, for regression :

ḡ(B)
P ,oob

(x) =
1∑B

b=1 I{b∈G−
(x,B)}

B∑

b=1

g(b)
P
(x)I{b∈G−

(x,B)},

where G
−

(x,B) is the set of trees, among the B, which have never classified x.

The OOB classifier gives an estimate of prediction error and lead to many improve-
ments, like post-processing, in order to control prediction error or for others purposes.
One of the most important is a way to prevent overfitting, using the OOB classifier in
conjunction with Breiman’s bounds.
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3.6 Bounds

As correlation decreases, average variance of trees increases and it begins harder to reduce
prediction error. If one wants to control both correlation and variance, one key is to
observe and monitor Breiman’s bounds. These are the bounds of Random (Uniform)
Forests that ensure that prediction error (under the i.i.d. assumption) will not increase
beyond a limit. Most applications of Breiman’s bounds are linked with the OOB classifier
(that inherit to the bounds) and show if more work (also depending on n, but not on
feature engineering) is needed to improve the modeling or if there is no more room for
the algorithm. At first, bounds involve classification and we have two. The first bound
is, by the Bienaymé-Tchebychev inequality,

PE∗ ≤
Var(mr)

s2
,

where
mr(X, Y ) = Pθ(gP

(X, θ) = Y )−Pθ(gP
(X, θ) 6= Y ),

is the limit of mg and s, s > 0, the strength (or margin), is

s = EX,Y{mr(X, Y )}.

This first bound states that prediction error would always be under a limit which is ex-
plicit but unknown (unless one evaluates it using OOB informations). It is the upper
bound of prediction error but it can be loose (but useful in case of problems with imbal-
anced classes or more difficult ones).

The second bound is tighter. We have (Breiman, 2001, theorem 2.3)

PE∗ ≤
ρ̄(1− s2)

s2
,

where

ρ̄ =
Eθ,θ

′ [ρ(θ, θ
′

)
√
Var(θ)

√
Var(θ′)]

Eθ,θ
′ [
√

Var(θ)
√

Var(θ′)]
,

with ρ(θ, θ
′

) is the correlation of two trees of parameters θ and θ′ and Var(θ) is the
variance of the tree, standing as the variance of the raw strength. Let us note the latter
rmg. We have

rmg(θ,X, Y ) = I{g
P
(X,θ)=Y } − I{g

P
(X,θ) 6=Y },

and
Var(θ)

def
= Var

X,Y
(rmg(θ,X, Y )).

One can note that mr(X, Y ) = Eθ(rmg(θ,X, Y )).

Here we are concerned by correlation (easy to reduce) and much more by strength, which
is connected with bias. In Random Uniform Forests, we first expect to increase the
strength by adding more trees. If we try more optimization, strength may also increase
but correlation will increase too. Fortunately, we can lower correlation by using more
randomization (up to a limit) without not affecting strength too much. we call Breiman’s
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second bound the expected bound of prediction error and one result we are looking for is
that it must not be exceeded, thanks to the OOB error. One can note that the bound
could not work in case of imbalanced classes or correlated covariates.

In regression, Breiman also provides a bound and the theoretical prediction error of
the forest. The key differences with classification reside in the fact that :
1 - the bound is usually not an upper bound because correlation in regression is much
higher than in classification and may prevent convergence.
2 - It tells explicitly where prediction error can be pushed.
3 - It has stronger link with (average) variance of trees.

Suppose that, for all θ, E(Y ) = EX(gP
(X, θ)). We have (Breiman, 2001, theorem 11.2),

PE(forest) ≤ ρ̄PE(tree),

where
PE(tree)

def
= PE(g

P
(X, θ)) = EθEX,Y(Y − g

P
(X, θ))2,

and ρ̄ is the average correlation between trees residuals.
Moreover, we have the estimator of the theoretical prediction error of the forest given by

P̂E∗(forest) = P̂E∗(ḡ(B)
P

(X)) = ˆ̄ρ


 1

B

B∑

b=1

√√√√ 1

n

n∑

i=1

(
Yi − g

(b)
P (Xi)

)2



2

,

with

ˆ̄ρ =

∑
1≤b<c≤B ρ̂

b,c
(θb, θc)

√
V̂ar

X,Y
(Y − g

(b)
P (X, θb))

√
V̂ar

X,Y
(Y − g

(c)
P (X, θc))

(∑B
b=1

√
V̂ar

X,Y
(Y − g

(b)
P (X, θb))

)2 .

In regression we are concerned by both correlation and average prediction error of trees
(and, then, by their variance). Here, each time one wants to lower variance, correlation
increases unless one finds a way to do both reduction. Randomization is, yet, the key
to reduce correlation. To avoid variance getting high, one strategy is to work more on
the dimension, growing large and deep trees (also useful for bias reduction) and, in many
cases, to use post-processing. In regression, the main problem is that randomization
leads to a lot of combinations that affect variance but not enough reduce correlation. As
a consequence, in many experiments, correlation can exceed, 0.3 or 0.4, without reducing
variance.

We can note two points :
- due to this correlation, not enough low, a part of the problem is linked with bootstrap
which does not generate enough diversity. That’s why it is not used in Random Uniform
Forests for regression.
- due to variance that may remain high, we allow to draw variables, at each node, with
replacement in order to increase competition, and thus try to reduce average variance of
trees at some cost (expected low) to the correlation.
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The good news are that it seems there is enough room to reduce prediction error in
Random (Uniform) Forests. One way to assess it is to monitor the theoretical prediction
error of the forest using the OOB classifier. If it is lower than the OOB prediction error
then improvements may be found at the cost of more computation. If not then one has
to take care of possible overfitting.

3.7 Decomposition of prediction error and OOB bounds

We suppose here that the relation of Y and X is unknown. Only first and second order
moments are expected (and i.i.d. assumption). Then, we can decompose prediction
error in order to find where to look for the control of the latter. We have, for binary
classification (and Y ∈ {0, 1}),

PX,Y

(
ḡ(B)
P

(X) 6= Y
)
= P(Y = 1) +P(ḡ(B)

P
(X) = 1)− 2E

{
Y ḡ(B)

P
(X)

}
, (1)

and for regression,

EX,Y(Y − ḡ(B)
P

(X))2 = E(Y 2)− 2EX,Y

{
Y ḡ(B)

P
(X)

}
+
{
EX

(
ḡ(B)
P

(X)
)}2

+VarX

(
ḡ(B)
P

(X)
)
,

(2)

Replacing Breiman’s bounds by their OOB counterparts give OOB bounds, whose we
want to be upper bounds (letting us fully control algorithm and prediction error) of test
errors. Under some conditions and the i.i.d. assumption (Ciss, 2015c), one can obtain

PE
∗
≤ PE

∗(B)

oob ,

where PE
∗(B)

oob is the OOB empirical error (computed with the training set) and PE
∗

is
the test error.

To achieve first part of the presentation, we will omit some further steps, like post-
processing, random combinations of features, or extrapolation and will drive on interpre-
tation, which gives some important keys to the modeling.

3.8 Variable importance

As in Random Forests, we provide a measure for variable importance. In fact, Random
Uniform Forests are built to get deeper in the assessment of variable importance.

First measure is the global variable importance, measured directly used the optimiza-
tion criterion. if VI is the score of importance, we have for the j-th variable, 1 ≤ j ≤ d,
named j∗ if it is optimal,

VI(j∗) =
B∑

b=1

k
b∑

l=1

IGb,l(j
∗, Dn),

and, for regression

VI(j∗) =
B∑

b=1

k
b∑

l=1

L2b,l(j
∗, Dn),
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where k
b

is the number of regions for the b-th tree, 1 ≤ b ≤ B. We, then, measure

relative influence by computing VI(j∗)/
∑d

j=1 VI(j). If one variable is never optimal (for
the criterion), then it will never be measured and its influence will be null. While global
variable importance tells what variables are influent, we still know nothing about how one
important variable affects the responses. To assess that, we provide many measures from
the concept of local variable importance to partial dependencies. One will find details in
the dedicated paper Variable importance in Random Uniform Forests (Ciss, 2015b).

4 Some extensions

In this section we quickly present a few other developments of Random Uniform Forests.
We begin by prediction and confidence intervals, then we briefly talk about output per-
turbation sampling, which lead to get some insights about Random Forests, and we end
with incremental learning.

4.1 Prediction and confidence intervals

When going toward real life problems or when industrialization comes to be the stan-
dard case, the main problem is not to give accurate prediction on average, but to give
strong guarantees that what is announced is what will be happen. First option uses the
cross-validation or OOB classifier and errors. For regression, one will usually not want
the prediction value, hard to exactly match, but the prediction value with a prediction
interval and, for a parameter, a confidence interval. To be more clear if, for example,
the problem involves some financial risk or cost, just rely on a prediction value could be
dangerous. What is more interesting is, instead, to give some other informations to the
man that pushes the button.

Random Uniform Forests provide a new approach to build some predictions and con-
fidence intervals, especially designed for real life cases. We do not discuss to the motiva-
tions behind such cases, and give directly the process to build such intervals.
Let us note q̂α(gP

(Xi, θ)), the α order empirical quantile of the g
P

distribution for the
i-th observation. We usually have this relation : with a probability 1−α, and for all i
∈ [1, n], the bootstrap prediction interval for every Yi is like that

Yi ∈
[
q̂α/2(gP

(Xi, θ)), q̂1−α/2(gP
(Xi, θ))

]
.

This latter works well but is usually too large and sometimes difficult to use in practice.

As an alternative, we consider the following approach, for each Yi.
i) We draw, with replacement, Si estimates of G(Xi, B) = {g(1)

P
(Xi), g

(2)
P
(Xi), ..., g

(B)
P

(Xi)},
where S is the number of unique values of G(Xi, B). Then, we compute a first estimator
of Yi given by

ḡ(S)
P

(Xi) =
1

S

S∑

s=1

g(s)
P
(Xi),

where the g(s)
P
(Xi) are randomly chosen.

ii) We repeat the operation K times and it leads to a K-sample {ḡ(S1)
P

(Xi), ḡ
(S2)
P

(Xi), ..., ḡ
(SK)
P

(Xi)}.
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iii) We, then, consider q̂α(ḡ
(S)
P

(Xi, )), the α order empirical quantile of the ḡ(S)
P

distribu-
tion for our K-sample. It is not directly used for Yi, mainly because for some distribution
like the exponential one, small or very frequent (and close) values are a hard problem
when considering a prediction interval. We suppose, so, that in the neighborhood of
a quantile, empirical distribution is Gaussian and, then, define the following prediction
interval : with an approached probability 1− α,

Yi ∈


q̂α/2(ḡ(S)

P
(Xi)) + zα/2

√
V̂arθS(gP

(Xi, θS))

S
, q̂1−α/2(ḡ

(S)
P

(Xi)) + z1−α/2

√
V̂arθS(gP

(Xi, θS))

S


 ,

where zα/2 is the α/2 order quantile of the N (0, 1) Gaussian distribution,

V̂arθS(gP
(Xi, θS)) is the empirical variance of the decision rule for which values are unique

for Xi.

We, then, derive a confidence interval for a parameter, say for example Ȳ .
Let us have

q̃α/2(gP
(Xi, θ)) = q̂α/2(ḡ

(S)
P

(Xi)) + zα/2

√
V̂arθS(gP

(Xi, θS))

S
,

then, with an approached probability 1− α,

Ȳ ∈

[
1

n

n∑

i=1

q̃α/2(gP
(Xi, θ)),

1

n

n∑

i=1

q̃1−α/2(gP
(Xi, θ))

]
.

iv) The last step is to validate intervals using OOB informations or with a validation
sample.

4.2 Output perturbation sampling

Output perturbation sampling is one of the most strange application of Random Uniform
Forests and we first present it. Let’s consider the algorithm and only the regression case
: for each tree, subsample m out-of n observations of Dn and proceed to the growth.
Output perturbation sampling stands for the following procedure : for each tree, sub-
sample m out-of n observations of Dn, and replace all (or a part) Yi values, 1 ≤ i ≤ m,

by random values drawn from a variable Z, where Z ∼ N (Ȳ , cV̂ar(Y )), c ≥ 1. Then,
grow the tree.
When using output perturbation sampling, some results are empirically observed :
- overfitting hardly happens,
- correlation is strongly reduced (up to a factor 3), but variance increases too,
- prediction error slightly increases and, in some cases, is better.

The third point is the most surprising, since we found in many cases, if not all, that
the prediction error was, in fact, close to the standard case after some (automatic) post-
processing. It seems that the model just only needs the parameters. In others words, if
one just grows many uncorrelated trees, convergence will happen and prediction error will
remain low as long as one knows only an estimate of the parameters of the distribution
of Y .
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4.3 Incremental learning

Incremental learning is a way to do learning for streaming data. If data are very large
or come by chunks, then incremental learning is one way to treat them whatever their
size is. But, it will usually have a cost, at least a loss of accuracy. Incremental learning
proceeds by chunks of data and regression case is usually less easy than classification
for achieving low prediction error (in contrast of a computation of all the data at once).
Incremental learning has two cases :
- the i.i.d. assumption holds for all chunks (or, at least, many),
- the (joint) distribution of (X, Y ) is shifting (either the distribution itself or its param-
eters).

Random Uniform Forests are natively incremental, even for a shifting distribution, but
some work is required. Output perturbation sampling is a part of the mix for not see-
ing erratic prediction error. The classification case is more simple and one can let the
algorithm change itself how the classification has to work, i.e., let it change the threshold
that is giving the result of the majority vote.

We consider the general case of a shifting distribution : the decision rule is the same
for all cases, but one has to rely on the OOB classifier (and some others tools) to adapt
the forest classifier. Let us call ḡ(T )

P,inc
the incremental forest classifier. We simply have

ḡ(T )
P,inc

=





1, if
∑T

t=1

∑Bt

b=1 I
{

g
(b)
Pt

(x)=1
} >

∑T
t=1

∑Bt

b=1 I
{

g
(b)
Pt

(x)=0
}

0, otherwise.

and for regression,

ḡ(T )
P,inc

(x) =
1∑T

t=1 Bt

T∑

t=1

Bt∑

b=1

g(b)
Pt

(x),

where P
t
is a partition of the data for the slice time t,

Bt, is the number of trees for the slice time t,
T , is the number of slices time.

Incremental learning is a subsampling process that we apply on both data and deci-
sion rule. Each tree sees only a part of the data and the forest itself sees a (bigger) part
of the data. The main argument here is that cut-points are random, so see a part or whole
data does not change many things. And even if it does, there is no other option. The
problem relies more on the informations retained. Some informations that are important
for a slice time, can be obsolete in the next slice time or worst, leading to confuse the
forest. The only hope is, then, to adapt the classifier to the new situation without loosing
all the informations memorized before. Since a sub-forest is a forest, with just less trees
(like the OOB classifier is) we can adapt Random Uniform Forests by assessing ḡ(T )

P,inc
,

ḡ(T−1)
P,inc

and ḡ(BT−1)
P

. One can note that trees are never modified; but they can be recalled,
duplicated, removed and stored, or added.
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5 Examples

We provide in this section some full examples on how tasks are computed using Random
Uniform Forests.

Usage in R

The reference manual of the randomUniformForest package provides all the details of
how one can use and manage options in the algorithm. In the lines below, we refer on
the options used.

To install the package :

install.packages("randomUniformForest")

To load the package :

library(randomUniformForest)

Methods

With the randomUniformForest package, version 1.0.8, we use, for comparison,
- package randomForest (Liaw, Wiener, 2002), which implements the original Breiman’s
procedure,
- package extraTrees (Simm, de Abril, 2013), which freely implements the Extremely
Randomized Trees algorithm,
- package e1071 (Meyer et al.), which implements SVM (Support Vector Machines) (Vap-
nik, Cortes, 1995),
- package gbm (Ridgeway et al.), which implements Gradient Boosting Machines (Fried-
man, 2001, 2002).

Note that others accurate models are available on R, like BayesTree, ipred, glmnet, rpart,
kernlab, klar,... View more at Rdocumentation or at CRAN Task View: Machine Learn-
ing and Statistical Learning .

We use for most of comparisons a 10-fold cross validation. For each data set, we use
the same seed (equal to 2014), calling before each procedure the R code set.seed(2014),
in order to let everyone reproduce the results, since all data are available on the UCI
repository : http://archive.ics.uci.edu/ml/index.html

We provide R code, as often as possible, to show how operations are done in a simple way.

Some algorithms like gbm, extraTrees and randomUniformForest are such randomized
that using the same seed will produce different results on the same data. To get conver-
gence one has to use enough trees (≥ 200).
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5.1 Classification

We evaluate 4 datasets available on the UCI repository using each time one topic to
illustrate in a different manner Random Uniform Forests.

5.1.1 Iris data (assessment of variable importance)

Iris data is one of the most famous dataset in machine learning. We report the description:
This famous (Fisher’s or Anderson’s) iris dataset gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

# load the algorithm and data

library(randomUniformForest)

data(iris)

XY = iris

# column of the classes

classColumn = 5

# separate data from labels

Y = extractYFromData(XY, whichColForY = classColumn)$Y

X = extractYFromData(XY, whichColForY = classColumn)$X

# run model: default options

ruf = randomUniformForest(X, Y = as.factor(Y))

# display results...

ruf

# ...gives standard output (below) of a Random Uniform Forest

Call:

randomUniformForest.default(X = X, Y = as.factor(Y))

Type of random uniform forest: Classification

paramsObject

ntree 100

mtry 5

nodesize 1

maxnodes Inf

replace TRUE

bagging FALSE

depth Inf

depthcontrol FALSE

OOB TRUE
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importance TRUE

subsamplerate 1

classwt FALSE

classcutoff FALSE

oversampling FALSE

outputperturbationsampling FALSE

targetclass -1

rebalancedsampling FALSE

randomcombination FALSE

randomfeature FALSE

categorical variables FALSE

featureselectionrule entropy

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 4%

OOB error rate bound (with 1% deviation): 4.88%

OOB confusion matrix:

Reference

Prediction setosa versicolor virginica class.error

setosa 50 0 0 0.00

versicolor 0 47 3 0.06

virginica 0 3 47 0.06

OOB geometric mean: 0.9596

OOB geometric mean of the precision: 0.9596

Breiman’s bounds

Prediction error (expected to be lower than): 0.37%

Upper bound of prediction error: 3.84%

Average correlation between trees: 0.0176

Strength (margin): 0.9096

Standard deviation of strength: 0.1782

1 - One can note that some options are defined as in the RandomForest package, meaning
the same arguments (ntree for the number of trees, mtry for the number of variables tried
at each node, or nodesize for the minimal number of observations per node).
2 - The next lines give the OOB evaluation, with OOB errors, confusion matrix and some
measures to assess the evaluation.
3- Last group are the Breiman’s bounds and their details. One can note here that OOB
error is not bounded by any Breiman’s bound. It means that overfitting is likely to hap-
pen and one should have more data before concluding on prediction error, since pairwise
observations are needed to estimate margin and correlation, leading to less cases than
attended.

We, then, focus more on how to explain species with the covariates. First step gives
the global variable importance, which is embedded (by default) in the model.
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# call the summary() function gives some details about the forest and

# global variable importance

summary(ruf)

Figure 1: Global Variable importance for the iris dataset

The figure shows relative influence of all variables. the vertical line (in grey) shows where
the influence would be if all variables had the same one. But, knowing what variables
are important do not tell us what explains one specie or another. We, then, get in the
details.

# assess the details of variable importance

# we set ’maxInteractions’ to its highest level,

# i.e., the dimension of the problem

imp.ruf = importance(ruf, Xtest = X, maxInteractions = 4)

# then, see the big picture (please use vertical tiling in the R menu

# to see all plots)

plot(imp.ruf, Xtest = X)
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Figure 2: Variable importance based on interactions, and interactions, for the iris dataset

Visualizing the interactions is the first manner to assess variable importance by relying
more on both model and data. Here we count variables that reside on terminal nodes
in first or second position. We ask more work to the model since most of each tree
is necessary before counting a variable, but only half (the terminal nodes) of the tree
can be used. Randomness creates constraint, as the interactions creates another one,
by requiring that the same variable occurs again in second order (position) to be enough
important. Counting occurrences relies more on data since all potential predictions (in all
trees) are involved. This scheme gives the Variables interactions over observations. One
can see that Petal.width and Petal.Length lead to most of interactions while Sepal.Length
have no interaction with any other variable.

The mosaic plot orders variables by their importance. First order means that the first
variable in column is the most important, following by the second variable and so on.
Second order means that there is another (unknown) variable more important than the
first one in row. This unknown variable can, however, appears in the second order if,
for example, it is important in most cases. To be simple, first variables in first and in
second order are usually the most important, when taking account interactions, but it is
not always the case and not a rule. Here, we do not have many variables. Petal.Length
has strong influence and consequently, even if we are looking the top variables in the
second order view, we get it but not at the most important variable. That shows us that
Petal.Length has an influence in probably most of the classes, but not the strongest in all.

Aggregating interactions gives the Variable importance based on interactions. It is a
variable importance that takes account potential variables that can lead to the better
separation between classes and is more interpretable than the global variable importance
measure.

To show them in another view, one can see the Variable importance over labels which
gives another picture.
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Figure 3: Variable importance over labels for the iris dataset

For each class, we see what variables are important, getting deeper in the analysis.
Petal.Length explains most two species while Petal.Width explains more the last one.
Sepal.Width remains important only by its interactions and not, here, by its contribution.

But what can we say about Sepal.Length ? We might want to know why it does not
give informations. In the same case, we also might want to know why the others vari-
ables are so important. For that, we get in the partial dependencies for all variables (note
that the call of the plot above just draws partial dependence for the most important
variables letting user to choose, at the prompt, the variable he wants to draw).

Figure 4: Partial dependencies for Petal Length and Petal Width

The main arguments of partial dependencies are to show what leads to separation be-
tween species (the classes), and if it is easy to achieve it or not. For example, here, if
Petal.Length is below 2 and Petal.Width is below 0.5, the specie is, with great probability,
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Setosa. Then, only two variables are enough to identify species. What about the others
? To get more partial dependencies we just call the function with the importance object:

# for the ’Sepal.Length’ variable

pD.Sepal.Length = partialDependenceOverResponses(imp.ruf, Xtest = X,

whichFeature = "Sepal.Length", whichOrder = "all")

Figure 5: Partial dependencies for Sepal Width and Sepal Length

Sepal.Width and Sepal.Length are less discriminant variables and receive, then, less im-
portance. The main difference between the two is that, as we write it above, Sepal.Width
has more interactions with the others variables.

One may want to take decision about which variables (for example if there are many
ones) are needed for each class to achieve enough explanation. We simply let partial
importance give the information.

# for the setosa and virginica species

pImp.setosa = partialImportance(X, imp.ruf, whichClass = "setosa")

pImp.virginica = partialImportance(X, imp.ruf, whichClass = "virginica")
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Figure 6: Partial importance for classes setosa and virginica

Partial importance states that Petal.Length is enough to know class setosa while for class
virginica we need first Petal.Width and, less, Petal.Length.

One may want to compare how a single decision tree looks like. One of the main func-
tionnality of this latter is to provide rules that one can easily understand. Since the
trees in Random Uniform Forests are strongly randomized (unlike CART, where they are
deterministic), visualizing one tree is not suitable for interpretation and no tree is better
than another.

# get a tree

tree_100 = getTree.randomUniformForest(ruf,100)

# plot a tree in the forest

plotTree(tree_100, xlim = c(1,18), ylim = c(1,11))

Figure 7: Two trees in the forest. Classes {1,2,3} are {setosa, versicolor, virginica}
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One can see that rules are different and trees can be deep and large. Hence in Random
Uniform Forests one interest is the bayesian framework. Data are fixed and parameters
are random. We build almost all parameters (since convergence happens quickly) using
randomness and let the data lie in the space in many different structures. In case of vari-
able importance, the strong randomness ensure that effects we are getting are probably
not random otherwise no specific shape would be expected.

5.1.2 Vehicle data

The next dataset we are assessing is also available on the UCI repository or using the
mlbench R package. Following its description, given by the authors, The purpose is to
classify a given silhouette as one of four types of vehicle, using a set of features extracted
from the silhouette. The vehicle may be viewed from one of many different angles.

The dataset has 946 observations, 18 attributes and 4 classes.
Here, we simply assess prediction error of Random Uniform Forests, comparing to Ran-
dom Forests, Extra-Trees and Gradient Boosting Machines.

1- At the first step, we use one train and test sets then see how the model works.

data(Vehicle, package = "mlbench")

XY = Vehicle

# column of the classes

classColumn = 19

# separate data from labels

Y = extractYFromData(XY, whichColForY = classColumn)$Y

X = extractYFromData(XY, whichColForY = classColumn)$X

# reproducible code and train sample (50%)

set.seed(2014)

train_test = init_values(X, Y, sample.size = 1/2)

# training sample

X1 = train_test$xtrain

Y1 = train_test$ytrain

# test sample

X2 = train_test$xtest

Y2 = train_test$ytest

# run model: default options, but setting number of trees to 500

ruf.vehicle = randomUniformForest(X1, as.factor(Y1),

xtest = X2, ytest = as.factor(Y2), ntree = 500)

# call

ruf.vehicle

# displays

# ...
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Out-of-bag (OOB) evaluation

OOB estimate of error rate: 24.35%

OOB error rate bound (with 1% deviation): 27.53%

OOB confusion matrix:

Reference

Prediction bus opel saab van class.error

bus 93 3 4 1 0.0792

opel 0 51 30 0 0.3704

saab 1 41 67 4 0.4071

van 1 10 8 109 0.1484

OOB geometric mean: 0.7271

OOB geometric mean of the precision: 0.7356

Breiman’s bounds

Prediction error (expected to be lower than): 21.97%

Upper bound of prediction error: 35%

Average correlation between trees: 0.0782

Strength (margin): 0.5124

Standard deviation of strength: 0.3031

#...

Test set

Error rate: 26%

Confusion matrix:

Reference

Prediction bus opel saab van class.error

bus 119 2 4 0 0.0480

opel 0 41 29 0 0.4143

saab 0 61 68 0 0.4729

van 4 3 7 85 0.1414

Geometric mean: 0.6951

Geometric mean of the precision: 0.7088

We observe that overfitting is happening. We can expect it using the Breiman’s bound
(21.97%), as it must be an upper bound of the OOB error. But the relation just works in
one direction. OOB error can be lower than Breiman’s bound and not preventing from
overfitting.

Let’s look how Random Forests do, getting their OOB error.

library(randomForest)

rf = randomForest(X1, as.factor(Y1), xtest = X2, ytest = as.factor(Y2))
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rf

# displays

Call:

randomForest(x = X1, y = as.factor(Y1), xtest = X2, ytest = as.factor(Y2))

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 4

OOB estimate of error rate: 24.11%

Confusion matrix:

bus opel saab van class.error

bus 91 1 1 2 0.04210526

opel 3 54 38 10 0.48571429

saab 5 31 64 9 0.41284404

van 0 1 1 112 0.01754386

Test set error rate: 26.48%

Confusion matrix:

bus opel saab van class.error

bus 119 0 0 4 0.03252033

opel 2 44 57 4 0.58878505

saab 4 31 63 10 0.41666667

van 0 0 0 85 0.00000000

Overfitting is also happening. Due to many redundancy in data, bootstrap does not work
great and is, probably, one of the cause of overfitting.

2- The second step involves 10-fold cross validation. We report the results below. All
algorithms run in their default parameters except GBM (ntree = 500, interaction.depth
= 24, n.minobsinnode = 1, shrinkage = 0.05 )

Random Forests ExtRa-Trees GBM (optimized) Random Uniform Forests
Test error 0.2518 (0.0535) 0.2506 (0.0514) 0.2234 (0.0422) 0.2412 (0.0461)

Table 1: Classification (Vehicle Silhouette). n = 946, p = 18. Cross-validation (10 folds).
No tuning except GBM.

GBM works well but have to be optimized. Note that in the test set above, test error
is 0.2443. Random Uniform Forests seem to have, for this dataset, well defined default
parameters using more the dimension than Random Forests or Extra-Trees. We report
standard deviation in parenthesis.

5.1.3 German credit data (cost sensitive learning)

German credit is another well known dataset. As the authors say, this dataset classifies
people described by a set of attributes as good or bad credit risks. Comes in two formats
(one all numeric). Also comes with a cost matrix. We use the numeric format of the data
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which has 1000 observations, 20 attributes and 2 classes (1: Good, 2: Bad).

In the german credit data, test error is not suitable since there is a cost matrix (5 if
the classifier predicts Good when it is actually Bad and 1 if the classifier predicts Bad
when it is Good). Therefore we have to minimize the cost. To achieve that, we have to
optimize AUC (area under ROC curve) and AUPR (area under precision-recall curve).
As in the definition of Fawcett (2006), AUC is the probability that the classifier ranks a
randomly positive instance (’Bad’ class) higher than a negative one. AUPR is an equiv-
alent of the probability of matching a positive case if it is really one. Hence for credit
scoring both measures need to be high.
- AUC gives the level of confidence in matching positive cases.
- AUPR gives the limit in the capacity to match positive cases.

Since a cost matrix is provided, cost sensitive accuracy is closer to a real life case. It is
given relative to the confusion matrix and the costs associated and for the german credit
dataset we have

cost sensitive accuracy = 1−
n2,1 + 5n1,2

n.,1 + 5n.,2

,

n2,1 are the cases classified as ’Bad’ (class 2) while they are actually ’Good’ (class 1),
n1,2 are the cases classified as ’Good’ while they are actually ’Bad’,
n.,1 is the total number of ’Good’ cases,
n.,2 is the total number of ’Bad’ cases.

Note that we omit n1,1 and n2,2 since their costs are zero. We also used the average
cost defined by

average cost =
n2,1 + 5n1,2

n
.

Classes are also imbalanced and without a class reweighting method or an algorithm
insensitive to imbalanced distribution, one will hardly minimize cost. Random Uni-
form Forests explicitly implement class reweighting using, with slight modifications, the
methodology of Chen et Al. (2004). Since we only find SVM as a method that uses class
reweighting in a simple manner (one weight for each class), we keep it for comparison
(Random Forests have a class weight option, but it seems to not be enabled).

Here are the parameters we use:
- The classwt option in Random Uniform Forests use weights, for each class, that reflects
the cost matrix. We do not optimize it and set it according to the class distribution. If
’Y’ is the R vector of labels in the sample we have, using the e1071 R package help :

# for SVM

weights_svm = 100/table(Y)

# Random Uniform Forests

distribution = 100/table(Y)

weights_ruf = round(distribution/min(distribution), 4)
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Others parameters are for SVM :
kernel = "sigmoid"
cost = 0.5.

For Random Uniform Forests, we use some sampling techniques :
- the option for the number of features to try for each node, namely mtry = 3,
- we remove the bootstrap and use sub-sampling with its default value,
subsamplerate = 0.7 and replace = FALSE,
- we perturb randomly a small part (5%) of the class distribution (before reweighting),
setting outputperturbationsampling = TRUE and oversampling = 0.05,
- we set ntree = 500, the number of trees, and nodesize = 10, the minimal number of
observations per terminal node, to stabilize the forest.
Others options are let to their default values. One can find how parameters are used in
the OOB evaluation below.

We load first the data and simply run the cross-validation script (with some modifications
to capture measures). For reproducibility, one just have to use the same seed.

germanCredit = read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/

statlog/german/german.data-numeric")

XY = germanCredit

# set.seed(2014)

# separate Y and X and call a cross-validation procedure

# ...

The results are given below :

SVM Random Uniform Forests
Cost sensitive accuracy 0.7492 (0.0553) 0.7651 (0.0425)

Average cost 0.551 (0.1297) 0.517 (0.1)
AUC 0.7333 (0.0550) 0.6979 (0.0459)

AUPR 0.6372 (0.0716) 0.6451 (0.0661)
Test error 0.283 (0.0605) 0.385 (0.0479)

Table 2: Classification (German credit). n = 1000, p = 24, Cross-validation (10 folds).
Optimized to maximize cost sensitive accuracy.

Both methods achieve good scores using the class weight option, which is the main ar-
gument to get both good cost sensitive accuracy and AUC. While SVM relies more of the
latter pushing it in a high level, Random Uniform Forests are more focused on the AUPR
(area under precision-recall curve) letting, even, test error increase to get the point. To
reach good scores, optimization is needed for both methods. One special issue with the
dataset is redundancy in data since many are categorical (with 2 unique values). Thus,
Random Uniform Forests do not benefit from dimension and others random techniques
are needed to balance accuracy. Typically output perturbation sampling is the argument
that pushes cost sensitive accuracy beyond the 0.74 limit (and reduce the average cost
under 0.56). In both methods, better scores can be probably achieved.
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OOB evaluation and the OOB classifier

We, then, present the OOB evaluation and some tools we may use to assess the dataset.

# model and the OOB classifier

ruf.germanCredit = randomUniformForest(X, as.factor(Y), nodesize = 10,

mtry = 3, outputperturbationsampling = TRUE, oversampling = 0.05,

subsamplerate = 0.7, replace = FALSE, classwt = weights_ruf, ntree = 500)

ruf.germanCredit

# displays the OOB evaluation

#...

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 37%

OOB error rate bound (with 1% deviation): 40.14%

OOB confusion matrix:

Reference

Prediction 1 2 class.error

1 370 40 0.0976

2 330 260 0.5593

OOB estimate of AUC: 0.6976

OOB estimate of AUPR: 0.6385

OOB estimate of F1-score: 0.5843

OOB geometric mean: 0.6768

#...

OOB cost sensitive accuracy is 0.7590 and OOB average cost is 0.53. OOB evaluation is
more pessimistic than cross-validation, since it evaluates all the data at once when cross-
validation divides the data to have a full evaluation. Hence, OOB analysis is closer to
the training (and test) set, since the model will be a generalization of the OOB classifier
if a test set is provided. In cross-validation, and for Random (Uniform) Forests, it will not.

In the OOB evaluation above, one can see how it is needed to let the test error in-
crease in order to reduce the average cost. In the german credit dataset the hard task
is to reach an high AUPR, while not reducing AUC, that controls both sensitivity and
precision the key ingredients of a low cost.

To see why the task is not so easy one can call visualization of some metrics :

# get the ROC curve

roc.curve(ruf.germanCredit, Y, unique(Y))

# get the Precision-Recall curve

roc.curve(ruf.germanCredit, Y, unique(Y), falseDiscoveryRate = TRUE)
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Figure 8: ROC and Precision-Recall curves for the German credit dataset (OOB evalua-
tion).

We can see both plots look like each other (but they are not identical) and the main
point is in the beginning of each graph : we observe that for, apparently, some cases (up
to 20% of all) it is hard to distinguish if they are from class ’Bad’ or not and for the
precision-recall it is even more clear; the precision decreases so quickly that weights do
not suffice to maintain a discriminant good rule without help of other techniques.
The good sensitivity (recall) compensates but test error can suffer. In fact, even if
randomized models can reach good results for this dataset, it appears that it leads to
some instability. One can look how the test error is decreasing with the number of trees:

plot(ruf.germanCredit, ylim = c(0.25, 0.4))

Figure 9: OOB error with the number of trees for the German credit dataset.
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The error rate does not decrease (or a little) with the number of trees and is highly
unstable (red and green lines indicate where OOB could lie, while the black line estimates
its actual value). As a consequence, a single (or a few) tree(s) seem to get results closer
to the forest ones. In fact, that holds only for the test error. The forest classifier brings
more than stabilization (which is not clear above). It provides more adaptation to the
problem. Comparing to a forest of 5 or 10 trees, the ensemble with 500 trees increases
AUC by more than 10% and AUPR by more than 30%, while test error is reducing only
by 5%.

5.1.4 Breast cancer data (more on Breiman’s bound)

We conclude the evaluation for classification by some words about the Breiman’s bound.
One can note that for the others data sets, it does not work as expected. In fact, it
works but, to be clear, Breiman’s bound is not designed to get optimal classifier but to
get a robust one. For example, in the german credit data, set mtry = 1 (getting a purely
random forest) leads to push OOB error under the Breiman’s bound. We do not get the
optimal classifier, but probably the more robust. In other words, Breiman’s bound can,
in most of the cases, be the upper bound but one has to make choice between optimality
and robustness. Three elements are needed :
- have enough data,
- balanced classes, but real life problems usually have imbalanced classes,
- low correlation between covariates.

The first condition is necessary, since one of the metrics, the correlation, requires to
find pairwise cases between trees. Then, even one has 500 observations, pairwise OOB
cases will not be so numerous and increase the number of trees will not change a lot
the situation. Random Uniform Forests are not insensitive to imbalanced classes, then
majority class can have influence on the strength (the second parameter needed).
Correlated covariates tend to increase the risk of overfitting, then keeping an upper bound
is less easy. Hence, changing default parameters of the model is usually necessary to get
the Breiman’s bound as it should be. We show how it can happen in the lines below.

Breast cancer dataset is available on the UCI repository. Description can be found in the
following link :
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

The dataset has 569 observations, 32 attributes and 2 classes, but the formatted data
really have 11 attributes.

# load the data

breastCancer = read.table("http://archive.ics.uci.edu/ml/

machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",

sep = ",")

XY = breastCancer

# remove the first attribute which is a unique ID

XY = XY[,-1]
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# get observations and labels (the 10th column)

Y = extractYFromData(XY, whichColForY = 10)$Y

X = extractYFromData(XY, whichColForY = 10)$X

Here, we use default parameters for all models and report the 10-fold cross-validation
error. Note that some algorithms may need a R matrix, while others need a data frame
and test error may be affected, depending on how one is converting data frame to a
matrix.

RF ET SVM Random Uniform Forests
Test error 0.0314 (0.0161) 0.03 (0.0124) 0.0371 (0.0153) 0.0314 (0.0175)

Table 3: Classification (Breast Cancer). n = 569, p = 9. Cross-validation (10 folds). No
tuning.

Random Uniform Forests stay close to others and achieving an high accuracy is com-
mon for many algorithms with this dataset.

Let us look the Breiman’s bound. There is no chance we match it using default pa-
rameters, due to high correlation in covariates and imbalanced classes. Then, To get
the point, we use the output perturbation sampling option (changing 20% of the labels
with oversampling option) which will increase correlation between trees and decrease the
strength. Then we increase mtry to 64, having more competition between nodes, and set
the number of trees to 500 in order to stabilize the forest. All parameters are set only
with the first training sample (50% of the data, with the seed we use since the begin-
ning). Then we generate five random training and test samples and look for OOB error,
Breiman’s bound and test error.

OOB error Breiman’s bound Test error
set 1 0.0315 0.0395 0.0315
set 2 0.0287 0.0303 0.0257
set 3 0.0401 0.0335 0.0257
set 4 0.0372 0.0355 0.0286
set 5 0.0287 0.0339 0.04

Table 4: Classification (Breast Cancer). n = 569, p = 9. Training sample (50%) randomly
generated for each set.

Breiman’s bound is now much closer to the OOB error, leading to more insights on cor-
relation and strength. The OOB evaluation on the whole data leads to an OOB error of
0.0372 and the Breiman’s bound to be 0.0404. One can even control more the Breiman’s
bound and let it be a strict upper bound. In real life cases, it is the way that Ran-
dom Uniform Forests are designed to proceed in order to not be so optimistic about the
generalization error.
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5.2 Regression

In regression, we use Random Uniform Forests with their default parameters (except mtry
for the first dataset) adding only for some cases the output perturbation sampling option
to show that convergence still happens. We also use post processing.

5.2.1 AutoMPG data

The first dataset we use, autoMPG, can be found on the UCI repository. This is its
description : this dataset is a slightly modified version of the dataset provided in the
StatLib library. In line with the use by Ross Quinlan (1993) in predicting the attribute
"mpg", 8 of the original instances were removed because they had unknown values for the
"mpg" attribute. The original dataset is available in the file "auto-mpg.data-original".
The data have 398 observations and 8 attributes We, first, get the modified data and run
a 10-fold cross validation.

# load the data,

autoMPG = read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/

auto-mpg/auto-mpg.data")

XY = autoMPG

# remove the last column (car models) and get the mpg attribute (the first one)

XY = XY[,-9]

Y = extractYFromData(XY, whichColForY = 1)$Y

X = extractYFromData(XY, whichColForY = 1)$X

set.seed(2014)

We override categorical variables, using data as an R matrix, otherwise Random Forests
(RF) algorithm do not want to run due to some misunderstanding with the data imported
(data frame) and how the algorithm recognizes categorical variables. One can note that
one variable is truly categorical (the last one, ’origin’) while the first one (’cylinders’) is
discrete and can be ordered.
We also use the tuneRF() function to find the best mtry for Random Forests. The opti-
mal value is 4, and we use it for Extra Trees (ET).
SVM uses a cost of 2.5 and the radial kernel (assessed with the tune.svm() function).
GBM (Gradient Boosting machines) use the parameters we define for others data sets.
rUF stands for Random Uniform Forests and mtry is set to 14.

RF ET SVM GBM rUF rUF
(post processing)

MSE 7.46 (2.73) 7.1 (2.71) 7.31 (2.49) 7.48 (2.69) 7.15 (2.75) 7.12 (2.76)

Table 5: Regression (AutoMPG). n = 398, p = 7. Cross-validation (10 folds). All
algorithms optimized.

Extremely Randomized Trees (ET) work well for regression, so we wonder why increasing
the mtry parameter in Random Uniform Forests do not lead to better results (ET use
only mtry = 4). Increasing the number of trees from 100 to 200 in Random Uniform
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Forests do not improve the results. But ET use more observations (the whole sample)
while Random Uniform Forests use sub-sampling (with default level 0.7). Using exactly
the same parameters than ET lead to not change the MSE (around 7.13). In this dataset,
sub-sampling or working more on dimension seem to have no influence.

We assess now the whole dataset (with the OOB evaluation) to see how look like the
errors and how we can explain the miles per gallon (mpg) variable with others predictors.

# run Random Uniform Forests

ruf.autompg = randomUniformForest(X,Y)

ruf.autompg

# displays

#...

Out-of-bag (OOB) evaluation

Mean of squared residuals: 7.1946

Mean squared error bound (experimental): 8.268037

Variance explained: 88.22%

OOB residuals:

Min 1Q Median Mean 3Q Max

-17.42000 -1.16500 0.27250 0.04214 1.43100 11.60000

Mean of absolute residuals: 1.84719

Breiman’s bounds

Theorical prediction error: 6.930812

Upper bound of prediction error: 7.023337

Mean prediction error of a tree: 15.13134

Average correlation between trees residuals: 0.4642

Expected squared bias (experimental): 0.000442

OOB evaluation is close to cross-validation. We can see that the percentage of variance
explained is high and lead to have confidence in the modeling. Random Uniform Forests
display many others informations that one can use to understand the purpose.

Suppose that we want to know which are the variables that increase the consumption
(hence reducing the miles per gallon). We call importance() function then partialImpor-
tance().

# importance

imp.ruf.autompg = importance(ruf.autompg, Xtest = X, maxInteractions = 7)

# which variables leads to consumption more than average

pImp.ruf.autompg = partialImportance(X, imp.ruf.autompg,

threshold = round(mean(Y),4), thresholdDirection = "low")
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We get variables ’V5’(the weight of the car) and ’V4’ (the horsepower) to be the most
important in the increase of consumption. Let us look how ’mpg’ is evolving with these
two variables.

# Dependence between V5 and V4 and influence on the ’miles per gallon’

pDependence.V5V4 = partialDependenceBetweenPredictors(X, imp.ruf.autompg,

c("V5", "V4"), whichOrder = "all")

We get plots (and the level of the variables interaction) that give some insights :

Figure 10: Partial dependencies between ’V5’ (weight) and ’V4’ (horsepower) and effect
on the ’miles per gallon’ (Response).

We can see that high values of ’mpg’ depend on a low weight and a high horsepower
and when a threshold (in the weight) is crossed, ’mpg’ decreases no matter what the
horsepower is. Dependence between ’weight’ and ’horsepower’ seems non linear; weight
increases while horsepower decreases until a minimum, after then weight increases while
horsepower increases too. The interesting point is we know, for the whole relation, what
is happening to the miles per gallon.

5.2.2 Abalone, Concrete compressive strength, Boston housing data

We conclude regression by an evaluation with three data sets (also available on UCI).
For sake of brevity, we do not use R code here and simply report the results of a 10-fold
cross-validation procedure. Random Uniform Forests run with their default parameters.

The most surprisingly fact is linked with the prediction error, for the concrete dataset,
of GBM, far below all others. To be sure we ran again the model and change to 2-fold
cross-validation. For some data sets GBM is hard to beat. Using the whole sample in
Random Uniform Forests reduces the gap, with a MSE of 19.65.
But the point is, when completely changing the values of training responses by random
Gaussian ones then doing post-processing, Random Uniform Forests are close to their
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RF ET SVM GBM rUF rUF∗

Abalone 4.59 (0.55) - 4.52 (0.54) 4.88 (0.7) 4.64 (0.54) 4.74 (0.61)
Concrete 23.05 (5.3) 21.67 (5.38) 34.55 (5.3) 14.94 (3.95) 21.64 (5.28) 22.33 (5.82)
Housing 10.19 (3.87) 9.43 (3.69) 11.23 (6.17) 8.87 (5.73) 9.32 (3.12) 9.57 (4.57)

Table 6: Regression (Abalone, Concrete compressive strength and Boston housing data
sets). Reporting mean squared error and standard deviation of the 10-fold cross-
validation. All algorithms optimized except Random Uniform Forests.
∗ : output perturbation sampling (all training responses replaced by random Gaussian
values), and post processing enabled.

standard case. Moreover, perturbation of the outputs do not lead to worst results than
Random Forests. We see that, in regression, it seems more effective to not choose the op-
timal cut-points, as both prediction errors in Extremely Randomized Trees and Random
Uniform Forests tend to be lower or similar to the ones in Breiman’s Random Forests.

5.3 Incremental learning, big data and/or streaming data

Nowadays, it is difficult to not talk about big data and how machine learning use it to
make better predictions.
For our point of view, big data are all the data that can not be treated on a single work-
station, in a reasonable time.
Big data come with two main tasks : produce descriptive statistics and produce predic-
tive models. Machine learning is involved in the second one.

When building predictive models with big data, the main problem is how to take ac-
count all the information without loosing (too much) accuracy, knowing one will never
be able to treat all the data at once. The usual solution is to break data in blocks and
to give models the ability to update themselves with incoming data, knowing that each
chunk of data will be able to reside in (random access) memory.

Machine learning applied to big data are faced to, at least, two problems which can
lead to some severe complications :
- shifting distributions, for which statistical learning has, currently, no established theory,
- model parsimony, which asks the question of the necessity of infinite learning. In other
words, since big data do not have end, does a model need to learn continuously the data
as they come ?

In fact, in statistical learning, the problem is not really the size but whether or not
the i.i.d. assumption will hold as one is building blocks. If it holds then, no matter
what the size is, one will see the limit in prediction error. If it does not hold, then the
prediction error will probably have oscillations and one has to make it decrease with the
number of blocks, without knowing where the limit will be.

Main purpose of machine learning is to produce algorithms that will be able to gen-
eralize (well) their current knowledge, calling either their memory or their learning pro-
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cess. Random Uniform Forests try to build such models, meaning that they are able
to combine many different models on different data and try to get the best of all data
as if the latter could reside in memory. We note that all data could reside on hard disk
or SSD, but then access times would be too slow to allow reasonable time of computation.

Let us consider a practical case on artificial data with the following method :
1 - let us suppose that we have three data sets. The first two come one after the other
and the third, the test set, come at the end,
2 - we suppose that the two first data sets do not have necessarily the same joint distri-
bution of the pair (X, Y ),
3 - the (joint) distribution of the third dataset depends on the distribution of the first
and the second ones and on its own one,
4 - since the hardware is limited, the maximum size a algorithm can compute at the same
time is the size of the first data set,
5 - we can not merge the first two data sets. One can imagine having 100 or more chunks
of data. Sampling and merging would be a problem with a shifting distribution.

With the shifting distribution, the point 5 is the practical case of problem arriving with
big or streaming data. For ease of computation, we consider small data sets but the
problem does not change as long as only chunks of all the data can be computed at the
same time. Then, instead of sample data or update parameters, the point is to update
models. For our example, since we only use two training sets, the purpose is to show how
incremental learning is basically done.

We provide the full R script1 for reproducibility and show how Random Uniform Forests
work on the problem.

Protocol

1 - generate the first training sample and take a part of it to build the first part of
the test sample,
2 - generate the second dataset and take a part of it to to build the second part of the
test sample. The (random) parameters of the distribution have probably changed.
3 - generate the last part of the test sample and merge it with the others parts kept from
point 1 and 2. The parameters of the distribution are no more the same than the ones
of the two training samples.

The main argument above is that the i.i.d. assumption is probably no longer valid,
since each sample generates randomly its own parameters. The only thing that remains
constant is the relation between observations and labels, made to match a rule with some
random parameters. The algorithm must find its own path to match test labels with the
constraint or using a constant-time for learning.

1The procedure has been updated to be as clear as possible, since in the previous one it lead to

confusion and was not reproducible just by copying the R code. More tests have been added and an

unsupervised case example is provided now.
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Data model

Let us first write the model that generates the data. Let us suppose a pair (X, Y )
of random variables, where X is a d -dimensional Gaussian vector, X ∈ R

d, d > 6, and its
components are supposed to be independent. Y ∈ {0, 1}. We generate samples of (X, Y )
using the following procedure :
for each j ∈ [1, d], consider Z(j), Z(j) ∼ U[−10,10].
For each j ∈ [1, d], generate X(j), where

X(j) ∼ N (zj, z
2
j ),

with zj, one realization of the random variable Z(j).
We, then, define the rule for Y , writing

Y = I{R(X,ǫ)>E(R(X,ǫ))},

with R(X, ǫ) = 2
(
X(1)X(2) +X(3)X(4)

)
+ ǫ1X

(5) + ǫ2X
(6),

ǫ1 ∼ U[−1,1], ǫ2 ∼ U[−1,1].

Script to generate data: Example 1

The whole script can be just pasted to the R command line interface.

library(randomUniformForest)

set.seed(2014)

n = 1000; p = 50 # one may reduce or increase number of observations or variables

# call the script that generates a p-dimensional randomized Gaussian vector;

# for each variable mean and standard deviation are equal and randomly picked

# between -10 and 10, using the continuous Uniform distribution

X = simulationData(n, p)

X = fillVariablesNames(X)

# generate the rule to define labels

epsilon1 = runif(n,-1,1)

epsilon2 = runif(n,-1,1)

rule = 2*(X[,1]*X[,2] + X[,3]*X[,4]) + epsilon1*X[,5] + epsilon2*X[,6]

Y = as.factor(ifelse(rule > mean(rule), 1,0))

# retain some data (30%) to generate first part of the test sample

randomIdx = sample(n, floor(0.30*n))

X.test1 = X[randomIdx,]

# and generate the first training sample
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X.train1 = X[-randomIdx,]

Y.train1 = Y[-randomIdx]

# Then, generate the second training sample :

set.seed(1992)

X = simulationData(n, p)

X = fillVariablesNames(X)

epsilon1 = runif(n,-1,1)

epsilon2 = runif(n,-1,1)

rule = 2*(X[,1]*X[,2] + X[,3]*X[,4]) + epsilon1*X[,5] + epsilon2*X[,6]

Y = as.factor(ifelse(rule > mean(rule), 1, 0))

# retain some data (30%) to generate second part of the test sample

# and generate the second training sample

randomIdx = sample(n, floor(0.3*n))

X.test2 = X[randomIdx,]

X.train2 = X[-randomIdx,]

Y.train2 = Y[-randomIdx]

# generate the test set :

# one third of the data coming from its own distribution

set.seed(1968)

X.test3 = simulationData(floor(0.3*n), p)

X.test3 = fillVariablesNames(X.test3)

# and merge it with other parts generated

X.test = rbind(X.test1, X.test2, X.test3)

# test labels have the same rule than training labels,

# using the observations of the test set

epsilon1 = runif(nrow(X.test),-1,1)

epsilon2 = runif(nrow(X.test),-1,1)

rule = 2*(X.test[,1]*X.test[,2] + X.test[,3]*X.test[,4]) +

epsilon1*X.test[,5] + epsilon2*X.test[,6]

Y.test = as.factor(ifelse(rule > mean(rule), 1, 0))

# Finally, we have two train samples ’X.train1’ and ’X.train2’ with each

# 700 observations and 50 variables, their labels ’Y.train1’ and ’Y.train1’,

# and a test set ’X.test’ with 900 observations and 50 variables

# and its labels ’Y.test’.
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Random Uniform Forests achieve incremental learning, that is, modeling the data as they
come (by chunks), update the model and use a constant-time learning process. Hence
old data do not need to be processed again when new data arrive. In Random Uniform
Forests, the learning process becomes, after some time which can be long, a memory pro-
cess, meaning that the learning tends to be less and less necessary as the model grows.
We did not find any online or incremental learning algorithm within R packages, except
the randomForest package and the gbm one (but less straightforward). Hence we use
randomForest for comparison. Learning tasks require three core processes:
1- compute a model for each chunk, adding eventually pre-processing step like scaling,
2- combine models,
3- post-process, eventually, the combined model to adapt the voting mechanism.

All tasks are simple but may require algorithmic and model refinements. Usually, the
prediction error is the metric that gives insights on where and how efforts have to be
made. We proceed with two steps :

A - the first one calls the purely random forest ; it is a random forest model in which
the classifier does not depend (or very weakly depends) to the data. For each node, each
candidate variable and cut-point are chosen randomly. Random Uniform Forests, unlike
randomForest algorithm, allow purely uniformly random forest in which the randomness
is, in all parts of the algorithm, uniform. In the best case, purely uniformly random
forests will converge and the main argument, here, is to be independent to the data and
to capture (almost) all parameters of the model. Hence the latter states that if conver-
gence happen independently to the data, then the provided OOB error will be the one
we can expect, at the best, when going toward the test set since the i.i.d does not longer
hold. However, empirically, it is also expected that distribution in the latter has some
links with the ones in training sets or, at least, that the structure of the relation between
observations and labels does not change for any data proceeded. In other words, the
distribution may shift, but relation between observations and labels holds, at least on our
example. We can, then, compute the purely uniformly random forest.

Learning models

# we use nodesize = 5 and ntree = 500 for stabilization

pURF.model1 = randomUniformForest(X.train1, Y = as.factor(Y.train1),

ntree = 500, nodesize = 5, mtry = 1 )

pURF.model2 = randomUniformForest(X.train2, Y = as.factor(Y.train2),

ntree =500, nodesize = 5, mtry = 1)

# combine

pURF.combineModels = rUniformForest.combine(pURF.model1, pURF.model2)

# and look for OOB evaluation

pURF.combineModels

# it displays
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# ...

Out-of-bag (OOB) evaluation

OOB estimate of error rate: 44.93%

OOB error rate bound (with 1% deviation): 48.15%

OOB confusion matrix:

0 1 class.error

0 398 308 0.4363

1 321 373 0.4625

OOB estimate of AUC: 0.5506

OOB estimate of AUPR: 0.5369

OOB estimate of F1-score: 0.5425

OOB (adjusted) geometric mean: 0.5506

Breiman’s bounds

Prediction error (expected to be lower than): 14.17%

Upper bound of prediction error: 16.06%

Average correlation between trees: 0.0095

Strength (margin): 0.2701

Standard deviation of strength: 0.1012

Since distribution will probably shift, we are also interested by AUC and Breiman’s
bounds. The latter states that the only hope resides in the very low correlation of trees.
Surprisingly it is so low that bound seems too much optimistic. One can note that cor-
relation of trees overrides distribution. More precisely, it states that if trees are very
weakly dependent, then prediction error can be reduced even if the shifting distribution
hurts the strength (second part of the Breiman’s bound). But, it is more secure to rely
on the OOB classifier that states that one can not expect good prediction error. As a
consequence, OOB estimate of AUC is also not good. In all manners, one can not beat,
or even reach, the i.i.d case with all data proceeded at once. Moreover, in the non-i.i.d
case, prediction error can be everywhere. Hence, if convergence happens, the estimates
we get are the best results we do expect. The problem is that guarantees disappear as
fast as the non-i.i.d arises.

B- In order to achieve a compromise, we come back to Random Uniform Forests and
build a model that will strongly stress the competition between nodes, leading to a high
value of the mtry parameter. The link between points A and B relies on the following
arguments : since we had a non-optimal highly randomized classifier that gives us its best
estimate, if we build a more optimal one, the test error we get should be bounded by the
estimate of the non-optimal classifier. Due to the stochastic nature of Random Forests
and to the correlation we got between trees, we can expect both properties to work, at
least, decently with a shifting distribution.
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Back to the R code we get :

rUF.model1 = randomUniformForest(X.train1, Y = as.factor(Y.train1),

ntree = 500, nodesize = 5, mtry = 500, OOB = FALSE)

rUF.model2 = randomUniformForest(X.train2, Y = as.factor(Y.train2),

ntree = 500, nodesize = 5, mtry = 500, OOB = FALSE)

# combine

rUF.combineModels = rUniformForest.combine(rUF.model1, rUF.model2)

# predict

predictions = predict(rUF.combineModels, X.test)

# and assess

stats.predictions = model.stats(predictions, Y.test)

# the function above displays

Test set

Error rate: 19.56%

Confusion matrix:

Reference

Prediction 0 1 class.error

0 507 124 0.1965

1 52 217 0.1933

Area Under ROC Curve: 0.7717

Area Under Precision-Recall Curve: 0.6672

F1-score: 0.7115

Geometric mean: 0.7597

We get the results which were expected and, more essential, we get stable errors, i.e.,
running again the algorithm will let errors vary only a little. However, the method has
no reason to be specific. We, then, assess Breiman’s Random Forests but we can’t increase
competition between nodes since cut-points are optimized one variable after the other,
looking all its observations. The best we can do is to optimize the mtry parameter using
the tuneRF() function for each training set. Here are the results :

library(randomForest)

rf1 = randomForest(X.train1, as.factor(Y.train1), mtry = 14, norm.votes = FALSE)

# data in the second model should have the same size than in the first one

rf2 = randomForest(X.train2, as.factor(Y.train2), mtry = 28, norm.votes = FALSE)

rf.combineModels = combine(rf1, rf2)

rf.predictions = predict(rf.combineModels, X.test)

rf.stats.predictions = model.stats(rf.predictions, Y.test)
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# displays

Test set

Error rate: 38.11%

Confusion matrix:

Reference

Prediction 0 1 class.error

0 378 162 0.3000

1 181 179 0.5028

Area Under ROC Curve: 0.6006

Area Under Precision-Recall Curve: 0.472

F1-score: 0.5107

Geometric mean: 0.5958

We achieve higher test error with Random Forest and presume that one reason is proba-
bly coming from the local optimization of cut-points. Using only the first training sample
leads to test error over 45%. We can also evaluate the i.i.d. case, relying on the OOB
classifier and getting an error around 10%.

Example 2

We also wanted to know how algorithms would be sensitive to the shifting in distri-
bution. We repeated the same procedure, changing the seeds (adding the value 31 to
each one) and using this time:
a) 50% of the first data set, instead of 30%, with a seed value of 2045
b) 30% of the second data set (as before), with a seed value of 2023
to build first and second part of the test set, having 15% of the data coming from its own
distribution (with a seed value of 1999).

We got a test error from 27% to 32% for Random Uniform Forests and around 43%
for Random Forests.

Example 3

We repeated again, with the new seeds, the task having :
a) 15% of the first data set,
b) 30% of the second data set,
to build first and second part of the test set, having 55% of the data coming from its own
distribution.

This time the test error raised to 56% for Random Uniform Forests and a test error
from 43% to 52% for Random Forests.

As the distribution is shifting, we see that it becomes more and more difficult to reach a
good prediction error. In our example, depending on seeds and on the shifting distribu-
tion, trying to learn samples becomes a very hard task and unless ones sees a part of the
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test set, incremental learning meets its limit. The task is so complicated that even with
the two training samples at once, things do not change.

To summarize, if the distribution is shifting slowly we can have some hope. For paramet-
ric models, the main problem is in the manner to update parameters and not forget too
early the previous distributions. For non-parametric ones, it is the growth of the model.
In case of ensemble (and non-parametric) learning, one will usually need to choose the
right subset of base models.

If the distribution is shifting faster, as in the last part of our example, Clustering and
Dimension Reduction seem to be a very good alternative. For our example, using the un-
supervised mode of Random Uniform Forests leads to far better results. In fact, whenever
one thinks to be in the non-i.i.d case, or to be close, both supervised and unsupervised
learning might be needed.

Unsupervised Learning as a co-worker of Incremental Learning

# The unsupervised case with the last example :

# seeds are set respectively to 2045, 2023 and 1999

# a) 15% of the first data set,

# b) 30% of the second data set,

# are used to build first and second part of the test set,

# having 55% of the data coming from its own distribution.

# 1 - compute the model, letting it find the number of clusters

rUF.unsupervised = unsupervised.randomUniformForest(X.test)

# 2- If needed, modify the number of clusters to have two

rUF.unsupervised2 = modifyClusters(rUF.unsupervised, decreaseBy = 1)

# 3- assess test labels (but one should first identify which cluster

# corresponds to the associated label)

clusterLabels = rUF.unsupervised2$unsupervisedModel$cluster

if (names(which.max(clusterLabels[which(Y.test == 0)])) == 2)

{

clusterLabelsTemp = clusterLabels

clusterLabelsTemp[clusterLabels == 1] = 2

clusterLabelsTemp[clusterLabels == 2] = 1

clusterLabels = clusterLabelsTemp

}

clusterLabels = clusterLabels - 1
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# 4- assess the results

table(clusterLabels, Y.test)

# displays, for the run we do

Y.test

clusterLabels 0 1

0 444 6

1 159 391

The unsupervised case easily identify the test labels with a test error of 16.5%. The
main point is that we no longer have to wonder if the i.i.d. case holds or not. The only
point is the separation level we can get when going toward clustering. We can see that,in
Random Uniform Forests, by two ways.
i) call the model :

rUF.unsupervised2

# displays

Average variance between clusters (in percent of total variance): 77.98%

Average silhouette: 0.7113

Clusters size:

1 2

450 550

Clusters centers (in the MDS coordinates):

[,1] [,2]

1 -0.0685 0.0030

2 0.0561 -0.0025

We get variance between clusters in percent of total variance, i.e. the ratio of average
distance between clusters and total variance. The more it gets high, the more we have
a high separation level. We also get the average Silhouette coefficient, between -1 and 1.
It was described by Rousseeuw (1986) and provides a good measure to analyze clusters,
especially when one wants to modify or merge clusters.

In the unsupervised case, Random Uniform Forests use a multiple-layer engine, beginning
by the Random Uniform Forests algorithm itself, then a proximity matrix, Multidimen-
sional scaling that leads to strongly reduce dimension as low to 2, and ending by either
kmeans or hierarchical clustering. Providing the number of clusters is not required.

ii) In almost all cases, one can easily see the clusters, by a simple plot.

plot(rUF.unsupervised2)

# which displays
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Figure 11: Clusters representation for the test set of Example 3

Since the rule to define test labels is simple, one may ask why no simply use kmeans or
others clustering algorithms, which are faster. Hence, we tried kmeans, clara (R package
cluster and Mclust (R package mclust) which uses the EM algorithm.

# K-Means

kmeansOnXtest = kmeans(X.test, 2)

# assess test labels: check first if clusters are correctly assigned to test labels

clusterLabels = kmeansOnXtest$cluster

table(clusterLabels[which(Y.test == 0)])

table(clusterLabels[which(Y.test == 1)])

# cluster labels need to be inverted :

clusterLabelsTemp = clusterLabels

clusterLabelsTemp[clusterLabels == 1] = 2

clusterLabelsTemp[clusterLabels == 2] = 1

clusterLabels = clusterLabelsTemp

clusterLabels = clusterLabels - 1

table(clusterLabels, Y.test)

# displays

Y.test

clusterLabels 0 1

0 294 6

1 309 391
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# clara: Clustering Large Applications

# first install package, if not

# install.packages("cluster")

library(cluster)

claraOnXtest = clara(X.test, 2)

# one can easily plot clara object, getting also statistics

# plot(claraOnXtest)

# assess test labels

clusterLabels = claraOnXtest$clustering

table(clusterLabels[which(Y.test == 0)])

table(clusterLabels[which(Y.test == 1)])

# cluster labels need to be inverted :

clusterLabelsTemp = clusterLabels

clusterLabelsTemp[clusterLabels == 1] = 2

clusterLabelsTemp[clusterLabels == 2] = 1

clusterLabels = clusterLabelsTemp

clusterLabels = clusterLabels - 1

table(clusterLabels, Y.test)

# displays

Y.test

clusterLabels 0 1

0 294 6

1 309 391

# Mclust: Model-Based Clustering

# first install package, if not

mclustOnXtest = Mclust(X.test, 2)

clusterLabels = mclustOnXtest$classification

# here there is no need to assign again cluster labels

clusterLabels = clusterLabels - 1

table(clusterLabels, Y.test)

Y.test

clusterLabels 0 1

0 444 6

1 159 391
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Only Mclust reaches the expected results. But in all cases, unsupervised learning, using
clustering, outperforms supervised learning whenever the non-i.i.d. case is rising in the
data, in our examples. The supervised case fails because of the shifting distribution, even
for a simple rule to define test labels. If one can have unsupervised methods that can
find complex patterns, learning the test sample itself, it might bring more efficiency to
supervised learning.

We only have discussed about he classification case. The regression one is more chal-
lenging and, in Random Uniform Forests, involves others mechanisms.

6 Conclusion

In this paper, we have tried to show main arguments and functions of Random Uni-
form Forests. From the theoretical side, we described the key differences with Random
Forests, which are the use of more randomness (the continuous Uniform distribution)
for the choice of cut-points at each node and the use of sampling, with replacement, the
subset of candidate variables at each node. The optimization criterion is also different.
Hence the choice of optimal node is no longer the same as in Breiman’s procedure, lead-
ing to more uncorrelated trees in Random Uniform Forests (with, however, an average
variance of trees that increases). Lowering correlation is essential since it is one of the
key for convergence and for some other results. Since Random Uniform Forests inherit
of all theoretical properties of Breiman’s Random Forests, they achieve similar results at
a lower cost.

From the practical side, Random Uniform Forests can be understood as an extension
of the original method, designed to achieve a deeper assessment of variable importance,
to be natively incremental and to allow easy distributed computing. We showed many
tools to assess variable importance, providing ways to see and understand how influential
variables matter. We did not talk about some other tools like imputation of missing
values or extrapolation. But we provided full working examples of cost sensitive learning,
showed how comprehensive model can be built using visualization (ROC or Precision-
Recall curves) and a full case of incremental learning. Following Breiman’s ideas, Ran-
dom Uniform Forests are aimed to be a highly versatile tool for classification, regression
and unsupervised learning.
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