
Gaussian Mixtures
The galaxies data in the MASS package (Venables and Ripley, 2002) is a frequently used example for
Gaussian mixture models. It contains the velocities of 82 galaxies from a redshift survey in the Corona
Borealis region. Clustering of galaxy velocities reveals information about the large scale structure of the
universe.

library(MASS)
data(galaxies)
X = galaxies / 1000

The Mclust function from the mclust package (Fraley et al, 2012) is used to fit Gaussian mixture models.
The code below fits a model with G=4 components to the galaxies data, allowing the variances to be unequal
(model="V").

library(mclust, quietly=TRUE)

## Warning: package 'mclust' was built under R version 3.2.4

## Package 'mclust' version 5.2

## Type 'citation("mclust")' for citing this R package in publications.

fit = Mclust(X, G=4, model="V")
summary(fit)

## ----------------------------------------------------
## Gaussian finite mixture model fitted by EM algorithm
## ----------------------------------------------------
##
## Mclust V (univariate, unequal variance) model with 4 components:
##
## log.likelihood n df BIC ICL
## -199.2545 82 11 -446.9829 -466.264
##
## Clustering table:
## 1 2 3 4
## 7 35 32 8

Figure 1 shows the resulting density plot.

plot(fit, what="density", main="", xlab="Velocity (Mm/s)")
rug(X)

Section 6.2 of Drton and Plummer (2017) considers singular BIC for Gaussian mixture models using the
galaxies data set as an example. Singularities occur when two mixture components coincide (i.e. they have
the same mean and variance) or on the boundary of the parameter space where the prior probability of a
mixture component is zero.
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Figure 1: Density estimate for galaxies data from a 4-component mixture model

The GaussianMixtures() function creates an object representing a family of mixture models up to a specified
maximum number of components (maxNumComponents=10 in this example). The phi parameter controls the
penalty to be used for sBIC (See below) and the restarts parameter determines the number of times each
model is fitted starting from randomly chosen starting points. Due to the multi-modal likelihood surface for
mixture models, multiple restarts are used to find a good (local) maximum.

library(sBIC)
gMix = GaussianMixtures(maxNumComponents=10, phi=1, restarts=100)

Learning coefficients are known exactly for Gaussian mixtures with known and equal variances, but this
model is rarely applied in practice. For unequal variances, the learning coefficients are unknown, but upper
bounds are given by Drton and Plummer (2017, equation 6.11). These bounds are implemented by setting
the penalty parameter phi=1 in the GaussianMixtures() function. We refer to the singular BIC using these
approximate penalties as sBIC1. It is calculated by supplying the data X and the model set gMix to the
sBIC() function. The RNG seed is set for reproducibility, due to the random restarts.

set.seed(1234)
m = sBIC(X, gMix)
print(m)

## $logLike
## [1] -240.3379 -220.2445 -203.1792 -197.4621 -190.0724 -186.8674 -185.8390
## [8] -186.7764 -184.0937 -185.8294
##
## $sBIC
## [1] -244.7446 -231.2612 -220.8038 -219.0979 -216.4564 -216.2255 -217.5358
## [8] -220.6820 -220.2114 -224.1505
##
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## $BIC
## [1] -244.7446 -231.2613 -220.8061 -221.6990 -220.9195 -224.3245 -229.9061
## [8] -237.4537 -241.3811 -249.7268
##
## $modelPoset
## [1] "GaussianMixtures: 0x7fde15f23e68"

Figure 2 compares BIC with sBIC1. Both criteria have been standardized so that the value for the 1-component
model is 0. This figures reproduces Figure 7 of Drton and Plummer (2017). The reproduction is not exact
because, in the interests of speed, we have reduced the number of restarts from 5000 to 100. This mainly
affects the models with larger number of components.

matplot(
cbind(m$BIC - m$BIC[1], m$sBIC - m$sBIC[1]),
pch = c(1, 3),
col = "black",
xlab = "Number of components",
ylab = expression(BIC - BIC(M[1])),
las=1, xaxt="n"

)
axis(1, at = 1:10)
legend("topleft",

c(expression(BIC), expression(bar(sBIC)[1])),
pch = c(1, 3),
y.intersp = 1.2)
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Figure 2: Comparison of singular BIC with BIC for choosing the number of components in the galaxies data

The BIC and singular BIC results for the galaxies data can be compared with the posterior probabilities for
the number of components derived by Richardson and Green (1997, Table 1) using reversible jump MCMC.
Since Richardson and Green (1997) consider up to 14 components, we truncate the distribution up to 10
components and renormalize.
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post.MCMC = c(0.000, 0.000, 0.061, 0.128, 0.182, 0.199, 0.160,
0.109, 0.071, 0.040, 0.023, 0.013, 0.006, 0.003)[1:10]

post.MCMC = post.MCMC / sum(post.MCMC)

The posterior probabilities from BIC and sBIC1 are derived by exponentiating and then renormalizing using
the helper function postBIC().

postBIC <- function(BIC) {
prob <- exp(BIC - max(BIC))
prob/sum(prob)

}
normalizedProbs = rbind("BIC"=postBIC(m$BIC), "sBIC1"=postBIC(m$sBIC), "MCMC"=post.MCMC)

Figure 3 compares the posterior densities from the three approaches. This reproduces figure 8 from Drton
and Plummer (2017).

barplot(
normalizedProbs,
beside = TRUE,
col = c("white","grey","black"),
legend = c(expression(BIC), expression(bar(sBIC)[1]), expression(MCMC)),
xlab = "Number of components",
ylab = "Probability",
args.legend = list(y.intersp = 1.2),
names.arg = 1:10

)
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Figure 3: Posterior distribution of the number of components in a Gaussian mixture model with unequal
variances applied to the galaxies data
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