
SAS7BDAT Database Binary Format

by:

Matthew S. Shotwell, PhD
Assistant Professor
Department of Biostatistics
Vanderbilt University
matt.shotwell@vanderbilt.edu

1/9/2013 update (u64 format extensions, Row Size fields, and RLE compression) by:

Clint Cummins, PhD
clint@stanford.edu

Copyright (C) 2013 is retained by the authors listed above. This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/3.0/.

Contents
• Introduction

• SAS7BDAT Header

• SAS7BDAT Pages

• SAS7BDAT Subheaders

• SAS7BDAT Packed Binary Data

• Platform Differences

• Compression Data

• Software Prototype

• ToDo

Introduction
The SAS7BDAT file is a binary database storage file. At the time of this writing, no description of the SAS7BDAT
file format was publicly available. Hence, users who wish to read and manipulate these files were required to
obtain a license for the SAS software, or third party software with support for SAS7BDAT files. The purpose
of this document is to promote interoperability between SAS and other popular statistical software packages,
especially R (http://www.r-project.org/).

The information below was deduced by examining the contents of many SAS7BDAT databases downloaded
freely from internet resources (see data/sas7bdat.sources.RData). No guarantee is made regarding its
accuracy. No SAS software, nor any other software requiring the purchase of a license was used.

1

mailto:matt.shotwell@vanderbilt.edu
mailto:clint@stanford.edu
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.r-project.org/

SAS7BDAT files consist of binary encoded data. Data files encoded in this format often have the extension
’.sas7bdat’. The name ’SAS7BDAT’ is not official, but is used throughout this document to refer to SAS database
files formatted according to the descriptions below.

There are significant differences in the SAS7BDAT format depending on the operating systems and computer
hardware platforms (32bit vs. 64bit). See the section on platform differences for more details. The format de-
scribed below is sufficient to read the entire collection of test files referenced in data/sas7bdat.sources.RData
(i.e. files associated with 32bit and some 64bit builds of SAS for Microsoft Windows, and u64 SAS versions).
This includes files created with COMPRESS=CHAR. The format described here is probably not sufficient to write
SAS7BDAT format files, due to lingering uncertainties.

The figure below illustrates the overall structure of the SAS7BDAT database. Each file consists of a header
(length := HL bytes), followed by PC pages, each of length PL bytes (PC and PL are shorthand for ’page count’
and ’page size’ respectively, and are used to denote these quantities throughout this document).:

| HL | header

| PL | page 1

| PL | page 2

...

| PL | page PC

Throughout this document, hexadecimal digits are denoted with a preceding ’x’, binary digits with a preceding
’b’, and decimal digits with no preceding character. For example, see the below table of hexadecimal, decimal,
and binary values.

SAS7BDAT Header
The SAS7BDAT file header contains a binary file identifier (i.e., a magic number), the dataset name, timestamp,
the number pages (PC), their size (PL) and a variety of other values that pertain to the database as a whole. The
purpose of many header fields remain unknown, but are likely to include specifications for data compression and
encryption, password protection, and dates/times of creation and/or modification. Most files encountered encode
multi-byte values little-endian (least significant byte first). However, some files have big-endian values. Hence,
it appears that multi-byte values are encoded using endianness of the platform where the file was written. See
Platform Differences for a table of key test files which differ in several ways.

The offset table below describes the SAS7BDAT file header as a sequence of bytes. Information stored in
the table is indexed by its byte offset (first column) in the header and its length (second column) in bytes. For
example, the field at offset 0 has length 32 bytes. Hence, bytes 0,1,...,31 comprise the data for this field. Byte
lengths having the form ’%n’ should read: ’the number of bytes remaining up to, but not including byte n’. The
fourth column gives a shorthand description of the data contained at the corresponding offset. For example, ’int,
page size := PL’ indicates that the data stored at the corresponding location is a signed integer representing the
page size, which we denote PL. The description ???????????? indicates that the meaning of data stored at the
corresponding offset is unknown. The third column represents the author’s confidence (low, medium, high) in the
corresponding offset, length, and description. Each offset table in this document is formatted in a similar fashion.
Variables defined in an offset table are sometimes used in subsequent tables.

Header Offset Table

offset length conf. description
0 32 high binary, magic number

... continued on next page

2

offset length conf. description
32 1 high binary, Alignment: if (byte==x33) a2=4 else a2=0 . u64 is true if a2=4 (unix 64

bit format).
33 2 low ????????????
35 1 high binary, Alignment if (byte==x33) a1=4 else a1=0
36 1 low ????????????
37 1 high int, endianness (x01-little [Intel] x00-big)
38 1 low ????????????
39 1 medium ascii, OS type (1-UNIX or 2-WIN). Does not affect format except for the OS

strings.
40 8 low ????????????
48 8 low ????????????
56 8 low repeat of 32:32+8
64 6 low ????????????
70 2 low int, Character Encoding
72 12 low ????????????
84 8 high ascii ’SAS FILE’
92 64 high ascii, dataset name
156 8 medium ascii, file type, e.g. ’DATA ’

164 a1 medium zero padding when a1=4 . Aligns the double timestamps below on double word
boundaries.

164+a1 8 high double, timestamp, date created, secs since 1/1/60 (for SAS version 8.x and higher)
172+a1 8 high double, timestamp, date modified, secs since 1/1/60 (for SAS version 8.x and

higher)
180+a1 16 low ????????????
196+a1 4 high int, length of SAS7BDAT header := HL
200+a1 4 high int, page size := PL
204+a1 4+a2 high int, page count := PC . Length 4 or 8 (u64), henceforth denoted 4|8
208+a1+a2 8 low ????????????
216+a1+a2 8 high ascii, SAS release (e.g. 9.0101M3)
224+a1+a2 16 high ascii, host (SAS server type, longest observed string has 9 bytes)
240+a1+a2 16 high ascii, OS version number (for UNIX, else null)
256+a1+a2 16 high ascii, OS maker or version (SUN, IBM, sometimes WIN)
272+a1+a2 16 high ascii, OS name (for UNIX, else null)
288+a1+a2 32 low ????????????
320+a1+a2 4 low int, page sequence signature? (value is close to the value at start of each Page

Offset Table)
324+a1+a2 4 low ????????????
328+a1+a2 8 medium double, 3rd timestamp, sometimes zero
336+a1+a2 %HL medium zeros
1024|8192 medium Total length of header (8192 for u64), HL

The 8 bytes beginning at offset 32 hold information which affects the offset of the ’release’ and ’host’ infor-
mation. In particular:

1. The byte at offset 32 defines the u64 (unix 64 bit) file format, which affects many field and header lengths
(usually via 4 vs. 8 byte integers).

2. The byte at offset 35 controls an offset before the timestamps.

3

3. The byte at offset 37 defines byte ordering of ints and doubles (most test files were created on Windows and
use Intel byte ordering; little endian).

4. The byte at offset 39 appears to distinguish the OS type, where ’1’ indicates that the file was generated
on a UNIX-like system, such as Linux or SunOS, and ’2’ indicates the file was generated on a Microsoft
Windows platform. However, this does not affect any important fields in the file format.

The following table describes some of the possible polymorphisms for the 8 bytes at offset 32. The first field
lists the name of the file where the sequence was found (see data/sas7bdat.sources.RData), the second
lists the eight byte values (hexadecimal), the third field shows bytes 216-239 in ASCII (’.’ represents a non-ASCII
character or ’0’), and the fourth field lists the SAS7BDAT sub-format.

filename bytes 32-39 bytes 216-239 format
compress_no.sas7bdatx22 x22 x00 x32 x22

x01 x02 x32
9.0101M3NET_ASRV........Windows Intel

compress_yes.sas7bdatx22 x22 x00 x32 x22
x01 x02 x32

9.0101M3NET_ASRV........Windows Intel

lowbwt_i386.sas7bdatx22 x22 x00 x32 x22
x01 x02 x32

9.0202M0W32_VSPRO.......Windows Intel

missing_values.sas7bdatx22 x22 x00 x32 x22
x01 x02 x32

9.0202M0W32_VSPRO.......Windows Intel

obs_all_perf_1.sas7bdatx22 x22 x00 x32 x22
x01 x02 x32

9.0101M3XP_PRO..........Windows Intel

adsl.sas7bdat x22 x22 x00 x33 x33
x01 x02 x32

....9.0202M3X64_ESRV....Windows x64 Intel

eyecarex.sas7bdat x22 x22 x00 x33 x22
x00 x02 x31

....9.0000M0WIN.........Unix non-Intel

lowbwt_x64.sas7bdat x22 x22 x00 x33 x33
x01 x02 x32

....9.0202M2X64_VSPRO...Windows x64 Intel

natlterr1994.sas7bdatx33 x22 x00 x33 x33
x00 x02 x31

........9.0101M3SunOS...u64 Unix non-Intel

natlterr2006.sas7bdatx33 x22 x00 x33 x33
x00 x02 x31

........9.0101M3SunOS...u64 Unix non-Intel

txzips.sas7bdat x33 x22 x00 x33 x33
x01 x02 x31

........9.0201M0Linux...u64 Unix Intel

The binary representation for the hexadecimal values present in the table above are given below.

hexadecimal decimal binary
x01 001 b00000001

x02 002 b00000010

x22 034 b00010010

x31 049 b00011001

x32 050 b00011010

x33 051 b00011011

Alignment

In files generated by 64 bit builds of SAS, ’alignment’ means that all data field offsets containing doubles or 8
byte ints should be a factor of 8 bytes. For files generated by 32 bit builds of SAS, the alignment is 4 bytes.
Because SAS7BDAT Packed Binary Data may contain double precision values, it appears that all data rows are
64 bit aligned, regardless of whether the file was written with a 32 bit or 64 bit build of SAS. Alignment of data

4

structures according to the platform word length (4 bytes for 32 bit, and 8 bytes for 64 bit architectures) facilitates
efficient operations on data stored in memory. It also suggests that parts of SAS7BDAT data file format are
platform dependent. One theory is that the SAS implementation utilizes a common C or C++ structure or class to
reference data stored in memory. When compiled, these structures are aligned according to the word length of the
target platform. Of course, when SAS was originally written, platform differences may not have been forseeable.
Hence, these inconsistencies may not have been intentional.

Magic Number

The SAS7BDAT magic number is the following 32 byte (hex) sequence.:

x00 x00 x00 x00 x00 x00 x00 x00
x00 x00 x00 x00 xc2 xea x81 x60
xb3 x14 x11 xcf xbd x92 x08 x00
x09 xc7 x31 x8c x18 x1f x10 x11

In all test files except one (not listed in data/sas7bdat.sources.RData), the magic number above
holds. The one anomalous file has the following magic number:

x00 x00 x00 x00 x00 x00 x00 x00
x00 x00 x00 x00 x00 x00 x00 x00
x00 x00 x00 x00 x00 x00 x00 x00
x00 x00 x00 x00 x18 x1f x10 x11

In addition, the anomalous file is associated with the SAS release "3.2TK". Indeed, this file may not have been
written by SAS. Otherwise, the anomalous file appears to be formatted similarly to other test files.

Character Encoding

The integer (one or two bytes) at header offset 70 (bytes) indicates the character encoding of string data. The table
below lists the values that are known to occur and the associated character encoding.

bytes 70-72 SAS name iconv name
0 (Unspecified) (Unspecified)
20 utf-8 UTF-8
28 us-ascii US-ASCII
29 latin1 ISO-8859-1
30 latin2 ISO-8859-2
31 latin3 ISO-8859-3
34 arabic ISO-8859-6
36 hebrew ISO-8859-8
39 thai ISO-8859-11
40 latin5 ISO-8859-9
60 wlatin2 WINDOWS-1250
61 wcyrillic WINDOWS-1251
62 wlatin1 WINDOWS-1252
63 wgreek WINDOWS-1253
64 wturkish WINDOWS-1254
65 whebrew WINDOWS-1255
66 warabic WINDOWS-1256
119 euc-tw EUC-TW
123 big5 BIG-5

... continued on next page

5

bytes 70-72 SAS name iconv name
125 euc-cn EUC-CN
134 euc-jp EUC-JP
138 shift-jis SHIFT-JIS
140 euc-kr EUC-KR

When the encoding is unspecified, the file uses the encoding of the SAS session that produced it (usually
Windows-1252).

SAS7BDAT Pages
Following the SAS7BDAT header are pages of data. Each page can be one of (at least) four types. The first three
are those that contain meta-information (e.g. field/column attributes), packed binary data, or a combination of
both. These types are denoted ’meta’, ’data’, and ’mix’ respectively. Meta-information is required to correctly
interpret the packed binary information. Hence, this information must be parsed first. In test files, ’meta’ and
’mix’ pages always precede ’data’ pages. In some test data files, there is a fourth page type, denoted ’amd’ which
appears to encode additional meta information. This page usually occurs last, and appears to contain amended
meta information.

The page offset table below describes each page type. Byte offsets appended with one of ’(meta/mix)’, ’(mix)’,
or ’(data)’ indicate that the corresponding length and description apply only to pages of the listed type. Provision-
ally, the internal structure of the ’amd’ page type is considered identical to the ’meta’ page type.

Page Offset Table

offset length conf. description
0 4 low int, page sequence signature?
4 12|28 low ???????????? length 12 or 28 (u64)
B 2 medium int, bit field page type := _PGTYPE; B = 16|32
B+2 2 medium int, data block count := BC
B+4 2 medium int, subheader pointers count := SC <= BC
B+6 2 low ????????????
B+8 SC*SL medium SC subheader pointers, SL = 12|24
B+8+SC*SL DL medium if NRD>0, 8 byte alignment; DL = (B+8+SC*SL+7) % 8 * 8
B+8+SC*SL+DL RC*‘RL‘_ medium SAS7BDAT packed binary data data row count := RC = (BC-SC)
C %‘PL‘_ medium subheader data and/or filler; C = (B+8+SC*SL+DL+RC*RL)

Page Type

PGTYPE name subheaders uncompressed row data (after subhead-
ers)

compressed row data (in subhead-
ers)

0 meta yes (SC>0) no (BC=SC) yes
256 data no (SC=0) yes (RC=BC) no
512 mix yes (SC>0) yes (RC=BC-SC) no
1024 amd yes? yes? no?
16384 meta yes (SC>0) no (BC=SC) yes
-28672 comp no no no

6

There are at least four page types ’meta’, ’data’, ’mix’, and ’amd’. These types are encoded in the most
significant byte of a two byte bit field at page offset 16|32. If no bit is set, the following page is of type ’meta’. If
the first, second, or third bits are set, then the page is of type ’data’, ’mix’, or ’amd’, respectively. Hence, if the
two bytes are interpreted as an unsigned integer, then the ’meta’, ’data’, ’mix’, and ’amd’ types correspond to 0,
256, 512, and 1024, respectively. In compressed files, other bits (and sometimes multiple bits) have been set (e.g.,
1 << 16 | 1 << 13, which is -28672 signed, or 36864 unsigned). However, the pattern is unclear.

If a page is of type ’meta’, ’mix’, or ’amd’, data beginning at offset byte 24|40 are a sequence of SC SL-byte
subheader pointers, which point to an offset farther down the page. SAS7BDAT Subheaders stored at these offsets
hold meta information about the database, including the column names, labels, and types. If a page is of type
’mix’, then packed binary data begin at the next 8 byte boundary following the last subheader pointer. In
this case, the data begin at offset B+8+SC*SL+DL, where DL = (B+8+SC*SL+PL+7) % 8 * 8, and ’%’ is the
modulo operator.

If a page is of type ’data’, then packed binary data begin at offset 24|40.
The ’comp’ page was observed as page 2 of the compress_yes.sas7bdat test file (not distributed with the

sas7bdat package). It has BC and SC fields, but no subheader pointers. It contains some initial data and 2
tables. The first table has many rows of length 24; its purpose is unknown. The second table has one entry per
data page with the page number and the number of data rows on the page for SC pages. It could be used to access
a particular row without reading all preceding data pages.

Subheader Pointers

The subheader pointers encode information about the offset and length of subheaders relative to the beginning
of the page where the subheader pointer is located. The purpose of the last four bytes of the subheader pointer
are uncertain, but may indicate that additional subheader pointers are to be found on the next page, or that the
corresponding subheader is not crucial.

offset length conf. description
0 4|8 high int, offset from page start to subheader
4|8 4|8 high int, length of subheader := QL
8|16 1 medium int, compression := COMP
9|17 1 low int, subheader type := ST
10|18 2|6 low zeroes
12|24 high Total length of subheader pointer 12|24 (u64), SL

QL is sometimes zero, which indicates that no data is referenced by the corresponding subheader pointer.
When this occurs, the subheader pointer may be ignored.

COMP description
0 uncompressed
1 truncated (ignore data)
4 RLE compressed row data with control byte

ST subheaders
0 Row Size, Column Size, Subheader Counts, Column Format and Label, in Uncompressed file
1 Column Text, Column Names, Column Attributes, Column List
1 all subheaders (including row data), in Compressed file.

7

SAS7BDAT Subheaders
Subheaders contain meta information regarding the SAS7BDAT database, including row and column counts,
column names, labels, and types. Each subheader is associated with a four- or eight-byte ’signature’ (u64) that
identifies the subheader type, and hence, how it should be parsed.

Row Size Subheader
The row size subheader holds information about row length (in bytes), their total count, and their count on a
page of type ’mix’. Fields at offset 28|56 and higher are not needed to read the file, but are documented here
for completeness. The four test files used for example data in the higher fields are eyecarex.sas7bdat,
acadindx.sas7bdat, natlterr1994.sas7bdat, txzips.sas7bdat (non-Intel/Intel x regular/u64).

offset length conf. description
0 4|8 high binary, signature xF7F7F7F7|xF7F7F7F700000000
4|8 16|32 low ????????????
20|40 4|8 high int, row length (in bytes) := RL
24|48 4|8 high int, total row count := TRC
28|56 8|16 low ????????????
36|72 4|8 medium int, number of Column Format and Label Subheader on first page where they appear

:= NCFL1
40|80 4|8 medium int, number of Column Format and Label Subheader on second page where they

appear (or 0) := NCFL2
44|88 8|16 low ????????????
52|104 4|8 medium int, page size, equals PL
56|112 4|8 low ????????????
60|120 4|8 medium int, max row count on "mix" page := MRC
64|128 8|16 medium sequence of 8|16 FF, end of initial header
72|144 148|296 medium zeroes
220|440 4 low int, page sequence signature (equals current page sequence signature)
224|444 40|68 low zeroes
264|512 4|8 low int, value 1 observed in 4 test files
268|520 2 low int, value 2 observed
270|522 2|6 low zeroes (pads length of 3 fields to 8|16)
272|528 4|8 medium int, number of pages with subheader data := NPSHD
276|536 2 medium int, number of subheaders with positive length on last page with subheader data :=

NSHPL
278|538 2|6 low zeroes
280|544 4|8 low int, values equal to NPSHD observed
284|552 2 low int, values equal to NSHPL+2 observed
286|554 2|6 low zeroes
288|560 4|8 medium int, number of pages in file, equals PC
292|568 2 low int, values 22,26,9,56 observed
294|570 2|6 low zeroes
296|576 4|8 low int, value 1 observed
300|584 2 low int, values 7|8 observed
302|586 2|6 low zeroes
304|592 40|80 low zeroes

... continued on next page

8

offset length conf. description
344|672 2 low int, value 0
346|674 2 low int, values 0|8
348|676 2 low int, value 4
350|678 2 low int, value 0
352|680 2 low int, values 12,32|0
354|682 2 low int, length of Creator Software string := LCS
356|684 2 low int, value 0
358|686 2 low int, value 20
360|688 2 low int, value of 8 indicates MXNAM and MXLAB valid := IMAXN
362|690 8 low zeroes
370|698 2 low int, value 12
372|700 2 low int, value 8
374|702 2 low int, value 0
376|704 2 low int, value 28
378|706 2 low int, length of Creator PROC step name := LCP
380|708 36 low zeroes
416|744 2 low int, value 4
418|746 2 low int, value 1
420|748 2 low int, number of Column Text subheaders in file := NCT
422|750 2 low int, max length of column names := MXNAM (see IMAXN)
424|752 2 low int, max length of column labels := MXLAB (see IMAXN)
426|754 12 low zeroes
438|766 2 medium int, number of data rows on a full page INT[(PL - 24 / 40)/RL]; 0 for compressed file
440|768 27 low zeroes
467|795 1 low int, bit field, values 1,5
468|796 12 low zeroes
480|808 medium Total length of subheader, QL

Column Size Subheader
The column size subheader holds the number of columns (variables).

offset length conf. description
0 4|8 high binary, signature xF6F6F6F6|xF6F6F6F600000000
4|8 4|8 high int, number of columns := NCOL
8|16 4|8 low ???????????? usually zeroes
12|24 medium Total length of subheader, QL

Subheader Counts Subheader
This subheader contains information on the first and last appearances of at least 7 common subheader types. Any
of these subheaders may appear once or more. Multiple instances of a subheader provide information for an
exclusive subset of columns. The order in which data is read from multiple subheaders corresponds to the reading
order (left to right) of columns. The structure of this subheader was deduced and reported by Clint Cummins.

9

offset length conf. description
0 4|8 high int, signature -1024 (x00FCFFFF|x00FCFFFFFFFFFFFF)
4|8 4|8 low int, length or offset, usually >= 48
8|16 4|8 low int, usually 4
12|24 2 low int, usually 7 (number of nonzero SCVs?)
14|26 50|94 low ????????????
64|120 12*LSCV medium 12 subheader count vectors, length := LSCV = 20|40 bytes each
304|600 medium Total length of subheader, QL

Subheader Count Vectors

The subheader count vectors encode information for each of 4 common subheader types, and potentially 12 total
subheader types.

offset length conf. description
0 4|8 high int, signature (see list below)
4|8 4|8 medium int, page where this subheader first appears := PAGE1
8|16 2 medium int, position of subheader pointer in PAGE1 := LOC1
10|18 2|6 low ???????????? zero padding
12|24 4|8 medium int, page where this subheader last appears := PAGEL
16|32 2 medium int, position of subheader pointer in PAGEL := LOCL
18|34 2|6 low ???????????? zero padding
20|40 medium Total length of subheader count vector, LSCV

The LOC1 and LOCL give the positions of the corresponding subheader pointer in PAGE1 and PAGEL,
respectively. That is, if there are SC subheader pointers on page PAGE1, then the corresponding subheader pointer
first occurs at the LOC1’th position in this array, enumerating from 1. If PAGE1=0, the subheader is not present. If
PAGE1=PAGEL and LOC1=LOCL, the subheader appears exactly once. If PAGE1!=PAGEL or LOC1!=LOCL,
the subheader appears 2 or more times. In all test files, PAGE1 <= PAGEL, and the corresponding subheaders
appear only once per page. The variable NCT in the Row Size Subheader should be used to ensure that all Column
Text subheaders are located (and to avoid scanning through all pages in the file when all subheaders are already
located).

The first 7 binary signatures in the Subheader Count Vectors array are always:

signature description
-4 Column Attributes
-3 Column Text
-1 Column Names
-2 Column List
-5 unknown signature #1
-6 unknown signature #2
-7 unknown signature #3

The remaining 5 out of 12 signatures are zeros in the observed source files. Presumably, these are for subhead-
ers not yet defined, or not present in the collection of test files.

A Column Format and Label Subheader may appear on multiple pages, but are not indexed in Subheader
Counts. The variables NCFL1 and NCFL2 in the Row Size subheader may be helpful if you want to know in
advance if these appear across multiple pages.

10

Column Text Subheader
The column text subheader contains a block of text associated with columns, including the column names, labels,
and formats. However, this subheader is not sufficient to parse this information. Other subheaders (e.g. the column
name subheader), which point to specific elements within this subheader are also needed.

offset length conf. description
0 4|8 high int, signature -3 (xFDFFFFFF|xFDFFFFFFFFFFFFFF)
4|8 2 medium int, size of text block (QL - 16|20)
6|10 2 low ????????????
8|12 2 low ????????????
10|14 2 low ????????????
12|16 2 low ????????????
14|18 2 low ????????????
16|20 varies medium ascii, compression & Creator PROC step name that generated data
varies %QL high ascii, combined column names, labels, formats

This subheader sometimes appears more than once; each is a separate array. If so, the "column name index"
field in column name pointers selects a particular text array - 0 for the first array, 1 for the second, etc. Similarly,
"column format index" and "column label index" fields also select a text array. Offsets to strings within the text
array are multiples of 4, so the column names and labels section of the array often contains many nulls for padding.

The variables LCS and LCP from the Row Size subheader refer to a text field at the start of the text array (at
offset 16|20) in the first Column Text subheader (before the column name strings). This text field also contains
compression information. The following logic decodes this initial field:

1. If the first 8 bytes of the field are blank, file is not compressed, and set LCS=0. The Creator PROC step
name is the LCP bytes starting at offset 16.

2. If LCS > 0 (still), the file is not compressed, the first LCS bytes are the Creator Software string (padded
with nulls). Set LCP=0. Stat/Transfer files use this pattern.

3. If the first 8 bytes of the field are SASYZCRL, the file is compressed with Run Length Encoding. The
Creator PROC step name is the LCP bytes starting at offset 24.

4. If the first 8 bytes are nonblank and options 2 or 3 above are not used, this probably indicates COM-
PRESS=BINARY. We need test files to confirm this, though.

Column Name Subheader
Column name subheaders contain a sequence of column name pointers to the offset of each column name relative
to a column text subheader. There may be multiple column name subheaders, indexing into multiple column text
subheaders.

offset length conf. description
0 4|8 high int, signature -1 (xFFFFFFFF|xFFFFFFFFFFFFFFFF)
4|8 2 medium int, length of remaining subheader (QL - 16|20)
6|10 2 low ????????????
8|12 2 low ????????????
10|14 2 low ????????????
12|16 8*CMAX medium column name pointers (see below), CMAX=(QL-20|28)/8
MCN 8|12 low zeros, 12|16 + 8*CMAX := MCN

Each column name subheader holds CMAX column name pointers. When there are multiple column name
subheaders, CMAX will be less than NCOL.

11

Column Name Pointers

offset length conf. description
0 2 high int, column name index to select Column Text Subheader
2 2 high int, column name offset w.r.t. end of selected Column Text signature. Always a multiple

of 4.
4 2 high int, column name length
6 2 low zeros
8 high Total length of column name pointer

Column Attributes Subheader
The column attribute subheader holds information regarding the column offsets within a data row, the column
widths, and the column types (either numeric or character). The column attribute subheader sometimes occurs
more than once (in test data). In these cases, column attributes are applied in the order they are parsed.

offset length conf. description
0 4|8 high int, signature -4 (hex xFCFFFFFF|FCFFFFFFFFFFFFFF)
4|8 2 medium int, length of remaining subheader
6|10 2 low ????????????
8|12 2 low ????????????
10|14 2 low ????????????
12|16 LCAV*CMAXhigh column attribute vectors (see below), CMAX=(QL-20|28)/LCAV, LCAV=12|16
MCA 8|12 low MCA = 12|16 + LCAV*CMAX

Column Attribute Vectors

offset length conf. description
0 4|8 high int, column offset in data row (in bytes)
4|8 4 high int, column width
8|12 2 low name length flag
10|14 1 high int, column type (1 = numeric, 2 = character)
11|15 1 low ????????????
12|16 high Total length of column attribute vector, LCAV

Observed values of name length flag in the source files:

name length flag description
4 name length <= 8
1024 usually means name length <= 8 , but sometimes the length is 9-12
2048 name length > 8
2560 name length > 8

Column Format and Label Subheader
The column format and label subheader contains pointers to a column format and label relative to a column
text subheader. Since the column label subheader only contains information regarding a single column, there are
typically as many of these subheaders as columns. The structure of column format pointers was contributed by
Clint Cummins.

12

offset length conf. description
0 4|8 high int, signature -1026 (hex FEFB & 2 or 6 FFs)
4|8 30|38 low ????????????
34|46 2 high int, column format index to select Column Text Subheader
36|48 2 high int, column format offset w.r.t. end of selected Column Text signature. A multiple of

4.
38|50 2 high int, column format length
40|52 2 high int, column label index to select Column Text Subheader
42|54 2 high int, column label offset w.r.t. end of selected Column Text signature. A multiple of

4.
44|56 2 high int, column label length
46|58 6 low ????????????
52|64 medium Total length of subheader, QL

Column List Subheader
The purpose of this subheader is not clear. But the structure is partly identified. Information related to this
subheader was contributed by Clint Cummins. eyecarex (created by Stat/Transfer) does not have this subheader.

offset length conf. description
0 4|8 high int, signature -2 (hex FE & 3 or 7 FFs)
4|8 2 low int, value close to offset in subheader pointer
6|10 6 low ????????????
12|16 4|8 medium int, length of remaining subheader
16|24 2 low int, usually equals NCOL
18|26 2 medium int, length of column list := CL, usually CL > NCOL
20|28 2 low int, usually 1
22|30 2 low int, usually equals NCOL
24|32 2 low int, usually 3 equal values
26|34 2 low int, usually 3 equal values
28|36 2 low int, usually 3 equal values
30|38 2*CL medium column list values (see below)
MCL 8 low usually zeros, 30|38 + 2*CL := MCL

Column List Values

These values are 2 byte integers, with (CL-NCOL) zero values. Each nonzero value is unique, between -NCOL
and NCOL. The significance of signedness and ordering is unknown. The values do not correspond to a sorting
order of columns.

Compressed Binary Data Subheader
When a SAS7BDAT file is created by SAS with the option COMPRESS=CHAR or COMPRESS=YES, each row
of data is compressed independently with a Run Length Encoding (RLE) structure. This yields a variable length
compressed row. Each such row is stored in a single subheader in sequential order, indexed by the subheader
pointers. A RLE compressed data row is identified by COMP=4 in the subheader pointer, and does not have a
subheader signature. If a particular row had highly variable data and yielded no compression, it is still stored in
a subheader, but uncompressed with COMP=0 instead of COMP=4. The test file compress_yes.sas7bdat
has such highly variable (random) data and all its rows are in this COMP=0 form of subheaders. It takes up
more space than the uncompressed version compress_no.sas7bdat, due to the extra length of the subheader

13

pointers. The final subheader on a page is usually COMP=1, which indicates a truncated row to be ignored; the
complete data row appears on the next page.

The SAS option COMPRESS=BINARY apparently uses a RDC (Ross Data Compression) structure instead of
RLE. We need more test files to investigate this structure, and only document RLE at present.

Run Length Encoding

In RLE, the compressed row data is a series of control bytes, each optionally followed by data bytes. The control
byte specifies how the data bytes are interpreted, or is self contained. The control byte has 2 parts - the upper 4
bits are the Command, and the lower 4 bits are the Length. Each is an uint in the range 0-15. For example, control
byte 82 (hex) is Command 8 and Length 2, and control byte F4 (hex) is command 15 (F hex) and Length 4. We
have identified the functions of the 11 different Command values which are observed in the test files. The RLE
structure was contributed by Clint Cummins.

CommandLength Name Function
0 0 Copy64 using the first byte as a uint length L (0-255), Copy the next N=64+L bytes from the

input to the output (copies 64 to 319 bytes)
1 ? ? ???????????? (not observed in test files)
2 ? ? ???????????? (not observed in test files)
3 ? ? ???????????? (not observed in test files)
4 ? ? ???????????? (not observed in test files)
5 ? ? ???????????? (not observed in test files)
6 0 InsertBlank17using the first byte as a uint length L, Insert N=17+L blanks (decimal 32, hex 20) in the

output (inserts 17 to 273 blanks)
7 0 InsertZero17using the first byte as a uint length L, Insert N=17+L zero bytes in the output
8 L Copy1 using the Length bits as a uint length L (0-15), Copy the next N=1+L bytes from the

input to the output (copies 1 to 16 bytes)
9 L Copy17 Copy the next N=17+L bytes from the input to the output (copies 17 to 32 bytes)
10
(A)

L Copy33 Copy the next N=33+L bytes from the input to the output (copies 33 to 48 bytes)

11
(B)

L Copy49 Copy the next N=49+L bytes from the input to the output (copies 49 to 64 bytes)

12
(C)

L InsertByte3 Insert N=3+L copies of the next byte in the output (inserts 3 to 18 bytes)

13
(D)

L Insert@2 Insert N=2+L @ (decimal 64, hex 40) bytes in the output (inserts 2 to 17 @ bytes)

14
(E)

L InsertBlank2Insert N=2+L blanks in the output

15
(F)

L InsertZero2 Insert N=2+L zero bytes in the output

The most common Commands in obs_all_perf_1.sas7bdat are F and 8 (alternating). This file is
entirely 8 byte doubles, so the F commands often handle consecutive zero bytes in zero value doubles.

RLE Example 1

Compressed data row:
87 A B C D E F G H F2 8A 1 2 3 4 5 6 7 8 9 A B D0 A1 a b c d e f g ... z
CB -8-data-bytes-- CB CB --11-data-bytes------ CB CB --34-data-bytes--
Copy1 InsertZero2 Ins Copy33 next 34 bytes
Next 8 bytes 4 00h bytes 2 40h
There are 5 Control Bytes (CB) in the above sequence.

14

1. 87: Copy1 next 8 bytes

2. F2: InsertZero2 4 00h bytes

3. 8A: Copy1 next 11 bytes

4. D0: Insert@2 2 40h bytes

5. A1: Copy33 next 34 bytes

Output uncompressed row:
A B C D E F G H 00 00 00 00 1 2 3 4 5 6 7 8 9 A B 40 40 a b c ... z

RLE Example 2

Compressed data row:
87 A B C D E F G H C1 99 A5 a b c ... z
CB -8-data-bytes-- CB ar CB -last-bytes
Copy1 8 InsBy Copy33 38 bytes
Control Bytes in Example 2:

1. 87: Copy1 next 8 bytes

2. C1,99: InsertByte3 4 99h bytes

3. A5: Copy33 next 38 bytes

Output uncompressed row:
A B C D E F G H 99 99 99 99 a b c ... z
Once a data row is uncompressed, use the SAS7BDAT Packed Binary Data description below to read the

variables.

SAS7BDAT Packed Binary Data
SAS7BDAT packed binary are uncompressed, and appear after any subheaders on the page; see the Page Offset
Table. These data are stored by rows, where the size of a row (in bytes) is defined by the row size subheader. When
multiple rows occur on a single page, they are immediately adjacent. When a database contains many rows, it is
typical that the collection of rows (i.e. their data) is evenly distributed to a number of ’data’ pages. However, in
test files, no single row’s data is broken across two or more pages. A single data row is parsed by interpreting the
binary data according to the collection of column attributes contained in the column attributes subheader. Binary
data can be interpreted in two ways, as ASCII characters, or as floating point numbers. The column width attribute
specifies the number of bytes associated with a column. For character data, this interpretation is straight-forward.
For numeric data, interpretation of the column width is more complex.

The common binary representation of floating point numbers has three parts; the sign (s), exponent (e), and
mantissa (m). The corresponding floating point number is s * m * b ^ e, where b is the base (2 for binary,
10 for decimal). Under the IEEE 754 floating point standard, the sign, exponent, and mantissa are encoded by
1, 11, and 52 bits respectively, totaling 8 bytes. In SAS7BDAT file, numeric quantities can be 3, 4, 5, 6, 7, or 8
bytes in length. For numeric quantities of less than 8 bytes, the remaining number of bytes are truncated from the
least significant part of the mantissa. Hence, the minimum and maximum numeric values are identical for all byte
lengths, but shorter numeric values have reduced precision.

Reduction in precision is characterized by the largest integer such that itself and all smaller integers have an
exact representation, denoted M. At best, all integers greater than M are approximated to the nearest multiple of
b. The table of numeric binary formats below lists M values and describes how bits are distributed among the six
possible column widths in SAS7BDAT files, and lists.

15

Numeric Binary Formats

size bytes sign exponent mantissa M

24bit 3 1 11 12 8192
32bit 4 1 11 20 2097152
40bit 5 1 11 28 536870912
48bit 6 1 11 36 137438953472
56bit 7 1 11 44 35184372088832
64bit 8 1 11 52 9007199254740990

Dates, Currency, and Formatting
Column formatting infomation is encoded within the Column Text Subheader and Column Format and Label Sub-
header. Columns with formatting information have special meaning and interpretation. For example, numeric
values may represent dates, encoded as the number of seconds since midnight, January 1, 1960. The format string
for fields encoded this way is "DATETIME". Using R, these values may be converted using the as.POSIXct or
as.POSIXlt functions with argument origin="1960-01-01". The most common date format strings corre-
spond to numeric fields, and are interpreted as follows:

Format Interpretation R Function
DATE Number of days since January 1, 1960 chron::chron
TIME Number of seconds since midnight as.POSIXct
DATETIME Number of seconds since January 1, 1960 as.POSIXct

There are many additional format strings for numeric and character fields.

Platform Differences
The test files referenced in data/sas7bdat.sources.RData were examined over a period of time. Files
with non-Microsoft Windows markings were only observed late into the writing of this document. Consequently
(but not intentionally), the SAS7BDAT description above was first deduced for SAS datasets generated on the
most commonly observed platform: Microsoft Windows. The extensions to SAS7BDAT files for u64 and non-
Intel formats was contributed a little later by Clint Cummins.

In particular, the files natlerr1944.sas7bdat, natlerr2006.sas7bdat appear to be generated on
the ’SunOS’ platform (u64, non-Intel). txzips.sas7bdat was created on Linux 64-bit SAS server (u64,
Intel). eyecarex.sas7bdat is non-Intel, possibly 32-bit PowerPC.

The files cfrance2.sas7bdat, cfrance.sas7bdat, coutline.sas7bdat, gfrance2.sas7bdat,
gfrance.sas7bdat, goutline.sas7bdat, xfrance2.sas7bdat, xfrance.sas7bdat, xoutline.sas7bdat
appear to be generated on a 32-bit ’Linux’ Intel system. They have the same format as Windows files, except for
the (ignorable) OS strings in the first header.

Text may appear in non-ASCII compatible, partially ASCII compatible, or multi-byte encodings. In particular,
Kasper Sorenson discovered some text that appears to be encoded using the Windows-1252 ’code page’.

Key Test Files

filename format features
acadindx.sas7bdat non-u64, Intel (most files are like this one)
br.sas7bdat truncated doubles (widths 3,4,6; compare with br2 widths all 8)
eyecarex.sas7bdat non-u64, non-Intel, written by Stat/Transfer
txzips.sas7bdat u64, Intel

... continued on next page

16

filename format features
natlterr1994.sas7bdat u64, non-Intel
hltheds2006.sas7bdat 2 Column Attributes subheaders
moshim.sas7bdat 3 Column Attributes subheaders
flightdelays.sas7bdat 2 Column Text subheaders
ymcls_p2_long_040506.sas7bdat5 Column Text subheaders, first Column Attributes subheader is on page

6
flightschedule.sas7bdat 2+ Column Text subheaders
internationalflight.sas7bdat2+ Column Text subheaders
marchflights.sas7bdat 2+ Column Text subheaders
mechanicslevel1.sas7bdat 2+ Column Text subheaders
compress_yes.sas7bdat COMPRESS=CHAR, one PGTYPE=-28672, no RLE compression

(COMP=0)
obs_all_perf_1.sas7bdat COMPRESS=CHAR, many PGTYPE=16384, much RLE compression

(COMP=4)

Compression Data
The table below presents the results of compression tests on a collection of 142 SAS7BDAT data files (sources in
data/). The ’type’ field represents the type of compression, ’ctime’ is the compression time (in seconds), ’dtime’
is the decompression time, and the ’compression ratio’ field holds the cumulative disk usage (in megabytes) before
and after compression. Although the xz algorithm requires significantly more time to compress these data, the
decompression time is on par with gzip.

type ctime dtime compression ratio
gzip -9 76.7s 2.6s 541M / 30.3M = 17.9
bzip2 -9 92.7s 11.2s 541M / 19.0M = 28.5
xz -9 434.2s 2.7s 541M / 12.8M = 42.3

Software Prototype
The prototype program for reading SAS7BDAT formatted files is implemented entirely in R (see file src/sas7bdat.R).
Files not recognized as having been generated under a Microsoft Windows platform are rejected (for now). Im-
plementation of the read.sas7bdat function should be considered a ’reference implementation’, and not one
designed with performance in mind.

There are certain advantages and disadvantages to developing a prototype of this nature in R.
Advantages:

1. R is an interpreted language with built-in debugger. Hence, experimental routines may be implemented and
debugged quickly and interactively, without the need of external compiler or debugger tools (e.g. gcc, gdb).

2. R programs are portable across a variety of computing platforms. This is especially important in the present
context, because manipulating files stored on disk is a platform-specific task. Platform-specific operations
are abstracted from the R user.

Disadvantages:

1. Manipulating binary (raw) data in R is a relatively new capability. The best tools and practices for binary
data operations are not as developed as those for other data types.

2. Interpreted code is often much less efficient than compiled code. This is not major disadvantage for pro-
totype implementations because human code development is far less efficient than the R interpreter. Gains

17

made in efficient code development using an interpreted language far outweigh benefit of compiled lan-
guages.

Another software implementation was made by Clint Cummins, in the TSP econometrics package (mainly as
an independent platform for exploring the format).

ToDo
• obtain test files which use COMPRESS=BINARY, and develop identification and uncompression proce-

dures

• look for data which will reliably distinguish between structural subheaders (which have one of the known
signatures) and uncompressed row data, which may have row data in the signature position that matches
one of the known signatures. Both use COMP=0. Are NPSHD and NSHPL sufficient to do this?

• obtain test files with more than 2.1 billion (and more than 4.2 billion) data rows, i.e. where 8 byte integer
TRC in u64 is apparently needed. Do the non-u64 files handle this, with additional fields beyond the 4 byte
TRC used for segmentation? Is TRC a (signed) int or (unsigned) uint?

• identify any SAS7BDAT encryption flag (this is not the same as ’cracking’, or breaking encryption); we just
identify if a file is encrypted and not readable without a key

• experiment further with ’amendment page’ concept

• consider header bytes -by- SAS_host

• check that only one page of type "mix" is observed. If so insert "In all test cases (data/sources.csv),
there are exactly zero or one pages of type ’mix’." under the Page Offset Table header. [May not be needed,
because the BC and SC fields in each Page Offset Table make the MRC field in the initial header unneces-
sary.]

• identify all missing value representations: missing numeric values appear to be represented as ’0000000000D1FFFF’
(nan) for numeric ’double’ quantities.

• identify purpose of various unknown header quantities

• determine purpose of Column List subheader

• determine purpose and pattern of ’page sequence signature’ fields. Are they useful?

• identify how non-ASCII encoding is specified

• implement R options to read just header (and subheader) information without data, and an option to read
just some data fields, and not all fields. [The TSP implemenation already does this, and can also read a
subset of the data rows.]

18

	Contents
	Introduction
	SAS7BDAT Header
	Header Offset Table
	Alignment
	Magic Number
	Character Encoding

	SAS7BDAT Pages
	Page Offset Table
	Page Type
	Subheader Pointers

	SAS7BDAT Subheaders
	Row Size Subheader
	Column Size Subheader
	Subheader Counts Subheader
	Subheader Count Vectors

	Column Text Subheader
	Column Name Subheader
	Column Name Pointers

	Column Attributes Subheader
	Column Attribute Vectors

	Column Format and Label Subheader
	Column List Subheader
	Column List Values

	Compressed Binary Data Subheader
	Run Length Encoding
	RLE Example 1
	RLE Example 2

	SAS7BDAT Packed Binary Data
	Numeric Binary Formats
	Dates, Currency, and Formatting

	Platform Differences
	Compression Data
	Software Prototype
	ToDo

