Package ‘restorepoint’

October 14, 2022

Type Package
Title Debugging with Restore Points

Version 0.2
Date 2018-12-20

URL https://github.com/skranz/restorepoint
Author Sebastian Kranz [aut, cre], Roman Zenka [ctb]
Maintainer Roman Zenka <zenka.roman@mayo.edu>

Description Debugging with restore points instead of break points. A restore
point stores all local variables when called inside a function. The stored
values can later be retrieved and evaluated in a modified R console that
replicates the function's environment. To debug step by step, one can simply
copy & paste the function body from the R script. Particularly convenient
in combination with “"RStudio". See the " Github" page inst/vignettes for a
tutorial.

License GPL (>=2)

Collate 'restorepoint.R’

Suggests testthat, knitr

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-01-02 23:10:14 UTC

R topics documented:

add.restore.point.test e e e e e e e
ASSCIT . . . o L e e e e e e e e
break.point L e
callsstotrace L e
can.parse.multiline L

https://github.com/skranz/restorepoint

Index

assert

cloneenvironment. 5
COPY.MO.BNIV v v o ittt e e e e e 5
default.error.string.fun oL 6
disable.restore.points Lo 6
ENnV.CONSOle e e 7
eval.with.errortrace L. oL 8
get.restore.point.optionso 8
get.stored.dotso L e e 9
get.stored.object.list L 9
IS.STOTING .« v v v ot e e e e e e e e e e e e e e e e e 9
TEStOTE.0DJECES . . . v o o e e e e e e e e e e e e e 10
TEStOTE.POINTE o o v ottt e e e e e e e e e e e 10
restore.point.browsero 11
restore.point.Optionso e e e e e e 12
SELSIONING o o o e 13
StOTE.0DJECES e e e e e e 13
15

add.restore.point. test

Add one or several test functions

Description

A test function is called after a restore point has stored data. It must have an argument env and
name. It can check whether certain conditions are satisfied by the variables

Usage

add.restore.point.test(...)

Arguments
a slist of test functions that will be called with the stored arguments
assert Checks whether cond holds true if not throws an error
Description

Can be used for checking for errors in functions

Usage

assert(cond)

break.point 3

Arguments
cond a condition that is checked
break.point Sets a break point that can be debugged like a restore point
Description

This function can be used as an alternative to browser(). When called inside a function, break.point
stores all local objects and then does the following. i) If to global=FALSE (the default for break.point)
starts the restore.point.browser for the local objects. ii) if to.global=TRUE copies the local objects
to the global environment and stops execution.

Usage

break.point(name = "BREAK_POINT___",
to.global = get.restore.point.options()$break.point.to.global,
deep.copy = get.restore.point.options()$deep.copy, force = FALSE,

dots = eval(substitute(list(...), env = parent.frame())))

Arguments
name key under which the objects are stored. For restore points at the beginning of a
function, I would suggest the name of that function.
to.global if TRUE (default) objects are restored by simply copying them into the global
environment. If FALSE a new environment will be created and the restore point
browser will be invoked.
deep.copy if TRUE try to make deep copies of objects that are by default copied by refer-
ence. Works so far for environments (recursivly). The function will search lists
whether they contain reference objects, but for reasons of speed not yet in other
containers. E.g. if an evironment is stored in a data.frame, only a shallow copy
will be made. Setting deep.copy = FALSE (DEFAULT) may be useful if storing
takes very long and variables that are copied by reference are not used or not
modified.
force store even if set.storing(FALSE) has been called
dots by default a list of the ... argument of the function in whicht restore.point was
called
Details

An alternative to break points are restore points. In the tutorial on GitHub, I provide some arguments
how restore points can facilitate debugging compared to break points.

4 can.parse.multi.line

calls.to.trace Transforms a list returned by sys.calls into a vector of strings that
looks like a result of traceback()

Description

Transforms a list returned by sys.calls into a vector of strings that looks like a result of traceback()

Usage

calls.to.trace(calls = sys.calls(), max.lines = 4)

Arguments
calls a list of calls, e.g. returned by sys.calls
max.lines as in traceback()

Value

a character vector with one element for each call formated in a similar fashion as traceback() does

can.parse.multi.line Checks whether for the installed R version the function env.console is
able to correctly parse R expressions that extend over more than a line

Description

The current implementation of env.console is quite dirty in so far that it parses an error message of
the parse() function to check whether a given R expression is assumed to be continued in the next
line. That process may not work in R distributions that have error messages that are not in English.
The function can.parse.multi.line() tries to check whether that process works or not @export

Usage

can.parse.multi.line()

clone.environment 5

clone.environment Deep copy of an environment

Description

Deep copy of an environment

Usage

clone.environment(env, use.copied.ref = FALSE, all.names = TRUE)

Arguments

env the environment to be cloned

use.copied.ref internal

all.names passed to eapply
copy.into.env Copies all members of a list or environment into an environment
Description

Copies all members of a list or environment into an environment

Usage

copy.into.env(source = sys.frame(sys.parent(1)),
dest = sys.frame(sys.parent(1)), names = NULL, exclude = NULL,
from.restore.objects = FALSE, overwrite = TRUE, all.names = TRUE)

Arguments
source a list or environment from which objects are copied
dest the environment into which objects are copied
names optionally a vector of names that shall be copied. If null all objects are copied
exclude optionally a vector of names that shall not be copied

from.restore.objects
internal paramater keep FALSE

overwrite should existing objects in dest with same name be overwritten?

all.names if TRUE copy all objects if names=NULL, if FALSE omit variables starting with

6 disable.restore.points

default.error.string.fun
A default error string function for eval with error trace

Description

A default error string function for eval with error trace

Usage

default.error.string.fun(e, tb)

Arguments
e the error object
tb a character vector of the traceback

disable.restore.points
Globally disable or enable restore points

Description

Globally disable or enable restore points

Usage

disable.restore.points(disable = TRUE)

Arguments

disable if TRUE globaly disable restore points. This speeds up calls to restore.point
quickly. Is faster than set.storing(FALSE), but has no informative messages
when restore.point is called from the global env.

env.console 7

env.console Emulates an R console that evaluates expressions in the specified en-
vironement env. You return to the standard R console by pressing ESC

Description

Emulates an R console that evaluates expressions in the specified environement env. You return to
the standard R console by pressing ESC

Usage

env.console(env = new.env(parent = parent.env), parent.env = parent.frame(),
dots = NULL, prompt = ": ",
startup.message = "Press ESC to return to standard R console”,
multi.line.parse.error = get.restore.point.options()$multi.line.parse.error,
local.variables = NULL)

Arguments

env The environment in which expressions shall be evaluated. If not specified then
a new environment with the given parent.env is created.

parent.env If env is not specified the parent environemnt in which the new environment
shall be created

dots a list that contains values for the ellipsies ... that will be used if you call other
functions like fun(...) from within the console. You can access the values inside
the console by typing list(...)

prompt The prompt that shall be shown in the emulated console. Default =": "

startup.message
The text that is shown when env.console is started
multi.line.parse.error
A substring used to identify an error by parse that is due to parsing the beginning
of a multi-line expression. The substring can depend on the language of R error
messages. The packages tries to find a correct substring automatically as default.
local.variables
additional variables that shall be locally available

Value

Returns nothing since the function must be stopped by pressing ESC.

8 get.restore.point.options

eval.with.error.trace Evals the expression such that if an error is encountered a traceback
is added to the error message.

Description

This function is mostly useful within a tryCatch clause Adapted from code in tools:::.try_quietly
as suggested by Kurt Hornik in the following message https://stat.ethz.ch/pipermail/r-devel/2005-
September/034546.html

Usage

eval.with.error.trace(expr, max.lines = 4, remove.early.calls = 0,
error.string.fun = default.error.string.fun)

Arguments
expr the expression to be evaluated
max.lines as in traceback()

remove.early.calls
an integer specifying a number of calls that won’t be shown in the trace.
error.string.fun
a function(e,tb) that takes as arguments an error e and a string vector tb of the
stack trace resulting from a call to calls.to.trace() and returns a string with the
extended error message

Value

If no error occurs the value of expr, otherwise an error is thrown with an error message that contains
the stack trace of the error.

get.restore.point.options
Get global options for restore points

Description

Get global options for restore points

Usage

get.restore.point.options()

get.stored.dots

get.stored.dots Returns the ellipsis (...) that has been stored in restore.point name as
a list

Description

Returns the ellipsis (...) that has been stored in restore.point name as a list

Usage

get.stored.dots(name, deep.copy = FALSE)

Arguments
name the name whith which restore.point or store.objects has been called.
deep.copy shall a deep copy of stored objects be made

get.stored.object.list
Retrieves the list of all restore.points with the stored objects

Description

Retrieves the list of all restore.points with the stored objects

Usage

get.stored.object.list()

is.storing Check whether objects currently are stored or not

Description

Check whether objects currently are stored or not

Usage

is.storing()

10 restore.point

restore.objects Restore stored objects by copying them into the specified environment.
Is used by restore.point

Description

Restore stored objects by copying them into the specified environment. Is used by restore.point

Usage

restore.objects(name, dest = globalenv(), was.forced = FALSE,
deep.copy = get.restore.point.options()$deep.copy)

Arguments
name name under which the variables have been stored
dest environment into which the stored variables shall be copied. By default the
global environment.
was. forced flag whether storage of objects was forced. If FALSE (default) a warning is
shown if restore.objects is called and is.storing()==FALSE, since probably no
objects have been stored.
deep. copy when storing or restoring tries to make a deep copy of R objects that are by
default copied by reference, like environments. Setting deep.copy = FALSE can
substantially speed up restore.point, however.
Value

returns nothing but automatically copies the stored variables into the global environment

restore.point Sets a restore point

Description

The function behaves different when called from a function or when called from the global envi-
ronemnt. When called from a function, it makes a backup copy of all local objects and stores them
internally under a key specified by name. When called from the global environment, it restores the
previously stored objects by copying them into the global environment. See the package Vignette
for an illustration of how this function can facilitate debugging.

restore.point.browser 11

Usage

restore.point(name, to.global = options$to.global,
deep.copy = options$deep.copy, force = FALSE,
display.restore.point = options$display.restore.point,
indent.level = TRUE, trace.calls = options$trace.calls,
max.trace.lines = 10, dots = eval(substitute(list(...), env =
parent.frame())), options = get.restore.point.options())

Arguments

name key under which the objects are stored. For restore points at the beginning of a
function, I would suggest the name of that function.

to.global if TRUE (default) objects are restored by simply copying them into the global
environment. If FALSE a new environment will be created and the restore point
browser will be invoked.

deep.copy if TRUE try to make deep copies of objects that are by default copied by refer-
ence. Works so far for environments (recursivly). The function will search lists
whether they contain reference objects, but for reasons of speed not yet in other
containers. E.g. if an evironment is stored in a data.frame, only a shallow copy
will be made. Setting deep.copy = FALSE (DEFAULT) may be useful if storing
takes very long and variables that are copied by reference are not used or not
modified.

force store even if set.storing(FALSE) has been called
display.restore.point

shall a text be shown in the console if restore.point is called. Can be useful
when informative tracebacks are not readily availbale, e.g. when debugging

shiny apps.

indent.level when display.restore.point=TRUE shall level of nestedness be illustrated by iden-
tation

trace.calls when objects are restored, shall a traceback be shown

max.trace.lines
if trace.calls=TRUE how many lines shall be shown at most in the traceback.

dots by default a list of the ... argument of the function in which restore.point was
called
options option list to fill the parameter defaults from

restore.point.browser Examing a previously stored restore point by invoking the browser.

Description

The function is mainly for internal use by restore.point.

12

Usage

restore.point.options

restore.point.browser(name, was.forced = FALSE,

message.text = paste(”restore point”, name,

n

, press ESC to return."),

deep.copy = get.restore.point.options()$deep.copy)

Arguments

name

was. forced

message. text

deep.copy

Value

returns nothing

name under which the variables have been stored

flag whether storage of objects was forced. If FALSE (default) a warning is
shown if restore.objects is called and is.storing()==FALSE, since probably no
objects have been stored.

initial shown message

when storing or restoring tries to make a deep copy of R objects that are by
default copied by reference, like environments. Setting deep.copy = FALSE can
substantially speed up restore.point, however.

restore.point.options Set global options for restore points

Description

Set global options for restore points

Usage

restore.point.options(options = NULL, display.restore.point = FALSE, ...)
Arguments

options a list of options that shall be set. Possible options are listed below

display.restore.point

Makes sure that the display.restore.point option is set to FALSE by default

options can also directly be passed. The following options can be set: - storing
Default=TRUE enable or disable storing of options, setting storing = FALSE
basicially turns off debugging via restore points - deep.copy Default = FALSE.
If TRUE then when storing and restoring tries to make a deep copy of R objects
that are by default copied by reference, like environments. deep.copy = FALSE
substantially speeds up restore.point. - to.global Default=TRUE. If TRUE then
when options are restored, they are simply copied into the global environment
and the R console is directly used for debugging. If FALSE a browser mode
will be started instead. It is still possible to parse all R commands into the
browser and to use copy and paste. To quit the browser press ESC in the R

set.storing 13

console. The advantage of the browser is that all objects are stored in a newly
generated environment that mimics the environemnt of the original function,
i.e. global varariables are not overwritten. Furthermore in the browser mode,
one can pass the ... object to other functions, while this does not work in the
global environment. The drawback is that the browser is still not as convenient
as the normal R console, e.g. pressing arrow up does not restore the previous
command. Also, one has to press Esc to leave the browser mode.

set.storing Set whether objects shall be stored or not

Description

Set whether objects shall be stored or not

Usage

set.storing(storing = TRUE)

Arguments
storing if FALSE don’t store objects if restore.point or store.objects is called. May save
time. If TRUE (default) turn on storage again.
store.objects Stores all local objects of the calling environment to be able to restore
them later when debugging. Is used by restore.point
Description

Stores all local objects of the calling environment to be able to restore them later when debugging.
Is used by restore.point

Usage

store.objects(name = NULL, parent.num = -1,
deep.copy = get.restore.point.options()$deep.copy, force = FALSE,
store.if.called.from.global = FALSE, envir = sys.frame(parent.num),
store.parent.env = "all.but.global”, dots = eval(substitute(list(...), env
= parent.frame())))

14

Arguments

name

parent.num

deep.copy

force

store.objects

key under which the objects are stored, typical the name of the calling function.
If name is NULL by default the name of the calling function is chosen

can be used to specify envir=sys.frame(parent.num)

if TRUE (default) variables that are copied by reference (in the moment envi-
ronments) will be stored as deep copy. May take long for large variables but
ensures that the value of the stored variable do not change

store even if do.store(FALSE) has been called

store.if.called.from.global

envir

if the function is called from the global environment and store.if.called.from.global
FALSE (default) does not store objects when called from the global environment
but does nothing instead.

the environment from which objects shall be stored. By default the local envi-
ronemnt of the calling function.

store.parent.env

dots

Value

shall objects from enclosing environments of envir also be stored? So far this
happens for all enclosing environments except for the global environment or
baseenv.

by default a list of the ... argument of the function in whicht restore.point was
called

returns nothing, just called for side effects

Index

add.restore.point.test, 2
assert, 2

break.point, 3

calls.to.trace, 4
can.parse.multi.line, 4
clone.environment, 5
copy.into.env, 5

default.error.string.fun, 6
disable.restore.points, 6

env.console, 7
eval.with.error.trace, 8

get.restore.point.options, 8
get.stored.dots, 9
get.stored.object.list, 9

is.storing, 9

restore.objects, 10
restore.point, 10
restore.point.browser, 11
restore.point.options, 12

set.storing, 13
store.objects, 13

15

	add.restore.point.test
	assert
	break.point
	calls.to.trace
	can.parse.multi.line
	clone.environment
	copy.into.env
	default.error.string.fun
	disable.restore.points
	env.console
	eval.with.error.trace
	get.restore.point.options
	get.stored.dots
	get.stored.object.list
	is.storing
	restore.objects
	restore.point
	restore.point.browser
	restore.point.options
	set.storing
	store.objects
	Index

