
An Introduction to rmdplugr
Johan Larsson

Contents
1 Motivation 1

2 rmdplugr 1

3 Plugins 2
3.1 pdf_article() . 2
3.2 pdf_presentation() . 3

1 Motivation
The motivation for rmdplugr was first off to produce a cleaner latex output
format for rmarkdown documents, given that the default settings modify standard
latex template by introducing

• wide margins,
• compact titles, and
• paragraph spacing (instead of indentation).

All of these make changes to the, in my opinion, well-founded design choices and
should be alternatives rather than the default. I understand the stance taken by
the pandoc team that output should be made similar across different outputs,
yet I believe that the vast majority of users—particularly of Rmarkdown—make
use only of a single output format at a time.

As a secondary objective, I wanted to allow modifications of the standard latex
template to allow for things such as headers and footers and author affiliations.

2 rmdplugr
I did not, however, want to produce yet another custom latex template needing
to be continuously updated along with the default templates, nor having to cater
to different versions of pandoc, having to keep separate templates for different
versions (as rmarkdown does).

rmdplugr was created to avoid such issues and does so by instead modifying
the default latex template in a version-agnostic fashion. The default template is
pulled by calling

1

3 PLUGINS

pandoc -D latex

The template is then modified with modifications in the form of plugins, which
are merged into the latex template—sometimes replacing other material, but
usually inserting new material, such as support for footers and headers.

In this way, rmdplugr doesn’t have to adapt to the pandoc version and can
even be used with custom templates provided that some of the matter from the
default template is left intact.

These plugins can be turned on and off via the output setting in the metadata
block and their options are controlled by metadata settings.

3 Plugins
3.1 pdf_article()

3.1.1 Marginal material

Headers and footers are provided using fancyhdr for standard latex document
classes and scrlayer-page for KOMA-script classes. Simply adding

header: true

in the metadata block will invoke the default settings using the automark option
in scrlayer-page and the default \pagestyle{fancy} for fancyhdr. More
advanced settings can be provided by using

header:
l: Johan Larsson
c: Document title

footer:
r: Date

3.1.2 Author blocks

Support for author blocks is made available through the authblk package if
author_block = TRUE in the call to pdf_article(). This module uses the
usual author metadata along with affiliation. There are multiple ways to
use this plugin. If you are a single author you can simply do

author: Johan Larsson
affiliation:

- Lund University
- Another affiliation

and you’ll get an authors block. If you have a more complicated list of authors,
you can use the following format, where authors are coupled to affiliations via
the id tag.

2

3.2 pdf_presentation() 3 PLUGINS

author:
- name: Johan Larsson

id: "1,2"
- name: Another Author

id: 1
affiliation:

- name: Lund University
id: 1

- name: Another affiliation
id: 2

The type of author blocks (and whatever other options are available to the auth-
blk package) can be set using the metadata option author-options. Moreover,
the default settings for fonts of affiliations and authors can be set using affilfont
and authfont respectively.

3.1.3 No indentation

The default in pdf_article() is to use indentations rather than paragraph
spacing. The trouble with this, however, is that some of the latex environments
will always be surrounded by empty lines no matter how the text is formatted
in the markdown document; this means that the paragraph following such
environments will always be indented, which is not always wanted.

To circumvent this, the noindentafter plugin loads the noindentafter
package, which makes sure that there is to be no indentation after

• itemize,
• enumerate,
• description, and
• code block

environments. You can in fact see the result of this for the list above, which
would otherwise have required a \noindent command before this paragraph.

3.1.4 Subfigs

The subfigs plugin is a very small plugin that simply makes sure that the
subfigs package is loaded. It is needed for subfigs in rmarkdown documents.

3.2 pdf_presentation()

This output format is based on the rmarkdown::beamer_presentation() for-
mat. It adds a couple of plugins.

3.2.1 Frame numbering

To enable frame numbering for your beamer presentations, setting
frame_numbering = TRUE will invoke simple frame numbers at the bottom-right
of each slide.

3

3.2 pdf_presentation() 3 PLUGINS

3.2.2 Subfigs

See section 3.1.4.

3.2.3 More font themes

In beamer_presentation() you can only choose a single font theme for beamer.
This simple plugin allows a list of fontthemes, so that you can do

fonttheme:
- structurebold
- professionalfonts

which is sometimes useful.

4

	Motivation
	rmdplugr
	Plugins
	pdf_article()
	pdf_presentation()

