
Latent Class Analysis
In latent class analysis (LCA), the joint distribution of r items Y1 . . . Yr is modelled in terms of i latent
classes. The items are conditionally independent given the unobserved class values.

Simulation

Here we consider binary LCA models, in which the items can take one of two states, labelled “1” and “2”
(Note that the sBIC package is capable of handling LCA models with more than two states).
In order to simulate data from an LCA model, the following parameters must be set:

1. alpha, a vector determining the prior probabilities of membership in each class, i.e. αh is the probability
of being in class h for h = 1 . . . i.

2. P, an r × i matrix such that Plh gives the probability that Yl = 2 given membership of class h.

We simulate from a model with r = 8 items and i = 4 classes. The class sizes are equal (i.e. alpha is uniform)
and the model is “simple” in the sense that only one of the conditional probabilities Plh is large (0.85) for
each item and the others are small (0.1, or 0.2 depending on the item).

alpha = rep(0.25, 4) ## equal

p1 = 0.85
p2 = 0.1
p3 = 0.2
P = matrix(c(

p1,p2,p2,p2,
p1,p3,p3,p3,
p2,p1,p2,p2,
p3,p1,p3,p3,
p2,p2,p1,p2,
p3,p3,p1,p3,
p2,p2,p2,p1,
p3,p3,p3,p1), nrow=8, ncol=4, byrow = TRUE)

The simLCA() function from the poLCA package (Drew and Linzer, 2011) simulates data from an LCA
model. It requires the specification of the conditional probabilities in a different form (specifically, as a list of
probability matrices) so we use a wrapper function simLCA(). The simLCA() function is designed to facilitate
simulation studies, so it allows multiple simulated data sets of a given sample size to be generated. The
simulated data sets are returned as a list of matrices length nsim.

simLCA <- function(alpha, ProbMat, sampleSize, nsim) {

Reformat the probability Matrix to a form required by poLCA.simdata
probs = vector("list", nrow(ProbMat))
for (i in 1:nrow(ProbMat)) {

probs[[i]] = cbind(ProbMat[i,], 1 - ProbMat[i,])
}

X = poLCA.simdata(N = sampleSize*nsim, probs = probs, P = alpha)$dat
split(X, rep(1:nsim, each=sampleSize))

}

1

The code below generates a single data set X it takes the form of a 50× 8 matrix with one column per item
and one row per observation.

library(poLCA)

Loading required package: scatterplot3d

Warning: package 'scatterplot3d' was built under R version 3.2.5

set.seed(37421)
X = simLCA(alpha, P, sampleSize=50, nsim=1)[[1]]
head(X)

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
1 2 2 1 1 2 2 2 2
2 2 1 2 1 2 2 1 1
3 1 1 2 2 2 2 1 2
4 2 2 2 1 2 2 1 1
5 2 2 2 2 2 2 1 2
6 2 2 2 2 2 2 1 1

Fitting an LCA model

LCA models are fitted with the poLCA::poLCA() function. The poLCA() function uses a formula interface to
determine which items are included in the model. The number of latent classes is determined by the nclass
argument. The code below fits a 3-class model to all 8 items.

f = cbind(Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8) ~ 1
poLCA(f, X, nclass = 3, verbose=FALSE)

Conditional item response (column) probabilities,
by outcome variable, for each class (row)
##
$Y1
Pr(1) Pr(2)
class 1: 0 1
class 2: 0 1
class 3: 1 0
##
$Y2
Pr(1) Pr(2)
class 1: 0.3841 0.6159
class 2: 0.0000 1.0000
class 3: 0.6667 0.3333
##
$Y3
Pr(1) Pr(2)
class 1: 0.4609 0.5391
class 2: 0.0000 1.0000
class 3: 0.1111 0.8889
##

2

$Y4
Pr(1) Pr(2)
class 1: 0.5767 0.4233
class 2: 0.1650 0.8350
class 3: 0.2222 0.7778
##
$Y5
Pr(1) Pr(2)
class 1: 0.0398 0.9602
class 2: 1.0000 0.0000
class 3: 0.1667 0.8333
##
$Y6
Pr(1) Pr(2)
class 1: 0.2319 0.7681
class 2: 1.0000 0.0000
class 3: 0.2222 0.7778
##
$Y7
Pr(1) Pr(2)
class 1: 0.4225 0.5775
class 2: 0.0000 1.0000
class 3: 0.1667 0.8333
##
$Y8
Pr(1) Pr(2)
class 1: 0.4997 0.5003
class 2: 0.1657 0.8343
class 3: 0.1111 0.8889
##
Estimated class population shares
0.5207 0.1193 0.36
##
Predicted class memberships (by modal posterior prob.)
0.52 0.12 0.36
##
===
Fit for 3 latent classes:
===
number of observations: 50
number of estimated parameters: 26
residual degrees of freedom: 24
maximum log-likelihood: -219.7884
##
AIC(3): 491.5768
BIC(3): 541.2894
G^2(3): 95.87539 (Likelihood ratio/deviance statistic)
X^2(3): 165.7594 (Chi-square goodness of fit)
##

3

Singular BIC for LCA

As with other mixture models, the learning coefficients for LCA are not known exactly, but bounds can
be derived and used to obtain an approximate singular BIC. In the case of LCA models, the bounds are
extremely sensitive to the prior distribution on the class probabilities α as this determines the asymptotic
behaviour on the boundary αh = 0. The argument is developed in some detail in Drton and Plummer (2017,
Section 6.3).
In the case of a Dirichlet prior with shape parameter φ, the bound for the learning coefficient λij of a model
with j classes embedded in a model with i > j classes is given by Drton and Plummer (2017, equation 6.19)

λij ≤ min(λ−φ
ij , λ

−r/2
ij)

where λ−φ
ij is defined by Drton and Plummer (2017, equation 6.15)

λ−φ
ij = {jr + j − 1 + (i− j)φ}

These results suggest that φ ≈ r/2 should have good asymptotic properties for selecting the number of latent
classes i. Tables 3 and 4 of Drton and Plummer (2017) show the results of simulation studies in support of
this claim. The simulations are too extensive to reproduce in this vignette, but we step through a single
example showing how the singular BIC can be recalculated for different values of φ.
The sBIC::LCAs() function creates an object of class “LCAs” representing latent class analysis models for a
given number of items (numVariables) taking a given number of states (numStatesForVariables) up to a
maximum number of latent states maxNumClasses. The resulting object of class “LCAs” is combined with
the data in the sBIC() function, which fits the various latent class models and calculates the approximate
singular BIC.

library(sBIC)
lcas = LCAs(maxNumClasses=6, numVariables=8, numStatesForVariables=2)
results = sBIC(X, lcas)

With r = 8 items, we choose φ on the order of r/2 = 4. The default behaviour of sBIC() is to use φ = (r+1)/2,
i.e. φ = 4.5 in this example. We investigate the behaviour of the singular BIC for values around φ = 4 by
setting up a vector phivec of alternative values for φ.

phivec = (6:10)/2

The singular BIC can be recalculated by calling the setPhi member function of lcas to change the penalty
and then calling sBIC() with NULL as the first argument. This recalculates the sBIC penalties without
refitting the model to the data and so is much faster than the original call to sBIC(). Note that this is
possible because the “LCAs” class uses call by reference semantics. The object lcas is altered by the initial
call to sBIC() and on exit contains information about the fitted models.
Figure 1 shows the effect of the different values of φ on BICφ.

plot(1:6, results$sBIC - max(results$sBIC), type="n", xlab="number of latent classes",
ylab=expression(bar(SBIC)[phi]))

for (i in seq_along(phivec)) {
setPhi(lcas, phivec[i])
results = sBIC(NULL, lcas)
lines(1:6, results$sBIC - max(results$sBIC), pch=i, lty=i, type="b")

}
legend("topleft", pch=1:6, lty=1:6, legend=paste("phi=", phivec))

4

1 2 3 4 5 6

−
6

−
4

−
2

0

number of latent classes

S
B

IC
φ

phi= 3
phi= 3.5
phi= 4
phi= 4.5
phi= 5

Figure 1: Influence of penalty parameter phi on sBIC for LCA

A simulation study

Further insight into the properties of sBICφ can be obtained by simulation studies. The fitBIC() function is
a convenience wrapper that calculates sBICφ for various values of φ and chooses the optimal model according
to each criterion. The return value is a vector of chosen models, indexed by the number of classes. The first
element is the model chosen by BIC and the other elements are the model chosen by sBICφ for the values of
φ in the vector phis.

fitBIC <- function(X, maxNumClasses, phis) {

lcas = LCAs(maxNumClasses, numVariables=ncol(X), numStatesForVariables=2)
results = sBIC(X, lcas)

nclass.bic <- which.max(results$BIC)
nclass.sbic = numeric(length(phis))
for (k in seq_along(phis)) {

lcas$setPhi(phis[k])
results = sBIC(NULL, lcas)
nclass.sbic[k] = which.max(results$sBIC)

}
c(nclass.bic, nclass.sbic)

}

The createTable function calls fitBIC on each element of Xlist, a list of simulated LCA data sets and then
produces a frequency table of the optimal model for BIC and for the various sBICφ criteria. The function
parallel::parSapply() is used to improve the speed of the simulations on a multi-core processor. Some
code is required to set up and shutdown the cluster used for the parallel calculations, but the core of the
calculations is contained in two lines of code.

5

createTable = function(Xlist, ...) {

Set up cluster
cl <- makeCluster(detectCores() - 1)
clusterEvalQ(cl, library(sBIC))
clusterEvalQ(cl, library(poLCA))
clusterSetRNGStream(cl)

Fit LCA models to simulated data and tabulate
bicResults = parSapply(cl, Xlist, fitBIC, ...)
bicTab = apply(bicResults, 1, tabulate, nbin=maxNumClasses)
dimnames(bicTab) = list(1:maxNumClasses, c("BIC", paste0("sBIC", phis)))

End cluster
stopCluster(cl)

bicTab
}

The code below simulates 100 data sets, each with a sample size of 50, and produces frequency tables of the
optimal model for the different criteria.

library(parallel)
set.seed(1234)
Xlist = simLCA(alpha, Pr, sampleSize=50, nsim=100)
bictab = createTable(Xlist, maxNumClasses=6, phis=phivec)
knitr::kable(bictab, row.names=TRUE)

Table 1: Frequency distribution of the number of classes chosen by
BIC and sBICφ for values of φ around 4.

BIC sBIC3 sBIC3.5 sBIC4 sBIC4.5 sBIC5
1 38 0 0 0 0 0
2 42 0 0 0 1 3
3 20 3 11 16 26 34
4 0 55 72 75 70 61
5 0 38 16 9 3 2
6 0 4 1 0 0 0

Table 1 shows the resulting frequency table. Regular BIC clearly underfits the model in these simulations.
Similarly sBIC5 shows signs of underfitting while sBIC3 shows overfitting.

Bibliography

• Drew A. Linzer, Jeffrey B. Lewis (2011). poLCA: An R Package for Polytomous Variable Latent Class
Analysis. Journal of Statistical Software, 42(10), 1-29. URL http://www.jstatsoft.org/v42/i10/.

• Drton M. and Plummer M. (2017), A Bayesian information criterion for singular models. J. R. Statist.
Soc. B; 79: 1-38.

6

http://www.jstatsoft.org/v42/i10/

	Simulation
	Fitting an LCA model
	Singular BIC for LCA
	A simulation study
	Bibliography

